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Abstract trusion Prevention Systems (IPSs) such as the Tipping Point
We address the problem of collecting unique items in alarg€ore Controller and the Juniper IDP 8200 [5] are imple-
stream of information in the context of Intrusion Preventio mented in hardware at 10 Gbps and are standard in many
Systems (IPSs). IPSs detect attacks at gigabit speeds gfiganizations. IPSs have also moved from being located
must log infected source IP addresses for remediation gply at the periphery of the organizational network to be-
forensics. An attack with millions of infected sources canng placed throughout the organization. This allows IPSs
resultin hundreds of millions of log records when countingo defend against internal attacks and provides finer granu-
duplicates. If logging speeds are much slower than packgity containment of infections. Widespread, cost-ettac
arrival rates and memory in the IPS is limitetalable log-  deployment of IPSs, however, requires using streamlined
gingis a technical challenge. After showing thaiveap- hardware, especially if the hardware is to be integrateal int
proaches will not suffice, we solve the problem with a newoyters (as done by Cisco and Juniper) to further reduce
algorithm we call Carousel. Carousel randomly partitionﬁackaging costs. By streamlined hardware, we mean ide-
the set of sources into groups that can be logged without dytiy a single chip implementation (or a single board with
plicates, and then cycles through the set of possible grouggw chips) and small amounts of high-speed memory (less
We prove that Carousel collects almost all infected sourcegan1o Mbit).
with high probability in close to optimal time as long as Figure 1 depicts a logical model of an IPS for the pur-
infected sources keep transmitting. We descr_ibe det.ails BBses of this paper. A bad packet arrives carrying some
a Snort implementation and a hardware design. Simulgey Typically the key is simply the source address, butothe
tions with worm propagation models show up to a factofig|gs such as the destination address may also be used. For
of 10 improvement in collection times for practical scenarihe rest of the paper we assume the key is the IP source ad-
ios. Our technique applies &mylogging problem with non- - 4ress, (We assume the source information is not forged. Any
cooperative sources as long as the information to be loggggtack that requires the victim to reply cannot use a forged

appears repeatedly. source address.) The packet is coalesced with other pack-
ets for the same flow if it is @ TCP packet, normalized [16]
1 Introduction to guard against evasions, and then checked for whether

the packet is indicative of an attack. The most common

With a variety of networking devices reporting events at incheck issignature-base¢e.g., Snort [13]) which determines
creasingly higher speeds, how can a network manager ogishether the packet content matches a regular expression in
tain a coherent and succinct view of this deluge of data® database of known attacks. However, the check could also
The classical approach usesanp|eof traffic to make be- be behavior-basedFor example, a denial of service attack
havioral inferences. However, in many contexts the god$ a destination may be detected by some state accumulated
is complete or near-complete collectiarfi information —  @cross a set of past packets.
MAC addresses on a LAN, infected computers, or mem- In either case, the bad packet is typically dropped, but the
bers of a botnet. While our paper presents a solution to thiBS is required téog the relevant information on disk at a re-
abstract logging problem, we ground and motivate our agnote management console for later analysis and reporting.
proach in the context of Intrusion Prevention Systems. ~ The information sent is typically the kei plus a report
Originally, Intrusion Detection Systems (IDSs) imple-indicating the detected attack. Earlier work has shown-tech

mented in software worked at low speeds, but modern Iftques for high speed implementations of reassembly [4],



Intrusion Prevention Device slow logging rate

(e.g., 100 Mbps)
Memory
(R bl ati Signature/Behavior i
Bad nacket {Rea oc.nmyj—{Normallzatlon Detection Logging eg., it)
with key K
| Carousel Scalable Logger -------- This paper
fast arrival rate MAC Chips TTTTTTTTTTTTTTe ST
Large Disk Storage | Key, Report (e.g., 10 Gbps) p Normalization, Detection
IDS
Management Station Chips

Figure 1: IPS logical model including a logging componentigure 2: IPS hardware model in which we propose adding
that is often implemented haely a scalable logger facility called Carousel. Carousel fesus
on a small random subset of the set of keys at one time,

thereby matching the available logging speed.
normalization [15, 16], and fast regular expression match- y ng val gaging sp

ing (e.g., [12]). However, to the best of our knowledge,
there is no prior work in scalable logging for IPS systemshe memory. Even in a random arrival model, intuitively as
or networking. more and more sources are logged, it gets less and less prob-
To see why logging may be a bottleneck, consideable that a new unique source will be logged. In Section 3
Figure 2, which depicts a physical model of a streamlinede show that, even with a fairly optimistic random model,
hardware IPS implementation, either stand-alone or pack-standard analysis based on the coupon collector’s prob-
aged in a router line card. Packets arrive at high spedem (e.g., [8]) shows that the expected time to collect\all
(say 10 Gbps) and are passed from a MAC chip to one aources is anultiplicativefactor ofln NV worse than the op-
more IDS chips that implement detection by for exampléimal time. For example, whelV is in the millions, which
signature matching. A standard logging facility, such as ifs not unusual for a large worm, the expected time to col-
Snort, logs a report each time the source sends a packet thett all sources can be 15 times larger than optimal. We
matches an attack signature and writes it to a memory buffeiso show similar poor behavior of theima implementa-
from which it is written out later either to locally attachedtion, both through analysis and simulation, in more complex
disk in software implementations or to a remote disk at aettings.
management station in hardware implementations. A prob- The main contribution of this paper, as shown in Figure 2,
lem arises because the logging speed is often much slowgra scalable logger module that interposes between the de-
than the bandwidth of the network link. Logging speedsection logic and the memory buffer. We refer to this module
less than 100 Mbps are not uncommon, especially in 1&hd the underlying algorithm aSarouse] for reasons that
Gbps IDS line cards attached to routers. Logging speeds akéll become apparent. Our logger is scalable in that it can
limited by physical considerations such as control procegollect almost allV sources with high probability with very
sor speeds and disk bandwidths. While logging speeds camall memory buffers in close to optimal time, where here
theoretically be increased by striping across multiplé&slis the optimal time isV/b with b being the logging speed. Fur-
or using a network service, the increased costs may not bieer, Carousel is simple to implement in hardware even at
justified in practice. very high speeds, adding only a few operations to the main
In hardware implementations where the memory buffer iprocessing path. We have implemented Carousel in software
necessarily small for cost considerations, the memory cdioth in Snort as well as in simulation in order to evaluate its
fill during a large attack and newly arriving logged recordgerformance.
may be dropped. A typical current configuration might in- While we focus on the scalable logging problem for IPSs
clude only 20 Mbits of on-chip high speed SRAM of whichin this paper, we emphasize that the problem is a general
the normalizer itself can take 18 Mbits [16]. Thus, we asene that can arise in a number of measurement settings. For
sume that the logger may be allocated only a small amouskample, suppose a network monitor placed in the core of an
of high speed memory, say 1 Mbit. Note that the memorgrganizational network wishes to log all the IP sources that
buffer may include duplicate records already in the buffer oare using TCP Selective Acknowledgment option (SACK).
previously sent to the remote device. In general, our mechanism applies to any monitoring setting
Under a standard i implementation, unless the log- where a source is identified by a predicate on a packet (e.g.,
ging rate matches the arrival rate of packets, there is rthe packet contains the SACRERMITTED option, or the
guarantee that all infected sources will be logged. It iy eagpacket matches the Slammer signature), memory is limited,
to construct worst-case timing patterns where some set ahd sources do not cooperate with the logging process. It
sources4 are never logged because another set of souscesdoes, however, require sources to keep transmitting psicket
always reaches the IDS before sources in thedsad fills  with the predicate in order to be logged. Thus Carousel does



ITEMS LOGGER SINK complete collectionthe logging of allV sources. We now

§ adopt some of the terminology of competitive analysis [2] to

I % Memory M << N Cogging bardvih describe t_he perfo_rma_nce of practical Iogge_r systems. The
<< Enough memory best possible logging timé,,;;m.; for an omniscient algo-

to store all N items rithm is clearly N/b. We compare our algorithms against

Figure 3: Abstract logging modelV keys to be logged en- thlslolrr.1n|SC|ent algorithm as fOHOW.S' _ _

ter the logging device repeatedly at a spéethat is much  Definition 2.1 We say that a logging algorithm i, ¢)-
greater then the logging spega@nd in a potentially adver- ;calable if the time to collect at leagt—€) N of thg sources
sarial timing pattern. At the same time, the amount of mendS &t MOStcToprimar. In the case of a randomized algo-
ory M is much less than tha, number of distinct keys to rithm, we say that an algorithm i&, ¢)-scalable if in time

be logged. Source cooperatiomist assumed. cToptimai the expected number of sources collected is at
least(l —€)N.
. _ Note that in the case = 0 all sources are collected. While
not guarantee the logging of one-time events. obviously collecting all sources is a desirable featurejeso

The rest of the paper is organized as follows. In Section @laxation of this requirement can naturally lead to much
we describe a simple abstract model of the scalable loggirgmpler algorithms.
problem that applies to many settings. In Section 3 we de- These definitions have some room for play. We could in-
scribe a Simple analytical model that shows that even Wltgtead call a randomized a|gor|thm C)-sca|ab|e if the ex-
an optimistic random model of packet arrivals,vealog- pected time to collect at leagt — €) N is at mostT,ptima,
ging can incur a multiplicative penalty af NV in collection  and we may be concerned only with asymptotic algorithmic
times. Indeed, we show this is the case eveni¥@&gging  performance as either or both 81/ and B/b grow large.
is enhanced with a Bloom filter in the straightforward wayas our focus here is on practically efficient algorithms eath
In Section 4 we describe our new scalable logging algorithihan subtle differences in the definitions we avoid such con-
Carousel, and in Section 5 we describe our Snort implemegerns where the meaning is clear.
tation. We evaluate Carousel using a simulator in Section 6 The main goal of this paper is to provide an effective and

and using a Snort implementation in Section 7. Our evasractical (e, c)-scalable randomized algorithm. To empha-
uation tests both the setting of our basic analytical modeljze the value of this result, we first show that simplé/ea
which assumes that all sources are sending at mend  gnproaches are nét, ¢)-scalable for any constantsc > 0.

a more realistic logistic worm propagation model, in whichoyr positive results will require the following additiores-
sources are infected gradually. Section 8 describes eelatgymption for our model:

work while Section 9 concludes the paper. Persistent Source Assumption\We assume that any dis-

tinct key X to be logged will keep arriving at the logger.

For sources infected by worms this assumption is of-
ten reasonable until the source is “disinfected” because th
N . source continues to attempt to infect other computers. The
The model _shown n F|gure_3 .abStraCtS the Scalable Ioggqgne for remediation (days) is also larger than the period
problem. First, there ard distinct keys that arrive repeat- in which the attack reaches its maximum intensity (hours).
edly and with arbitrary timing frequency at a CumU|ativeFurther, if a source is no longer infected, then perhapstt ma

speed of 3 rl:eys per second at thle Iogﬁ]erl. TherT:Me h ters less that the source is not logged. In fact, we conjectur
resources that are in scarce supply at the logger. FIrst thgy,; |, algorithm can solve the scalable logging problem

is a limited logging speed (keys per second) that is much without the Persistent Source assumption.

smaller than the bandwidt® at which keys arrive. Even . .
L o The abstract logger model is a general one and applies to
this might not be problematic if the logger had a memafy ; : . ,
other settings. In the introduction, we mentioned one other

large enough to hold all the distinct keyé that needed to - ) )
. . ossibility, logging sources using SACK. As another exam-
be logged (using methods we discuss below, such as Blo . . . : :
ple, imagine a monitor that wishes to log all the sources in

filters [1, 3], to handle duplicates), butin our setting off a network. The monitor issues a broadcast request to all

infections and hardware with limited memory, we must als%ources asking them to send a reply with their ID. Such mes-
assume thav >> M.

L . - .. sages do exist, for example the SYSID message in 802.1.
Eliminating all duplicates before transmitting to the sm%e

2 Model

nfortunately, if all sources reply at the same time, some

t of sources can consistently be lost.

Of course, if the sources could randomize their replies,
then better guarantees can be made. The problem can be

is not a goal of a scalable logger. We assume that the si

has a hash table large enough to storé\alinique sources

(by contrast to the logger) and eliminate duplicates.
Instead, the ultimate goal of the scalable loggeméar-



viewed as one of congestion control: matching the speed Setof items logged in memory L,
of arrival of logged keys to the logging speed. Congestion Nnemsiteﬁr}gofmlgnigfyo:ﬁ)li ewery | [0 @ o] [rerol 0 M 100
control can be solved by standard methods like TCP slow anvalrate =8 — ) L
start or Ethernet backoff sources can be assumed to co- Size =M

operate. However, in a security setting we cannot assume

that sources will cooperate, and other approaches, suchfigure 4: Model of néve logging using an optimistic ran-
the one we provide, are needed. dom model. When space opens up in the memory log, a

source is picked uniformly and randomly from the set of all
possibleN sources. Unfortunately, that source may already

3 Analysis of a Nave Logger be in the memory logl{,) or in the disk log £ ). Thus as
more sources are logged it gets increasing less probalile tha
3.1 The Ndve Logger Alone a new unique source will be logged, leading to a logarithmic

Before we describe our scalable logger and Snort impléAcrease in collection time over optimal
mentation, we present a straw marivedogger, and a theo-

retical analysis of the expected and worst-case times. The t=1B<<T
theoretical analysis makes some simplifications that only ‘ ‘ ‘
benefit the nive logger, but still its performance is poor. Last head Random source Next head

leaves for disk arrives leaves for disk

The ndve logger motivates our approach.
We start with a model of the iNe logger shown in
Figure 4. We assume that theivalogger only has a mem-

ory buffer in the form of a queue. Keys, which again areFigure 5: Portion of timeline for random model shown in
usually source addresses, arrive at a rat& qfer second. igure 4. We divide time into cycles of tin®& where T
When the nve logger receiyes akey, itis P'aced at the tairs the time to send one piece of logged information at the
of the queue. If the queue is full, the key is dropped. Thﬁ)gging rateb. The time for a new randomly chosen source

size of the queue iM_: Periodically, at a smaller rate 6f to first arrive is much smallér= 1/B, whereB is the faster
keys per second, the iva logger sends the key (and any as-

acket arrival rate.
sociated report) at the head of the queue to a disk log. Lgt
L denote the set of keys logged to disk, dng the set of

keys that are in the memory. _ _ Let us assume that/ < B/b, so that initially the queue
~ The nave logger works very poorly in an adversarial seti|s entirely before the first departure. (The analysis is-ea
ting. In an adversarial model, after the queue is fulléf iy modified if this is not the case.) Figure 5 is a timeline
keys, and when an empty slot opens up at the tail, the advgjnich shows that the dynamics of the system evolve in cy-
sary picks a duplicate key that is part of thekeys already (jeg of lengtHl” seconds, wher& = 1/b. EveryT seconds
logged. When the queue is full, the adversary cycles througRe current head of the memory queue leaves for the disk
the remaining unigue sources to pick them to arrive and t}gg, and within the smaller time = 1/B, a new randomly
dropped, thus fulfilling the persistent source assumption iselected key arrives to the tail of the queue. In other words,
which every source must arrive periodically. It is then easye queue will always be full except when a key leaves from
to see the following result. the head, leaving a single empty slot at the tail as shown
Theorem 3.1 Worst-case time for néve logger: The in Figure 4. The very next key to be selected will then be
worst-case time to collect alV keys is infinity. In fact, the chosen to fill that empty slot as shown in Figure 5.
worst-case time to collect more thad keys is infinite. The analysis of this rige setting now follows from a stan-
We believe the adversarial models can occur in real sitwtard analysis of the coupon collector’'s problem [8]. Let
ations especially in a security setting. Sources can be syh- = Lj; U Lp denote the set of unique keys logged in
chronized by design or accident so that certain sources a@&ither memory or disk. L€T; denote the time foL to grow
ways transmit at certain times when the logger buffers afeom size: — 1 to 4 (in other words, the time for théth
full. While we believe that resilience to adversarial modelsew key to be logged). If we optimistically assume that the
is one of the strengths of Carousel, we will show that even ifirst M keys that arrive are distinct, we hat¥e = T for
the most optimistic random models, Carousel significantly < i < M, as the queue initially fills. Subsequently, since
outperforms a riae logger. the newly arriving key is chosen randomly from the sedof
The simplest random model for key arrival is one in whictkeys, it will get increasingly probable (agets larger) that
the next key to arrive is randomly chosen from fiigoossi- the chosen key already belongs to the logged.set
ble keys, and we can find the expected collection time of the The probability that a new key will not be a duplicate of
naive logger in this setting. 1 — 1 previously logged keys is iB, = (N — i+ 1)/N. If

T = 1/b, b =logging rate



a key is a duplicate the na logger simply wastes a cycle between the random model and an adversarial model. For
of time T'. (Technically, it might bel’ — ¢ wheret = 1/B, example, suppose that we have two sets of sources, of sizes
but this distinction is not meaningful and we ignore it.) TheN; and N, but the first source sends at a speed that is
expected number of cycles before thih key is not a dupli- times the second. This captures, at a high level, the issitie th
cate is the reciprocal of the probability bf P;. Hence for sources may be sending at different rates. We assume each

1> M,i < N the expected value df; is source individually behaves according to the random model.
N Let T; be the expected time to collect all the keys in the fast
E(T;) = set, andl’; the expected time for the slow set. Then clear the

bV —i+1) expected time to collect all sources is at leasix (77, T»),

Using the linearity of expectation, the collection time forand indeed this lower bound will be quite tight whgnand
the lastV — M keys is T, are not close. As an example, suppdge= N, = N/2,
andj > 1. ThenT; is approximately

N N—-—M

N N 1 N
D oD - b 2§ -0, NG+ (N M
i=M+41 Jj=1 2b 2 j+1 .

using the well-known result for the sum of the harmonic ) o ) _
series. Hence if we IeF™@iv¢ phe the time to collect alv The time to collect in this case is dominated by the slow

collect

keys for the nve collector ther%i>¢, > N In(N — M), ~ Sources, and is still a logarithmic factor from optimal.

collect

and so the rige logger is a multiplicative factor dh(N — 3.2 The Ndve Logger with a Bloom Filter
M) worse than the optimal algorithm. A possible objection is that our e logger is far too

It might be objected that it is not clear that/b is in  naive. It may be apparent to many readers that additional
fact the optimal time in this random model, and that thiglata structures, such as a Bloom filter, could be used to pre-
In N factor is due entirely to the embedded coupon collecsent logging duplicate sources and improve performance.
tor’'s problem arising from the random model. For examThis is true, and we shall use such measures in our scalable
ple, if B = b = 1, then you cannot collect th® keys in approaches. However, we point out that as the Bloom filter
time N, since they will not all appear until after approxi- of limited size, it cannot by itself prevent the problems of
mately N In N keys have passed [8]. However, as long athe ndve logger, as we now explain.
B/b>1InN (andM > 1), for any~ > 0, with high proba- To frame the discussion, consider 1 million infected
bility an omniscient algorithm will be able to collectally® sources that keep sending to an IPS. The solution to the
after at most1 + v) N B/b keys have passed in this randomproblem may appear simple. First, since all the sources may
model, so the optimal collection time can be made arbitraarrive at a very fast rate b before even a few are logged,
ily close to N/b. Hence, this algorithm is indeed not truly the scheme must have a memory buffer that can hold keys
scalable in the sense we desire, namely in a comparison wigaiting to be logged. Second, we need a method of avoiding

the optimal omniscient algorithm. sending duplicates to the logger, specifically one thatdake
Even if we seek only to obtaifi —e) NV keys, by the same small space, in order to make efficient use of the small speed
argument we have the collection time is of the logger.
N To avoid sending duplicates, one naturally would think
> (In((1—¢)N — M)+ 0O(1)). of a solution based on Bloom filters or hashed fingerprints.

(We assume familiarity with Bloom filters, a simple small-
Hence whenM = o(N), the logger is still not(e,c)-  space randomized data structure for answering queries of
scalable for any constantsandc. We can summarize the the form “Is this an item in sex” for a given setX. See [3]
result as follows: for details.) For example, we could employ a Bloom filter
Theorem 3.2 Expected time for néve logger: The ex- as follows. For concreteness, assume that a source address
pected time to colledtl — €) N keys is at least a multiplica- is 32 bits, the report associated with a source is 68 bits, and
tive factor ofln((1 —¢) N — M) worse than the optimal time that we use a Bloom filter [1] of 10 bits per soufc&hus we
for sufficiently largeV, M, and ratiosB/b. need a total of 100 bits of memory for each source waiting to
As stated in the introduction, for large worm outbreaksbe logged, and 10 bits for each source that has been logged.
the ndve logger can be prohibitively slow. For example,(Instead of a Bloom filter, we could keep a table of hash-
asln 1,000, 000 is almost 14, if the optimal time to log 1 based fingerprints of the sources, with different trademits
million sources is 1 hour, the he logger will take almost similar results, as we discuss in Section 4.2.2.)
14 hours. P . . .
. This is optimistic because many algorithms would require nst §u
The results for the random model can be extended to SitHrom filter but instead a counting Bloom filter [7] to suppdetletions,
ations that naturally occur in practice and appear someavhexhich would require more than 10 bits per entry.




Unfortunately, the memory buffer and Bloom filter havekeys to be recorded into subsets of the right size, so that the
to operate at Gigabit speeds. Assume that the amount lofjger can handle each subset without problem. The log-
IDS high speed memory is limited to storing say 1 Mbit.ger then iterates through all subsetspimases as we now
Then, assuming 100 bits per source, the IPS can only stadescribe. This repeated cycling through the keys is reminis
information about a burst of 10,000 sources pending thegent of a Carousel, yielding our name for our algorithm.
transmission to a remote disk. This does not include the size
of the Bloom filter, which can only store around 100,000 . .
sources if scaled to 1 Mbit of size; after this point, theéals4 Scalable logging using Carousel
positive rate starts increasing significantly. In practice e )
has to share the memory between the sources and the Blodl ~ Partitioning and logging
filter. Our goal is to partition the keys into subsets of the right

The inclination would be to clear the Bloom filter after it SiZ€, SO that during each phase we can concentrate on a sin-
became full and start a second phase of logging. One codle subset. Thg guestion is hov_v_to perform the_partlt_lonlng.
cern is that timing synchronization could result in the sam¥/e want the size of each partition to be the right size for
sources that were logged in phase 1 being logged and fillif§'r logger memory, that is approximately sizé We sug-
up the Bloom filter again, and this could happen repeatedl9?§t using a randomlzed partition of th_e sources into sabset
leading to missing several sources. Even without this poteHSing & hash function that uses very little memory and pro-
tial problem, there is danger in using a Bloom filter, as w&€SSing. This randomized partitioning would be simple if
can see by again considering the random model. we initially knew the population sizé&/, put that generally

Consider enhancing the ive logger with a Bloom filter will not be the case; our system must find the current popu-

to prevent the sending of duplicates. We assume the Bloofdfion sizeN, and indeed should react as the population size

filter has a counter to track the number of items placed ii'anges: N , ,
the filter, and the filter is cleared when the counter reaches Ve choose a hash-based partition scheme that is particu-
a threshold to prevent too many false positives. Betweer@ry memory and time-efficient. L& (X) be a hash func-
each clearing, we obtain a group Bfdistinct random keys, tion thatmaps a source kéy/to anr-bitinteger. Lett; (X)
but keys may be appear in multiple groups. Effectively, thi9e the lower ordek bits (_)fH_(X). The size of the partition
generalizes the five logger, which simply used groups of ¢@n be controlled by adjusting
sizeF = 1. For example, ift = 1, we divide the sources into two
Not surprisingly, this variation of the coupon collector'sSUPSets, one subset whose low order bit (after hashing) is 1,
problem has been studied:; it is know as the coupon syfhd one whose lower order bit is a 0. Ifthe hash function is
set collection problem, and exact results for the probleffell-behaved, these two sets will be approximately half the
are known [11, 14]. Details can be examined by the in@riginal sizeN. Similarly, k = 2 partitions the sources ap-
terested reader. A simple analysis, however, shows thgfoximately into four equally sized subsets whose hash val-
for reasonable filter sizeB, there will be little or no gain U€s have low order bits 00, 01, 10, and 11 respectively. This
over the néve logger. Specifically, suppogé = o(v/N). allows only very coarse-grained partltlonlng, bgt'thatesg'
Then in the random model, the well-known birthday para€ally suitable for our purposes, and the simplicity of gsin
dox implies that with high probability the first keys to the lower orderk bits of H(X) is particularly compelling
be placed in the Bloom filter will be distinct. While there fOr implementation and analysis. To begin we will assume
may still be false positives from the Bloom filter, for suchth® Population size is stable but unknown, in which case the
F the filter fills without detecting any true duplicates withPasic Carousel algorithm can be outlined as follows:
high probability. Hence, in the random case, the expected
collection time even using a Bloom filter of this size is still
FIn(N — M) + O(1). With larger filters, some true du-
plicates will be suppressed, but one needs very large filters
to obtain a noticeable gain. The essential point of this ar- ¢ |terate: A phase is assigned tin&,,,.. = M /bwhich
gument remains true even in the setting considered above s the time to logM sources, wheré/ is the avail-
where different sets of sources arrive at different speeds. able memory in keys antlis the logging time. The
The key problem here is that we cannot supply the IDS  -th phase is defined by logging only sources such that
with the list of all the sources that have been logged, even  H, (s) = i. Other sources are automatically dropped
using a Bloom filter or a hashed set of fingerprints. Indeed, during this phase. The algorithm must also utilize
when M << N no data structure can track a meaningful ~ some means of preventing the same source from being
fraction of the keys that have already been stored to disk. logged multiple times in the phase, such as a Bloom
Our solution to this problem is to partition the populatidn o filter or hash fingerprints.

e Partition: Partition the population into groups of size
2% by placing all sources which have the same value of
Hy(X) in the same partition.



e Monitor: If during phasei, the number of keys that gle logging phasel,;.sc = M/b. The logger then reaches
match H,() = ¢ exceeds a high threshold, then wethe right subset size, so thiats the smallest value such that
return to the Partition step and incredseWhile our  N/2* < M. The collector then goes through phases to
algorithms typically usé: = k + 1, higher jumps can collect all N sources. Note tha?* < 2N/M, or elsek
allow faster response. If the number of number of keysvould not be the smallest value wili/2¥ < M. Hence,
that matchH;,() = ¢ falls below a low threshold, then after the initial phases to find the right value /afthe ad-
we return to the Partition step and decrebse ditional collection time required is jugtN /b, or a factor of

o _ two more than optimal. The total time is thus at most
In other words, Carousel initially tries to log all sources

without hash partitioning. If that fails because of mem- M {log,y(N/M)]| LN
ory overflow, the algorithm then works on half the possi- b b’

ble sources in a phase. If that fails, it works on a quartejnq the generally the second term will dominate the first.
of the possible sources, and so on. Once it determines taAgymptotically, whenN >> M, we are roughly within a
appropriate partition size, the algorithm iterates thtoali  tactor of 2 of the optimal collection time.
subsets to log all sources. Note that the factor of 2 in theN'/b term could in fact be
As described, we could in the monitoring stage Changl%placed in theory by any constant> 1, by increasing the
k by more than 1 if our estimate of the number of keysumber of sets in the partition by a factor @father than
seen during that phase suggests that would be an appropriat each partition step. This would increase the number
ate choice. Also, of course, we can choose to decrgasepf partition steps tdlog, &7. In practice we would not
if our estimate of the keys in that phase is quite small, agant to choose a value aftoo close to 1, because keys will
would happen if we are logging suspected virus sources apg@t be partitioned equally into sets, as we describe in the
these sources are stopped. There are many variations gft subsection. Also, as we have described a factor of 2 is
optimizations we could make, and some will be explored iBonvenient in terms of partitioning via the low order bits of
our experiments. The important idea of Carousel, howeveg, hash. In what follows we continue to use the factor 2 in
is to partition the set of keys to match the logger memoryescribing our algorithm, although it should be understood
size, updating the partition as needed. smaller constants (with other tradeoffs) are possible.
4.2 Collection Times for Carousel In some ways our analysis is actually pessimistic. Early
We assume that the memory includes, for each key fohases that fail can still log some items, and we have as-
be recorded, the space for the key itself, the correspongumed that we could partition to requigeV/M phases,
ing report, and some number of bits for a Bloom filterwhen generally the number of phases required will be
This requires slightly more memory space that we assumethaller. However, we have also made some optimistic as-
when analyzing the random model, where we did not ussumptions that we now revisit more carefully.
the Bloom filter. The discrepancy is small, as we expec#.2.1 Unequal Partitioning: Maximum Subset Analy-
the Bloom filter to be less than 10% of the total memory sis
space (on the order of 10 bits or less per item, against 100|f the logger uses: bits to partition keys, then there are
or more bits for the key and report). This would not effecx = 2% subsets. While the expected number of sources in
tively change the lower bounds on performance of the@a a subset i, even assuming a perfectly random hash func-
logger. We generally ignore the issue henceforth; it shoulgon, there may be deviations in the set sizes. Our algorithm
be understood that the Bloom filter takes a small amount gjill actually choose the value d@f such that the biggest par-
additional space. tition is fit in our memory budged/, not the average parti-
Recall that Carousel has 3 components: partition, iteratéon, and we need to take this into account. That is, we need
and monitor. Faced with an unknown populatidh the to analyze thenaximurmumber of keys being assigned to a
scalable logger will keep increasing the number of bits chasubset at each phase interval.
senk until each subset is less than sikg the memory size  |n general, this can be handled using standard Chernoff
available for buffering logged keys. bound analysis [8]. In this specific case, for example, [10]
We sketch an optimistic analysis, and then correct for thgroves that with very high probability, the maximum num-
optimistic assumptions. Let us assume thatMalkeys are ; ; 2N In K
present at the start of time, that our hash function splis th?_ﬁregfj;ux;i;: aa:gu;uebfhe;Ifh!ae;;;%gmw g;aitisfy
keys perfectly equally, and that there is no failed recaydin.
of keys due to false positives from the Bloom filter (or what-

ever structure suppresses duplicates). In that case takél N 44 /M <M, (1)
at most[log, %1 partition steps for Carousel to get the right K K

number of subsets. Each such step required time for a siwhere K = 2*, is greater than or equal to tikeeventually



found by the algorithm. large overestimate. For completeness we offer the follow-
Note that the difference between our optimistic analysisng more refined analysis (which is standard) to obtain the

where we required the smalléssuch thatV/K < M, and expected false positive rate. (As usual, the actual ratens ¢

centrated around its expectation with high probability.)

. K Assume the Bloom filter has bits and useé hash func-
ally much less thatV/ . Thatis, suppose thal/ i’ < M, tions. Consider whether the + 1)st item added to the fil-
but £ + /22K > M, so that at some point we might ter causes a false positive. First consider a particular bit
increase the valué to more than the smallest value suchin the Bloom filter. The probability that it is not set to
that N/K < M, because we unluckily have a subset in oufl. by one of thehi hash functions thus far il — L )"7,

m

partition that is bigger than the memory size. The key her€herefore the probability of a false positive at this stegje i

this analysis is generally very small, #M is gener-

is that in this caséV/ K ~ M, or more specifically (1-(1—-)r~(1- e~ ),
SupposeV!’ items are added into the Bloom filter within
M N oM 2NIn K a phase interval. The e’>§pected fraction of false positiges i
- K K then (approximately) " ;"' (1 — e~ )", compared to the

(1- e‘%ﬂ)”' given by the standard analysis for the false
positive rate afted/’ elements have been added. As an ex-

oOKM 2N 2 [2NInK ample, withM’ = 312, h = 5, andm = 5000, the standard
B eV TR

so that our collection time is now

B < b + 3 analysis gives a false positive rateloft - 10~2, while our
improved analysis gives a false positive rat@af- 1074,
That is, the collection time is still, at most, very close to Third, if collecting all or nearly all sources is truly
2N/b, with the addition of a smaller order term that con-paramount, instead of using a Bloom filter, one can use
tributes negligibly compared &N /b for large N. Hence, hash-based fingerprints of the sources instead. This esxjuir
asymptotically, we are still with a factor efof the optimal more space than a Bloom filte®(log M’) bits per source
collection time, for any: > 2. if there areM’ per phase) but can reduce the probability of
4.2.2 Effects of False Positives a false positive to inverse polynomial i’; that is, with

So far, our analysis has not taken into account our methdtgh probability, all sources can be collected. We omit the
of suppressing duplicates. One natural approach is to ustndard analysis.
a Bloom filter, in which case false positives can lead to4.2.3 Carousel and Dynamic Adaptation
a source not being logged in a particular phase. This ex- Under our persistent source assumption, any distinct key
plains our definition of arfe, c)-scalable logger. We have keeps arriving at the logger. In fact, for our algorithm as
already seen that can be upper bounded by any numbedescribed, we need an even stronger assumption: each key
larger than 2 asymptotically. Herecan be bounded by must appear during the phase in which it is recorded, which
the false positive rate of the corresponding Bloom filter. Asneans each key should arrive eve¥yb steps. Keys that
long as the number of elements per phase is no more thdo not appear this frequently may miss their phase and not
M = N 4 J2NInK \with high probability, then given be recorded. In most settings, we do not expect this to be

~ K problem; any key that does not persist and appear this

the number of bits used for our Bloom filter, we can boun . i
the false positive rate. For example, usifig/” bits in the requently does not likely represent a problematic source
’ 'p terms of, for example, virus outbreaks. Our algorithm

Bloom filter, the false positive rate is less than 1%, so od

logger asymptotically converges tq@01, 2)-scalable log- could be modified for this situation in various ways, which
ger. we leave as future work. One approach, for example, would

. . be to sample keys in order to estimate the 95% percentile
We make note of some additions one can make to improye . R :
) ) . . . Or average interarrival times between keys, and set the tim
the analysis. First, this analysis assumes only a simgle

jor cyclethat logs each subset in the partition once. If Onénterval for the phase time to gather a subset of keys accord-

rerandomized the chosen hash functions each major cyc\giy' o is that th istent
then the probability a persistent source is missed eachrmajo r?ore pressw][ghlsizube IS tha f per|5|s te_n source ﬁs;
cycle is independently at moseach time. Hence, after two sumption may not hold because external actions may snu

such cycles, the probability of a source being missed is gpwn infected sources, effec.tively changing the size (.)f the
moste2, and so on. set of keys to record dynamically. For example, during a

. . o N . worm outbreak, the number of infected sources rises rapidly
Second, this analysis is pessimistic, in that in this sgftin _, . ;
: : t first but then they can go down due to external actions (for
items are gradually added to an empty Bloom filter eac : .
) Lo S . example, network congestion, users shutting down slow ma-
phase; the Bloom filter is not in its full state at all tlrnes’chines due to infection, and firewalling traffic or blocking a
so the false positive probability bound for the full filteras ' 9 9
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Figure 6: Flowchart of Carousel within Snort packet flow

output module performs appropriate actions such as logging
to files or generating alerts. Note that Snort is designed to
be strictly single-threaded for multiplatform portabylit

The logical choice is to place Carousel module between
the detection engine and output module so that the traffic
can either go directly to the output plugin or get diverted
through the Carousel module. We cannot place the logger
module before the detection engine because we need to log
only after a rule (e.g., a detected worm) is matched. Sim-
ilarly, we cannot place the logger after the output module
because by then it is too late to affect which information is
logged. Our implementation also allows a rule to bypass
Carousel if needed and go directly to the output module.

Figure 6 is a flowchart of Carousel module for Snort in-
terposed between the detection engine and the output model.
The module uses the variabl€s, .. = M /b (time for each
phase) and: (number of sampling bits) described in Sec-
tion 4.1. M is the number of keys that can be logged in a
partition andb is the logging rate; in our experiments we
useM = 500. The module also uses a 32-bit integéthat
represents the hash value corresponding to the curreit part
tion. Initially, £ = 0, V = 0, the Bloom filter is empty, and
a timerT is set to fire aftefl},4s.. The Bloom filter uses
5000 bits, or 10 bits per key that can fitdd, and employs
5 hash functions (SDBM, DJP, DEK, JS, PJW) taken from
[9].

The Carousel scalable logger first compares the low-order
k bits of the hash of the packet key (we use the IP source

part of the network). In that case, the scalable logger magddress in all our experiments) to the low orédiits of V.

pick a large number of sampling bitsat first due to large If they do not match, the packet is not in the current panitio
outbreak traffic. However, the logger should correspondand is not passed to the output logging. If the value matches
ingly increase the value df subsequently as the number ofbut the key yields a positive from the Bloom filter (so it is
sources to record declines, to avoid inefficient loggingedas either already logged, or a false positive), again the packe
on too large a number of phases.

5 Carousel Implementations

is not passed to the output module. If the value matches and
the key does not yield a positive from the Bloom filter, then
the module adds the key to the Bloom filter. If the Bloom
filter overflows (the number of insertions exceéd3, then

k is incremented by 1, to create smaller size partitions.

We describe our Snort evall_Jatic_)n in S(_action 5.1 and a sketch\yhen the timerr expires, a phase ends. We first check
of a hardware implementation in Section 5.2.

5.1 Snort Implementation
In this section, we describe our implementation ofvorked well without causing oscillations. (A value slightl
Carousel integrated into the Snort [13] IDS. We need ttarger than 2 is sensible, to prevent oscillating because of
first understand the packet processing flow within Snort tthe variance in partition sizes.) If there is no underflowsth
see where we can interpose the Carousel scalable logdkee sampling valud’ is increased by 1 mo2* to move to

scheme. As in Figure 6, incoming packets are captured ltlge next partition.

libpcap, queued in a kernel buffer, and then processed bg 2 Hardware Implementation
the callback functiofProcessPacket

ProcessPackefirst passes the packet to preprocessorgaserted between the detector and the memory buffer used

for underflow by testing whether the number of insertions is
less thanV/ /2. We found empirically that a factar = 2.3

Figure 7 shows a schematic of the base logic that can be

which are components or plug-ins serving to filter out suspy store log records in an IPS ASIC. Using 1 Mbit for the
cious activity and prepare the packet to be further analyzegl|oom filter, we estimate that the logic takes less than 5%

The detection engine then matches the packet against {§ea Jow-end 10mm by 10 mm networking ASIC. All re-
rules loaded during Snort initialization. Finally, the $no
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through: in other words, it can inserted between the detecto
and logging logic without changing any other logic. This alFigure 8: Performance of Carousel with different logging
lows the hardware to be incrementally deployeithin an  populations
IPS without changing existing chip sets.

We assume the detector passes a key (e.g., a source IP
dress) and a detection record (e.g., signature that mgtch
to the first block. The hash blocks computes a 64-bit ha

of thﬁ l((jey. Our eAsrgrgabtes use azlgibin hash whose I00p§§ribed in Section 4. The simulated logger maintains the
unrolled to run at ps using ; gates. o sampling bit counk and only increases when the Bloom

The hash output supplies a 64-bit number which is passgfle overflows; & stabilizes when all sources sampled dur-
tq the Compare blogk. This block masks out the Iow—ptider iNg T)has it the into memory budget/ with logging speed
bits of the hash (a simple XOR) and then compares it (COny; “sjmylation allows us to investigate the effect of various
parator) to a register valug that dgnotes _the current haShinput parameters such as varying worm speed and whether
value for this phase. If the comparison fails, the log at®®mRpe \worm uses a hit list. Again, in all the simulations below,
is dropped. If it succeeds, the key and record are passedifpy gloom filter uses 5000 bits aAdhash functions (SDBM,

the Bloom filter logic. This is the most expensive part of thgy jp pek Js PJW) taken from [9]. For each experiment
logic. Using 1 Mbit of SRAM to store the Bloom filter and 3 ¢ [:;Iot the avérage a0 runs of simulation. '

parallel hash functions (these can be found by taking bits 1- We start by confirming the theory with a baseline exper-
20, 21-40, 41-60 etc of the first 64-bit hash computed with: y g y P

: X .Iment in Section 6.1 when all sources are present at ime
out any further hash computations), the Bloom filter log'%e examine the performance of our logger with the logis-
takes less than a few percent of a standard ASIC.

. ) i e tic model in Section 6.2. We evaluate the impact of non-
_ Asin the Snortimplementation, a periodic timer modulgpiform source arrivals in Section 6.3. In Section 6.4, we
fires everylynase = M/btime and causes the vallieto be oy amine a tradeoff between using a smaller number of bits
incremented. Thus the remaining logic other than the Bloomge, gjoom filter element and taking more more major cycles
filter (and to a smaller extent the hash computation) is veRy «ollect all sources. Finally, in Section 6.5, we demon-

small. We use two copies of the Bloom filter and clear ongyate the benefit of reducirigin the presence of worm re-
copy while the other copy is used in a phase. The Bloom,qgiation.

filter should be able to store a number of keys equal to th% 1 Baseline Experiment

number of keys that can be stored in the memory buffer: . ! )
In Figure 8, we verify the underlying theory of Carousel

Assuming 10 bits per entry, a 1 Mbit Bloom filter allows ap-. : ; -
proximately 100,000 keys to be handled in each phase with S€ction 4 assuming all sources are present at finidle

the targeted false positive probability. Other detailstem ~ Consider various starting populations = 10000 to 80000
flow, overflow etc.) are similar to the Snort implementatiorsPUrces, a memory budgetaf = 500 items, and a logging
and are not described here. speed = 100 items per second.

Figure 8 shows that the Carousel scalable logger collects

almost all(at least99.9%) items byt = 189, 354,679 and
6 Simulation Evaluation 1324 seconds forV = 10000, 20000, 40000 and80000 re-

spectively. This is no more tha%iX in all cases, matching
To evaluate Carousel under more realistic settings in whidhe predictions of our optimistic analysis in Section 4.
the population grows, we simulate the logger behavior when With these settings, the0,000 sources will be parti-
faced with a typical worm outbreak as modeled by a logistitioned into32 subsets, each of size approximatgly2 (in

uation. We used a discrete event simulation engine that is
stripped down (for efficiency) version of the engine found
ns-2. We implement the Carousel scalable logger as de-



expectation). In fact, our experiment trace shows that thbe amount of traffic seen by the IPS decreases.

number of sources per phase is in the range&if to The remaining simulations assume a logistic model of
340. Since the Bloom filter use8000 bits, essentially worm growth starting with a hit list off = 10 infected

we have more than 10 bits per item once the right nunsources when the logging process starts. The innermost
ber of partitions is found. As we calculated previously (incurve illustrates the infected population versus time,clvhi
Section 4.2.2), the accumulated false positive rat81@&f obeys the well-known logistic curve. Even under this prop-
sources in a 5000-bit Bloom filter with hash functions agation model, Carousel still outperformsvealogging by

is 2.5 - 107%. We also verified that most phases have na factor of almost 5. Carousel takes around 400 seconds to
false positives. However, the Carousel algorithm may neegbllect all sources while rige logger takes 2000 seconds.
additional major cycles to collect these remaining sources Figure 13 shows a slower worm. A slower worm can be
Since a major cycle i8* iterations, the theory predicts that modeled in many ways, such using a lower initial hit list,
Carousel requires more time to collect missed false posg lower scan rate, or a lower victim hitting probability. In
tives for largerk and hence for largeN. We observe that Figure 13, we used a smaller hitting probability @601.

the length of horizontal segment of each curve in Figure §ptuitively, the faster the propagation dynamics, the drett
which represents the collection time of all sources missed [he performance of the Carousel scalable |Ogger when com-

the first major cycle, is longer for larger populatiaNs pared to the riae logger. Thus the difference is less pro-
6.2 Logger Performance with Logistic Model nounced.
In the logistic model, a worm is characterized Hy the Figure 14 demonstrates the scalability of Carousel, as we

size of the initial hit list, the scanning rate, and a probgbi scale upN from 10,000 to 100, 000 with all other parame-
p of a scan infecting a vulnerable node. In our simulationters staying the same (i.e., 6 scans per secong and.01).
below, we use a population &f = 10,000, a memory size Carousel takes around 9,000 seconds to collect all sources,
M = 500 with Bloom filter andM = 550 without Bloom while the nédve logger takes 40,000 seconds. Note also that
filter, and logging speebl = 100 packets/sec; the best pos-in all simulations with the logistic model (and indeed in all
sible logging time to collect all sources #/b = 100 sec- our experiments) the performance of théwedogger with a
onds. Bloom filter is indistinguishable from that of theiva log-
For our first 3 experiments, shown in Figures 9, 10 and 1ger by itself — as the theory predicts.
we use an initial hit list off = 10,000. Since the hitlist 6.3 Non-uniform source arrivals
is the entire population, as in the baseline, all sources are|n this section, we study logging performance when the
infected at timet = 0. We use these simulations to seesources arrive at different rates as described in Sectibn 3.
the effect of increasing the scan rate and monitoring abiln particular, we experiment with two equal sets of sources
ity assuming all sources are infected. Our subsequent &x-which one set sends at ten times as fast as the other set.
periments will assume a much smaller hit list, more closelgigure 15b shows the result for theimalogger. We observe
aligned with a real worm outbreak. that the nave logger has a significant problem in logging the
For the first experiment, shown in Figure 9 we use 6 scargow sources, which are responsible for dragging down the
per second (to model a worm outbreak that matches thgerall performance. As predicted by our model, the times
Code Red scan rate [17]) apd= 0.01. Figure 9 shows taken to log all slow sources is ten times slower than the time
that Carousel need®¥)0 seconds to collect th& = 10,000  taken to log all fast sources. The times to log all and almost
sources whereas theinea logger taked, 000 seconds. Fur- all sources ar8, 000 and4, 000 seconds respectively.
ther, the difference between Carousel and thigenbbgger  Simply adding a Bloom filter only slightly increases the
increases with the fraction of sources logged. For examplgerformance of the rige logger as predicted by the theory
Carousel is 6 times faster at logging 90% level of all sourceson the other hand, Carousel is able to consistently log all
but 20 times faster to log 100% of all sources. This is consources as shown in Figure 15a. Carousel is not suscepti-
sistent with the analysis in Section 3.1. ble to source arrival rates: sources from both the fast and
In Figure 10 we keep all the same parameters but increaslew sets are logged equally in each minor cycle once the
the scan rate ten times 60 scans/sec. The higher scan rateappropriate number of sampling bits has been determined.

allows nave logging a greater chance to randomly samples 4 Effect of Changing Hash Functions
packets and so the difference between scalable ahe na In this section, we study the effect of randomly changing

logging is less pronounced. Figure 11 uses the same Paraflia hash functions for the Bloom filter on each major cycle

eters as Figure 9 but assumesr:hat m%f thth(fa scar:mmg . ghat is, each pass through all of the sets of the partitiae}.
packets are seen by the IPS. This models the fact that a giv A that this prevents similar arrival patterns betweejoma

IPS may not see all worm traffic. Notice again that the d|f-Cycles from causing the same source to be missed repeat-

ference between inge and Carousel logging decreases Whe@dly
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Figure 17abc compares the performance in Carousel efment provides excellent performance, although our Snort
using fixed hash functions throughout and changing thienplementation (built before this experiment) currentbes
hash functions each major cycle with 1-bit, 5-bit and 1040 bits per element.

bit Bloom filters respectively. We changed the hash funcg 5 Adaptively Adjusting Sampling Bits

tions randomly by simply XORing each hash value with a A gescribed in Section 4.2, an optimization for Carousel
new random number afte_zr each major cycle. In these exs 4 dynamically adapt the number of sampling bitso
periments, a major cycle is approximatélj seconds. FOr mach the currently active source population. In a worm
the 1-bit results, one can clearly see knees in the C“rvescﬁhbreak, the value of needs to be large as the when the
¢ = 160, 320, and480 corresponding to each major cycle in 0 ation of infected sources is large, but it should be de-
which the logger collects sources missed in previous cycleg.aased when the scope of the outbreak declines.

Carousel instrumented with changing hash functions is study this effect, we use thewo-factor worm
much faster in collectingll sourcesacross several major model[17] to model the dynamic process of worm propa-
cycles. For example, for the 1-bit case, with changing haghhtion coexisting with worm remediation. The two-factor
functions each major cycle, it takes 1500 seconds to 109 l}orm model augments the standard worm model with two
sources while using fixed hash functions takes 2500 secondyjistic factors: dynamic countermeasures by network ad-
to log all sources. ministrators/users (such as node immunization and traffic

Should one prefer using a smaller number of bits pegrewalls) and additional congestion due to worm traffic that
Bloom filter element and a greater number of major cycleg,akes scan rates reduce when the worm grows. The model
or using a larger number of Bloom filter elements? Thigyas validated using measurements of actual Internet worms
depends on the exact goals; for a fixed amount of memongee [17]).
using a smaller number of Bloom filter bits per element al- |, Figure 16, we apply the two-factor worm model. The
lows the logger to log slightly more keys in every phase &,y |abeled “Source dynamics” records the number of in-
the cost of a somewhat increased false positive probabilif teq sources as time progresses. Observe the exponential
Based on our experiments, we believe using 5 bits per §ficrease in the number of infected sources priar£0100.
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However, the infected population then starts to decline. titions) at timet = 130.
If we let the two-factor model run to completion, the num-
ber of infected sources will eventually drop to zero, which
makes logging sources less meaningful. In practice, hovig  Snort Evaluation
ever, it is the logging that makes remediation possible.sThu

to illustrate the efficacy of using fully adaptive samplingwe evaluate our implementation of Carousel in Snort using
within the logger, we only apply the two-factor model until testbed of two fast servers (Intel Xeon 2.8 GHz, 8 cores,
the infectious population drops to half of the initial vutae 8 GB RAM) connected by a0 Gbps link. The first server
ble tally. We then look at the time to collect the final infette sends simulated packets to be logged according to a spec-
population. Note that a non-decreasing logger will choosejied model while the second server runs Snort, with and
sampling factor based on the peak population and thus m@jthout Carousel, to log packets.
take unnecessarily long to collect the final population ef in  \ve set the timer perio,n.s. = 5 seconds. The vul-
phase — .
fectgd sources. _ ~ nerable population i& = 10, 000 sources and the memory
Figure 16 shows that the fully adaptive scheme (incregyffer hasi/ = 500 entries. In the first experiment, the
mentk on overflow, decrement on underflow) enhances pefattern of traffic arrival is random: each incoming packet
formance in terms of logging time and also the capability t¢s assigned a source that is uniformly and randomly picked
collect more sources before they are immunized. In partig¢qom the population ofV sources.

ular, the fully adaptive scheme collects almost all souates Figure 18 shows the logging performance of Snort instru-

220 seconds while the non-decreasing scheme (only inCt€nted with Carousel. Traffic arrives at the ral®) of 100

mentsk on overflow, no decrements) takes more than 309/|bps. All packets have a fixed size 100 bytes. The log-
seconds to collect all sources. Examining the simulatioaing rate ish = 100 events per second, i.éh,~ 1 Mbps

results more closely, we found the non-decreasing schergﬁd% — 100. Figure 18 shows the improvements in log-

adapted td: = 5 (32 partitions) and stayed there, while theging from our modifications. Specifically, our scalable im-
fully adaptive scheme eventually reducedite- 4 (16 par- - plementation is able to log all sources withifi0 seconds



our experiment with random arrivals.

10000 = T

é /? = Snort instrumented

37500 ,'" with Carousel ~ — 8 Related Work

2 =+ Standard Snort

8 == Standard Snort ] )

Ss000 with Bloom filter —| A number of recent papers have focused on high speed im-

S l plementations of IPS devices. These include papers on fast

ém reassembly [4], fast normalization [15, 16], and fast ragul

2 expression matching (e.g., [12]). To the best of our knowl-
°! o o0 100 edge, we have not seen prior work in ne_twork security that

Time (sec) focuses on the problem of scalable logging. However, net-

work managers are not just interested in detecting whether
an attack has occurred but also in determining which of their
computers is already infected for the purposes of remedia-
tion and forensics.

The use of random partitions, where the size is adjusted

Figure 18: Logging performance of Snort instrumented wit
Carousel under a random traffic pattern

P I i dynamically, is probably used in other contexts. We have
3::; 'l'.,.»""“ found a reference to the Alto file system [6], where if the file
z»m" I system is too large to fit into memory (but is on disk), then
o} IE _ the system resorts to a random partition strategy to rebuild
D5000 {47 = Snort instrumented o . o
2 i with Carousel the file index after a crash. Files are partitioned randomly
2 f * Standard Snort into subsets until the subsets are small enough to fit in main
e ~ Standard Snot ] memory. While the basic algorithm is similar, there are dif-
z \ \ ferences: we haviwvo scarce resources (logging speed and
°0 10000 20000 30000 40000 memory) while the Alto algorithm only has one (memory).
Time (sec) We have duplicates while the Alto algorithm has no dupli-

cate files; we have an analysis, the Alto algorithm has none.

Figure 19: Logging performance of Snort instrumented with
Carousel under a periodic traffic pattern .
P P 9 Conclusions

while standard Snort need$00 seconds. Also, adding a In the face of internal attacks and the need to isolate parts
Bloom filter does not significantly improve the performanceof an organization, IPS devices must be implementable
of Snort, matching our previous theory. cheaply in high speed hardware. IPS devices have success-
Figure 19 shows the logging performance when th&ully tackled hardware reassembly, normalization, andeve
sources are perpetually dispatched in a periodic pattern Reg-Ex and behavior matching. However, when an attack
2,..,N, 1, 2..,N, ... Such highly regular traffic patterns is detected it is also crucial to also detect who the attacker
are common in a number of practical scenarios, such as sywas for potential remediation. While standard IPS devices
chronized attacks or periodic broadcasts of messages in @& log source information, the slow speed of logging can
communication fabric of large distributed systems. We obresult in lost information. We showed aiua logger can
serve that the performance of standard Snort degrades take a multiplicative factor ofn N’ more time than needed,
one order of magnitude as compared to the random pattexherelN is the infected population size, for small values of
shown in Figure 18. Further examination shows that thenemoryM required for affordable hardware.
nave logger keeps missing certain sources due to the regu-We then described the Carousel scalable logger that is
lar timing of the source arrivals. On the other hand, Carbuseasy to implement in software or hardware. Carousel col-
performance remains consistent in this setting. lects nearly all sources, assuming they send persistémtly,
We also performed an experiment with two equally sizetiearly optimal time. While large attacks such as worms and
sets of sources arriving at different rates, with fast sesirc DoS attacks may be infrequent, the ability to collect a lfst o
arriving at1 Gbps and slow sources H10 Mbps, as shown infected sources and bots without duplicates and loss seems
in Figure 20. Our observations are consistent with the sinlike a useful addition to the repertoire of functions avaiéa
ulation results in Section 6.3. Note that in this settingnsta to security managers.
dard Snort takes about 20 times longer to collect all sources While we have described Carousel in a security setting,
than Snort with Carousel (300 seconds versus 6000 sdbe ideas applies to other monitoring tasks where the seurce
onds); in contrast, Snort took only about 5 times longer if all packets that match a predicate must be logged in the
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Figure 20: Snort under non-uniform source arrivals

face of high incoming speeds, low memory, and small log-[5] S. Hogg.
ging speeds. The situation is akin to congestion control in
networks; the classical solution, as found in say TCP or
Ethernet, is for sources to reduce their rate. However, &6]
passive logger cannot expect the sources to cooperate, es-
pecially when the sources are attackers. Thus, the Carous
scalable logger can be viewed as a form of randomized ad-
mission control where a random group of sources is admit-
ted and logged in each phase. Another useful interpretatio[B]

of our work is that while a Bloom filter of siz&/ cannot
usefully remove duplicates in a population 8f >> M,

the Carousel algorithm provides a way of recycling a small[g]
Bloom filter in a principled fashion to weed out duplicates

in a very large population.
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