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1. INTRODUCTION

In the one-dimensional bin packing problem, one is given a sequence a1; : : : ; an ∈
�0; 1� of items to pack into bins of unit capacity so as to minimize the number of
bins used. A great deal of literature has focused on this problem, perhaps because,
as Coffman, Garey, and Johnson [3] observe in their recent survey on bin packing,
“The classical one-dimensional bin packing problem has long served as a prov-
ing ground for new approaches to the analysis of approximation algorithms.” For
example, recently the study of Best Fit bin packing under discrete uniform distribu-
tions has led to a novel analysis technique, based on the theory of multidimensional
Markov chains. In this paper we extend this approach to analyze First Fit and a new
bin packing algorithm, called Random Fit, under discrete uniform distributions.

First Fit and Best Fit are two classical algorithms for online bin packing. With
First Fit, the bins are indexed in increasing order of their creation. Each item is
sequentially placed into the lowest indexed bin into which it fits, or into an empty
bin if no such bin is available. With the Best Fit algorithm, each incoming item is
placed into the nonempty bin with smallest residual capacity that can contain it; if
no such bin exists, the item is placed in an empty bin. The performance of First Fit
and Best Fit in the worst case and uniform average case has been settled for quite
some time. In the worst case, the number of bins used by any of these algorithms
is at most 17

10 times the optimum number of bins, as shown by Johnson et al. [9].
When item sizes are generated by U�0; 1�, the continuous uniform distribution on
�0; 1�, then the performance measure of interest is the expected waste, which is the
difference between the number of bins used and the total size of the items packed
so far. Shor [15] showed that the expected waste created by First Fit is 2�n2/3�.
Shor [15] and Leighton and Shor [12] proved that Best Fit does better, generating
expected waste 2�√n log3/4 n�.

Because of these tight bounds, research on First Fit and Best Fit is now fo-
cused on analyzing expected waste when item sizes are generated by discrete uni-
form distributions. A discrete uniform distribution, denoted by U�j; k�, 1 ≤ j ≤ k,
is one where item sizes are chosen uniformly from the set �1/k; 2/k; : : : ; j/k�.
For U�k; k�, k > 1, First Fit and Best Fit achieve expected waste 2�√nk� and
O�√n logk�, respectively (see Coffman et al. [2]). Similar bounds hold for U�k−
1; k�. Of particular interest are distributions for which the algorithms are stable. We
say that an algorithm is stable under a distribution if the expected waste remains
bounded [that is, O�1�], even as the number of items n goes to infinity. Coffman et
al. [2] proved that First Fit is stable under U�j; k�, when k ≥ j2, and Best Fit is sta-
ble under U�j; k�, when k ≥ j�j+ 3�/2. Later, Coffman et al. [4] introduced a novel
method for proving the stability (and instability) of bin packing algorithms based
on multidimensional Markov chains. Their methodology allowed them to show that
Best Fit is stable under U�j; k� for several specific pairs of values for j and k.
Kenyon, Sinclair, and Rabani [10] expanded on this work by proving that Best Fit is
stable under the entire family of distributions U�k− 2; k�, using a complex analysis
of the underlying Markov chains.

We briefly describe the Markov chain setting used in the results described above.
Using the Best Fit algorithm under a discrete uniform distribution, a packing can
be represented by the number of bins of each possible residual capacity. The order
of the bins is irrelevant. This packing process can therefore be easily represented
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by a Markov chain, where the state at any time is a vector s = �s1; : : : ; sk−1�, and
si is the number of bins of residual capacity i/k.

The Best Fit algorithm is well suited to the Markov chain approach, because the
order of the bins is irrelevant, leading to a simple representation of the packing.
In contrast, in the First Fit algorithm, the order of the bins cannot be dismissed.
Because of the difficulty of representing the state in the First Fit algorithm, until
now these Markov chain techniques have not been successfully applied to the First
Fit algorithm.

In this paper, we remedy this problem by demonstrating a Markov chain ar-
gument that shows that First Fit is in fact stable under the family of distributions
U�k− 2; k�. This result disproves a conjecture made by Coffman, Garey, and John-
son [3], who state that limited experiments suggest that the expected waste may
grow unbounded on U�k− 2; k� for sufficiently large k. Moreover, it demonstrates
that the Markov chain approach may be more generally applicable than previously
believed.

Our proof emerges from an analysis of a new bin packing algorithm, called Ran-
dom Fit (RF). Random Fit is a simple randomized variant of First Fit. With Random
Fit, each time an item is to be placed in a bin the bins are indexed in an order de-
termined by a permutation chosen independently and uniformly at random. Each
item is sequentially placed into the lowest indexed bin into which it will fit, or into
an empty bin if no such bin is available.

In Section 2 we introduce Random Fit by analyzing its worst case behavior. In the
following sections we then concentrate on average-case analysis. Random Fit has
the advantage that, like Best Fit, a packing can be represented by the number of
bins of each possible residual capacity. Therefore, in Section 3, we first generalize
the analysis of Best Fit shown in [10] to Random Fit. We prove stability of Random
Fit under the input distribution U�k − 2; k� and derive some related results for
U�k− 1; k� and U�k; k�. Using ideas developed in Section 3, we proceed to prove
stability of First Fit under input distribution U�k − 2; k� in Section 4. Finally, in
Section 5, we present some simulation results which provide some further insight
into the ideas presented in this paper.

2. WORST CASE ANALYSIS OF RANDOM FIT

Recall that with Random Fit (RF), each time an item is to be placed in a bin the
bins are indexed in an order determined by a permutation chosen independently
and uniformly at random. Each item is sequentially placed into the lowest indexed
bin into which it will fit, or into an empty bin if no such bin is available.

Given a sequence S = �a1; a2; : : : ; an� of items and a bin packing algorithm A,
let A�S� denote the number of bins used by A to pack S. In particular, OPT(S)
is the number of bins used by an optimal offline algorithm, i.e., it is the minimum
number of bins required to pack S.

Theorem 1. (a) For every sequence S, RF�S� ≤ 2 ·OPT�S� − 1.

(b) There exist sequences S, with arbitrarily large values of OPT(S), such that
with high probability RF�S� = 2 · �OPT��S� − 1.
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Proof. Part (a) At any time, the sequence of bins used by RF contains at most
one bin with residual capacity of at least 1

2 . Thus, for any sequence S, the number
of bins used by OPT is at least � 1

2 RF�S�� + 1.
Part (b) For any integer n ≥ 2, let Sn be a sequence that contains n large items

of size 1
2 . In addition, in between any two large items, n2 small items each of size

1/2n3 must be inserted. Thus

Sn =
(

1
2
;

1
2n3 ; : : : ;

1
2n3 ;

1
2
;

1
2n3 ; : : : ;

1
2n3 ;

1
2

)
:

Note that the sum of all the small items is �1/2n3�n2�n− 1� < 1
2 .

Clearly, OPT�Sn� = �n/2� + 1. We show that with high probability Random Fit
uses n bins on this sequence. More precisely, immediately before an insertion of a
large item, the probability that a bin holding a large item does not contain a small
item is bounded by �1 − 1/n�n2 ≤ e−n. Thus, the probability that at any of the n
insertions of large items, some open bin having a large item does not contain a small
item, is bounded by n2e−n. We conclude that with probability at least 1− n2/en, RF
needs n bins to pack Sn.

While RF has a guaranteed worst case performance, it does not achieve the same
bounds as First Fit and Best Fit. In the worst case, RF is only as good as Next Fit
and Worst Fit.

Motivated by recent work [1, 14], we also consider an extension of RF, called
Random-Fit(d), that is defined for any integer d ≥ 2. When a new item arrives,
RF(d) examines bins in the same way as RF until d bins are found that can hold
the item. Among these d bins, the item is inserted into the bin with smallest residual
capacity, i.e., the Best Fit rule is applied. If there are only i, i < d, open bins that
can hold the item, then the item is inserted into one of these i bins, using again
the Best Fit strategy. If no open bin can hold the item, then the item is inserted
into a new bin. Interestingly, when making the transition from RF to RF(d), the
performance improves. For any algorithm A, let R∞A = inf�r ≥ 1� for some N > 0,
A�S�/OPT�S� ≤ r for all S with OPT�S� ≥ N�.

The next theorem follows from a result by Johnson [7, 8] because RF(d) is an
Almost Any Fit algorithm.

Theorem 2. For every d ≥ 2, R∞RF�d� ≤ 17
10 .

3. AVERAGE-CASE ANALYSIS OF RANDOM FIT

In this section we prove that Random Fit is stable under the input distribution
U�k− 2; k� and derive some related results for U�k− 1; k� and U�k; k�.

3.1. Preliminaries

We begin by reviewing briefly some definitions and lemmas from [10]. For consid-
ering the distribution U�j; k�, rather than having bins of size 1, we instead think
of having bins of size k and item sizes chosen uniformly from �1; : : : ; j�. The two
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notions are clearly equivalent. We model the system using k− 1 tokens that move
on the nonnegative integers. The value of token i at time t, denoted by si�t� repre-
sents the number of bins with residual capacity i after t items have been placed. The
state of the system at time t is given by a vector s�t� = �s1�t�; :::; sk−1�t��. Initially,
s�0� = �0; : : : ; 0�, as there are no open bins with residual capacity. We often drop
the explicit reference on t when the meaning is clear. The waste at time t is given by∑k−1
i=1 isi�t�. We wish to show that the expected waste as t →∞ remains bounded

under the distribution U�k − 2; k�. In the lemmas and theorems that follow, we
implicitly assume that this is the input distribution.

We shall divide the tokens into classes. The token i is called small if 1 ≤ i ≤ �j/2�
and is called large if �j/2 + 2� ≤ i ≤ j. In the case where j is even, there is also a
middle token, namely, �j/2� + 1. For convenience, we restrict ourselves to the case
where j is odd. We explain the modifications necessary for the case where j is even
after the proof of the case where j is odd.

We begin with the following lemma:

Lemma 3. State s is reachable from the initial state s�0� = �0; : : : ; 0� only if

1. For distinct indices i and i′ with i+ i′ ≥ k, either si = 0 or si′ = 0.
2.
∑
i not small si ≤ 1.

Proof. Follows from the fact that we will not open a new bin if an item can be
packed in a current bin.

It is also not hard to see that all states that satisfy the conditions of Lemma 3 are
reachable, and hence we assume hereafter that our state space consists exclusively
of all states satisfying the conditions of Lemma 3. From Lemma 3, if s�j/2��t� > 0,
then all large tokens must be 0 at time t. This feature allows us to focus on the
behavior of the small tokens.

Lemma 4. Using Random Fit, the motion of a small token i has the following prop-
erties:

1. For i > 1, the motion of si at all positions other than 0 is a random walk on Z+,
such that a positive step is taken with probability at least 1/j and a negative step
is taken with probability at most 1/j + si/�si−1 + si�.

2. The time spent by si on each visit to 0 is stochastically dominated by a random
variable D with constant expectation and variance (that depend only on j).

Proof. For the first part, note that, if si > 0, then si increases whenever an element
of size k− i enters the system, by Lemma 3. Hence we need only consider negative
steps. If an item of size i enters, then si may decrease; if an item of size less than
i enters, then it is clear that the probability of it landing in a bin of capacity i is at
most si/�si−1 + si�. The result follows.

The second part is almost exactly the same as in Proposition 4 of [10], which we
sketch here for completeness. If si = 0, and si′ = 0 for all i′ ≥ k− i, then clearly si
moves to 1 with probability at least 1/j. If si′ = 1 for some i′ ≥ k− i, however, this
is not the case. It suffices to note that if two consecutive items have size k− i, then
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si will go to 1 even in this case. One may check that this fact suffices to prove the
lemma.

3.2. Outline of the Proof

We sketch how we will prove that RF is stable following a similar approach to [10].
By Lemma 3, the amount of waste from nonsmall tokens is bounded by a constant.
Hence we need only consider the waste due to small tokens, which we denote by
f �t� =∑�j/2�i=1 isi�t�. The proof breaks down into three steps. The first step, we show
that if s�j/2��t� > 0, then the expected change in f �t� is negative.

Lemma 5. ([10, Proposition 5]). Suppose that s�j/2��t� > 0. Then E�f �t + 1� −
f �t��f �t�� = −1/j.

Proof. Consider the size i of the item inserted at time t + 1. If 1 ≤ i ≤ �j/2�,
then the new item is assigned to a bin with remaining capacity l, i ≤ l ≤ �j/2�, and
f decreases by i. If �j/2� < i ≤ j, then, since s�j/2� > 0, Proposition 3 implies that
there is no bin with remaining capacity i. Thus, the incoming item is put into a new
bin, i.e., sk−i increases by 1 and f increases by k− i. The expected change in f is
therefore

1
j

(�j/2�∑
i=1

�−i� +
j∑

i=�j/2�+1

�k− i�
)
= 1
j

(�j/2�∑
i=1

�−i� +
�j/2�∑
i′=2

i′
)
; (1)

because k− j = k− �k− 2� = 2 and, since j is odd, k− ��j/2� + 1� = �j/2�. It is
easy to verify that Eq. (1) evaluates to −1/j.

For the second step, we show that if we begin a state where f �t� is large, then for
some suitably large T , for almost all of the next T steps s�j/2� > 0 with a suitably
high probability. This step is the challenging part of the proof and Section 3.3 is
entirely devoted to it.

Combining the first two steps, we find that, whenever f �t� is sufficiently large,
the expected change in f �t� is negative over a suitably long interval T . The third
step is to use this fact and results from the general theory of Markov chains to show
that we may conclude that the expected waste is bounded. The third step relies on
general conditions for a multidimensional Markov chain to be ergodic; we cite the
appropriate lemma from [10], which is derived from [5].

Lemma 6. ([10, Lemma 6] or [5, Corollary 7.1.3]). Let M be an irreducible, ape-
riodic Markov chain with state space S ⊆ Zk, and b a positive integer. Denote by pbs s′
the transition probability from s to s′ in Mb, the b-step version of M. Let 8: S → R+
be a nonnegative real-valued function on S which satisfies the following conditions:

1. There are constants C1; µ > 0 such that 8�s� > C1��s��µ for all s ∈ S.
2. There is a constant C2 > 0 such that pbs s′ = 0 whenever �8�s� −8�s′�� > C2, for

all s; s′ ∈ S.
3. There is a finite set B ⊂ S and a constant ε > 0 such that

∑
s′∈S p

b
s s′ �8�s′� −

8�s�� < −ε for all s ∈ S\B.
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Then M is ergodic with stationary distribution π satisfying π�s� < Ce−δ8�s� for all
s ∈ S, where C and δ are positive constants.

For the bin-packing problem, we use 8�s� =∑�j/2�i=1 isi + k− 1 = f + k− 1, where
f is the waste from small tokens. This is an upper bound on the total waste. One
may check that the first two conditions of Lemma 6 are satisfied for any choice of
b. It remains to find appropriate b, B, and ε; this is equivalent to the second step
of our proof sketch, on which we now focus.

3.3. Random Fit over Long Intervals

We now show that, for all but a finite number of starting states, s�j/2� > 0 for most
of sufficiently large intervals. We shall often compare the behavior of a token with
a random walk over an interval �0; R�. We use p↑�i� to denote the probability that
a walk at i moves to i + 1 in one step. Similarly p↓�i� is the probability that a
walk at i moves to i − 1 in one step, and p→ = 1 − p↑�i� − p↓�i� (the self-loop
probability) is the probability that the walk remains at i when at i. We drop the i
in cases where p↑�i� is independent of i [except at 0 and R, as p↓�0� and p↑�R�
are necessarily 0, and the self-loop probabilities are increased accordingly]; this is
called the homogeneous case. A random walk is downward biased if p↑�i� ≤ p↓�i�
for all i in the range of the walk (except the boundaries).

To bound the behavior of the random walks we study, we require the following
lemma, which is a restricted bound derived from Corollary 4.2 of [11]:

Lemma 7. Let λ2 < 1 denote the second largest eigenvalue of the transition matrix
for a random walk W on �0; R�. Let π�A� = ∑a∈A πa be the stationary probability
that the walk lies in A ⊂ R, and Wl�A� be the number of steps the walk spends in
A during the first l time steps. If the walk starts at 0, then for any integer l ≥ 1 and
2 ≤ β < 1/π�A�,

Pr�Wl�A� ≥ βπ�A�l� ≤
β√
π0

exp
(−π�A�2�1− λ2�l

)
:

To use the above lemma we will require the following fact about the eigenvalues:

Lemma 8. For the random walk on �0; R� with p↑ = p↓ = α, λ2 ≤ 1− 2α/R2.

We start with a preliminary lemma that provides both the first step and the main
idea of the proof. In this lemma, and all that follows, we assume that T is at least
as large as some constant chosen so that the bounds hold.

Lemma 9. For sufficiently large T , if si > T 4 over the time interval �0; T �, then si+1 ≥
T 1/16 for all but at most T 15/16 steps with probability at least 1− 2/T 2.

Proof. By Lemma 4, the behavior of the token si+1 at any point on the interval
�0; T � can be related to a random walk over the positive integers, where p↑�i� ≥ 1/j
and p↓�i� ≤ 1/j + si/�si + si+1� (except at i = 0). Furthermore, the probability
that si+1 ≥ T 1/16 for all but at most T 15/16 steps, which we hereafter call z, is
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clearly minimized if we start si+1 at 0. This information is sufficient to prove that
z ≥ 1− 2/T 2 directly; however, we suggest an easier approach.

We first note that, since we are comparing the behavior of si+1 to a specific
random walk, z can only increase if we restrict the walk (or, equivalently, the token
si+1) to the interval �0; T 1/4 − 1�. Bounding the walk in this way will simplify the
analysis. Also, for convenience, we temporarily ignore the problem of the waiting
time when si+1 = 0 as described in Lemma 6.

We now split each step, or item arrival, into two phases. In phase one, a random
permutation order is chosen for the open bins. In phase two, an item size is chosen
from the distribution U�j; k�, and this item is placed according to the RF rule.

By breaking each step up in this manner, we see that whenever the permutation
chosen in phase one has a bin with remaining capacity i ahead of all bins of remain-
ing capacity i + 1, then for phase two, the worst possible case is that si+1 behaves
like an unbiased random walk, with p↑ = p↓ = 1/j. (Note that it is possible that
p↓ ≤ 1/j, but we minimize the time that si+1 ≥ T 1/16 by assuming that p↓ = 1/j.)
In the alternate case where a bin with remaining capacity i+ 1 lies ahead of all bins
of capacity i in phase one, we may again overestimate z by assuming that p↑ = 0
and p↓ = 1 in phase two. As we now show, by splitting each step into two phases
in this way, we have essentially reduced the problem to an unbiased walk.

We note that, over the interval �0; T � we have enforced the restrictions si+1 ≤ T 1/4

and si ≥ T 4. Hence, with probability at least 1/T 2, for no steps in this interval do
we place a bin of capacity i + 1 ahead of all bins of capacity i in phase one. We
call this event E. Conditioned on E, si+1 behaves like an unbiased random walk
on �0; T 1/4 − 1� over the entire interval. In particular, the stationary distribution is
uniform, so πi = T−1/4 for all i. Let Z be the number of steps for which si+1 ≤ T 1/16.
From Lemmas 7 and 8, we find that for sufficiently large T ,

Pr�Z ≥ T 15/16�E� ≤ T 1/8 · T 1/8 exp
(−2T 1/8

j

)
≤ 1
T 2 : (2)

Using a union bound on probabilities now yields the lemma.
To handle the discrepancy when the walk is at 0, we note that we can explicitly

bound the total number of steps at 0 with sufficiently high probability using part 2 of
Lemma 4. The bound given by Eq. (2) can also be tightened so that for sufficiently
large T , the lemma as stated holds.

We have shown that if si is extremely large over a sufficiently long interval, then
si+1 is also large over most of the interval with high probability. Our actual goal is
to show that if any si is extremely large (for i ≤ �j/2�), then s�j/2� > 0 over most
of the interval. Hence we will require an inductive, but slightly weaker, version of
Lemma 9.

One problem in generalizing Lemma 9 is that if si is large only for most, and not
all, of the steps, then there are several steps where we cannot explicitly say how
si+1 behaves. Moreover, these steps may affect the behavior of si+1 at any point.
We avoid the problem by introducing an adversary model, generalizing a similar
argument from [10]. This adversary model allows us to consider the worst possible
case for the steps where si is smaller than we need.

We consider how an adversary can affect a homogeneous downward biased ran-
dom walk on �0; R�. The goal of the adversary is to keep the random walk at or
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below some level l, l ≥ 2, for as many steps as possible. The adversary may control
a fixed number of steps. In a controlled step, the adversary may specify any proba-
bility distribution on the legal moves from the current state; the step of the walk is
then made according to that distribution. In all the other steps, the process behaves
like a homogeneous downward biased random walk.

In the following, given an adversary strategy A, let pA�y; i; n;m; l� denote the
probability that a homogeneous downward biased random walk of n steps on the
interval �0; R� starting at i with y controlled steps used according to A, spends at
least m steps at or below l.

Lemma 10. For all nonnegative integers y; i; n;m, and l, with l < R and i < R− 1,
there exists an adversary strategy A0

(a) that never uses a controlled step when the walk is below l,
(b) that always uses a controlled step as soon as possible when the walk is at or

above l + 1 to push the walk downward,

such that pA0
�y; i; n;m; l� ≥ pA�y; i; n;m; l� for all adversaries A.

Proof. The case where l = 0, the walk is unbiased, and the self-loop probability is
0 corresponds to what is proven in [10, Lemma 7]; we extend the argument to this
more general case. We use induction on n. We first note that any adversary that
uses a downward move when the walk is below l can be replaced by one that does
not. This follows by a simple coupling argument. Compare the strategy where the
adversary uses a downward move below l to one where the adversary waits until the
walk is at l by coupling all random moves; the second strategy will be at the same
height or below the first after the downward move. (It will end up below only if the
walk reaches 0.) Thus, we have shown that there is an optimal adversary strategy
that satisfies condition (a).

We now concentrate on adversary strategies that use their moves at or above
l + 1. Let DyR denote the strategy A1 which uses the y adversary-controlled steps
as soon as possible when the walk is at or above l+ 1, and then follows the random
walk. Let RDy denote the strategy A2 that begins with a random step, and then
uses the adversary-controlled steps as soon as possible when the walk is at or above
l + 1. Let pA1

�y; i; n;m; l� be the probability of the event that the walk is at or
below l for at least m of the next n steps after starting at i when adversary strategy
A1 = DyR is used. Similarly, let pA2

�y; i; n;m; l� be the probability of the event
that the walk is at or below l for at least m of the next n steps after starting at i
when adversary strategy A2 = RDy . We claim

pA1
�y; i; n;m; l� ≥ pA2

�y; i; n;m; l�; (3)

and by induction this suffices to prove that there is an optimal strategy satisfying
condition (b).

We first present two useful propositions.

Proposition 11. pA1
�y; l; n;m; l� ≥ pA1

�y; l; n;m+ 1; l�.
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Proposition 12. pA1
�y; l − 1; n;m; l� ≥ pA1

�y + 1; l; n+ 1;m+ 1; l�.

Proposition 11 is easy to verify. We prove Proposition 12. Let Wl−1 be the walk
that starts at l − 1 and follows strategy DyR; similarly let Wl be the walk that starts
at l and follows strategy Dy+1R. Let Tl−1 be the time when Wl−1 first makes the
transition �l − 1� → l and let Tl be the time when Wl first makes the transition
l → �l + 1�. Clearly, Tl−1 = Tl in distribution. We only have to consider the event
that Tl−1 = Tl ≤ n + 1 and Tl−1 = Tl ≥ m. Then, the remainder of Wl−1 is a walk
starting at l that follows strategy DyR, and must be at or below l for at least m−Tl−1
of the next n−Tl−1 steps. In the case of Wl, the adversary first pushes the walk down
to l and the remainder is also a walk that starts at l, follows strategy DyR and must
be at or below l for at least m+ 1− Tl = m+ 1− Tl−1 of the next n+ 1− �Tl + 1� =
n− Tl steps. Using Proposition 11 and taking again into account that Tl−1 = Tl in
distribution, we conclude the probability of the first walk is not smaller than that of
the second walk, i.e., pA1

�y; l − 1; n;m; l� ≥ pA1
�y + 1; l; n+ 1;m+ 1; l�.

We return to the proof of inequality (3). If i ≤ l, both strategies A1 and A2
start the same and we are done by induction. If i > y + l, both strategies give
the same distribution after y + 1 steps, so the two quantities pA1

�y; i; n;m; l� and
pA2
�y; i; n;m; l� are equal. The interesting case is when l < i ≤ y + l. In this case,

strategy A1 forces the walk from i down to l using i− l controlled steps. Thus,

pA1
�y; i; n;m; l� = pA1

�y ′; l; n′;m− 1; l�;

where n′ = n− i+ l and y ′ = y − i+ l. Also,

pA2
�y; i; n;m; l� = p↑ · pA1

�y ′ − 1; l; n′ − 2;m− 1; l�
+ p↓ · pA1

�y ′ + 1; l; n′;m− 1; l�
+ p→ · pA1

�y ′; l; n′ − 1;m− 1; l�;

and

pA1
�y ′; l; n′;m− 1; l� = p↑ · pA1

�y ′ − 1; l; n′ − 2;m− 2; l�
+ p↓ · pA1

�y ′; l − 1; n′ − 1;m− 2; l�
+ p→ · pA1

�y ′; l; n′ − 1;m− 2; l�:

Using Proposition 11, we have pA1
�y ′ − 1; l; n′ − 2;m − 2; l� ≥ pA1

�y ′ − 1; l; n′ −
2;m− 1; l� and pA1

�y ′; l; n′ − 1;m− 2; l� ≥ pA1
�y ′; l; n′ − 1;m− 1; l�. Thus,

pA1
�y; i; n;m; l� − pA2

�y; i; n;m; l� ≥ p↓�pA1
�y ′; l − 1; n′ − 1;m− 2; l�

− pA1
�y ′ + 1; l; n′;m− 1; l��:

Proposition 12 implies that the last term in nonnegative.

Lemma 13. Suppose, over a period of T steps, si−1 ≥ Tα over all but T 1−α steps for
some α ≤ 1/16. Then si ≥ Tα/16 for all but at most T 1−α/16 steps with probability at
least 1− 3T−α/4.
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Proof. As in Lemma 9, we may, without loss of generality, restrict si to the interval
�0; T α/4 − 1�. Then si behaves like a slightly biased random walk on all but the T 1−α

steps for which si−1 lies below Tα. Rather than consider the biased walk, however,
we use the same technique as in Lemma 9 to reduce the problem to an unbiased
random walk by splitting each step into two phases. We give the adversary control on
all steps in which a bin with remaining capacity i lies ahead of all bins with capacity
i − 1 after the first phase. On any step for which si−1 ≥ Tα and si ≤ Tα/4, the
probability that a bin with remaining capacity i lies ahead of all bins with capacity
i − 1 after the first phase is at most 1/T 3α/4. Hence, the expected number of such
steps is at most T 1−3α/4, and by Markov’s inequality, the number of such steps is
at most T 1−α with probability at least T−α/4. Let E be the event that there are no
more than T 1−α such steps.

Conditioned on E, the adversary controls at most 2T 1−α steps: T 1−α from the
above paragraph, and T 1−α from the steps where si−1 < T

α. On all other steps the
walk behaves like an unbiased random walk with p↑ = p↓ = 1/j. (Again, this is not
quite true when si = 0, but this small discrepancy can be easily handled explicitly as
described in Lemma 9; for convenience we dismiss the problem here.) We use this
to bound the probability that si lies below Tα/16 for more than T 1−α/16 steps.

We first consider the moves controlled by the adversary. In the worst case, si
begins at 0. By Lemma 10, there exists an optimal adversary strategy A0 that uses
a controlled step whenever si reaches Tα/16 − 1 or Tα/16. Hence, to overestimate
the effect of the adversary, we assume the following: the adversary uses its moves
whenever si reaches Tα/16; the adversary’s move returns the walk to si = 0; and all
steps until the adversary’s moves are used count as steps where si ∈ �0; Tα/16 − 1�.
These assumptions can only increase the time until the adversary’s moves are used.
The expected time for si to reach Tα/16 from 0 is cTα/8 for some constant c. Thus,
the expected number of steps until A has used all of its moves is bounded by
cT 1−7α/8. Let Z1 be the number of steps until the A0 uses all of its moves. Then by
Markov’s inequality,

Pr
[
Z1 ≥

T 1−α/16

2
�E
]
≤ 2cT−13α/16 ≤ T−α/4

for sufficiently large T .
After the adversary steps are used, the number of steps that si spends in the

interval I = �0; T α/16− 1� is stochastically dominated by that of an unbiased random
walk U on �0; Tα/4� that runs for T steps and begins at 0. Let Z2 be the number of
steps U spends in I. As in the proof of Lemma 9, the equilibrium distribution of
U is uniform over �0; T α/4 − 1�. Thus π�I� = T−3α/16. Using Lemmas 7 and 8 we
obtain

Pr

[
Z2 ≥

T 1−α/16

2

]
≤ T

α/8 · Tα/8
2

exp

(
−T−3α/8 · T−α/2 · T

j

)
≤ T−α/4

for sufficiently large T . Taking a union bound, we find that the probability that
Z1 + Z2 ≥ T 1−α/16 is at least 1− 3T−α/4, which proves the lemma.
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Lemmas 5, 9, and 13 allow us to prove the following theorem.

Theorem 14. Random Fit is stable under the distribution U�k− 2; k� for all k ≥ 3.

Proof. As in our previous calculations we first assume that k is odd. It suffices
to consider the drift of f �s� over a suitably large interval T , and show that it is
negative for all but a finite number of states. The excluded set of states G are

G = �s ∈ S: ∀i; si ≤ T 4�;

where T is determined below. Consider any starting state outside of this set G.
Applying Lemma 9 and then Lemma 13 inductively, we find that with probability
at least 1− �c1/T

ε1�, s�j/2� > 0 over all but Tε2 of the steps, for some constants c1
and ε1; ε2 < 1 dependent only on j. Let A be the event that s�j/2� > 0 over all but
Tε2 of the steps. As the expected value of f decreases by 1/j whenever s�j/2� > 0
by Lemma 5, and it increases by at most j otherwise,

E�f �T � − f �0��f �0�� ≤ E�f �T � − f �0��f �0� ∧ A�
+�1− Pr�A��E�f �T � − f �0��f �0� ∧ ¬A�

≤
[
−1
j
�T − Tε2� + jT ε2

]
+ c1T

1−ε1j:

By choosing T sufficiently large, we may make this expression smaller than −δ
for some constant δ. This suffices to prove the theorem, by Lemma 6.

If k is even, then there is middle token s�j/2�+1. If s�j/2�+1 = 0, everything is exactly
as in the case where k is odd. If s�j/2�+1 > 0, then by Lemma 3 s�j/2�+1 = 1 and no
bins with larger capacity are open. We consider the time steps when s�j/2�+1 = 1.
In these steps f might increase because a small item may be inserted in the bin of
capacity �j/2� + 1. Lemmas 9 and 13, which apply when k is even, give that with
probability at least 1− �c1/T

ε1�, s�j/2� > T 1−ε2 over all but Tε2 of the steps, for some
constants c1 and ε1; ε2 < 1 dependent only on j. Hence, it should be a very rare
event for a small item to be placed into a bin of capacity �j/2� + 1.

In fact, in exactly the same manner as shown in Lemma 5, one may show the
following:

Proposition 15. Suppose that k is even and s�j/2� > Z. Then E�f �t + 1� −
f �t��f �t�� ≤ −1/j + 2/Z.

We conclude that in this case

E�f �T � − f �0��f �0�� ≤ E�f �T � − f �0��f �0� ∧ A�
+�1− Pr�A��E�f �T � − f �0��f �0� ∧ ¬A�

≤
[(
−1
j
+ 2
T 1−ε2

)
�T − Tε2� + jT ε2

]
+ c1T

1−ε1j:

This expression can also be bounded by −δ if T is chosen large enough.
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One may check that from the inductive use of Lemma 13, the ε2 in Theorem 14 is
exponential in j, and hence our bound on the expected waste is doubly exponential
in j. It is an interesting question whether better bounds are possible.

It is also worthwhile to note the following:

Theorem 16. Random Fit�d� for d ≥ 2 is stable under the distribution U�k− 2; k�
for all k ≥ 3.

The proof is identical to the proof for Random Fit. Simulations suggest that as d
increases, the behavior of Random Fit�d� approaches that of Best Fit, as one might
expect.

Theorem 17. Random Fit and Random Fit(d), for d ≥ 2, have expected waste o�n�
under the distributions U�k− 1; k� and U�k; k�, for all k ≥ 3.

Proof. We only consider the distribution U�k − 1; k�, as the waste under the
distribution U�k; k� is entirely similar. Under this distribution, the statement cor-
responding to Lemma 5 is that if s�j/2��t� > 0, then E�f �t + 1� − f �t��f �t�� = 0.
Using the same notation as in the proof of Theorem 14 we obtain

E�f �T � − f �0��f �0�� ≤ jT ε2 + c1T
1−ε1j

for some constants c1 and ε1; ε2 < 1 dependent only on j. Hence, once the ex-
pected waste reaches a certain constant, its expected growth is sublinear, proving
the theorem.

Whether tighter bounds, more like those known for Best Fit and First Fit, are
possible for Random Fit under these distributions remains an open question.

4. ANALYSIS OF FIRST FIT UNDER DISTRIBUTION U�k− 2; k�

We now consider how to modify the proof of RF on the distribution U�k − 2; k�
to work for First Fit. Again we focus on the case where k is odd; the case where
k is even requires some minor additional work, as for Random Fit, which we omit
here.

One way of thinking about the difficulty in extending the results from RF to First
Fit (FF) is to consider the dependence among the steps. In RF, at each step we
have an independent random ordering assigned to the bins, while in FF, the orders
of the bins at different steps are clearly dependent. In particular, the order of the
bins at each step depends on the initial state, over which we have negligible control.
The work of this section will focus on finding ways to circumvent the effect of these
dependencies so that we can apply the same ideas that we used in Section 3.

Let us consider an initial state, given at time t = 0. To avoid problems caused
by the order of bins in the initial state, we focus on bins that are created after
time 0. In fact, we are even more restrictive: let a single item i bin at time t be a
bin created after time 0 that has remaining capacity i and contains only one item,
and denote the number of single item i bins by ui�t�. Instead of the vector s we
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considered previously, we primarily focus on the vector u = �u1; : : : ; u�j/2��. The
following important points about u make it useful:

• If u�j/2� > 0, then s�j/2� > 0 also. Hence, proving u�j/2� > 0 over most of the
steps is sufficient.
• Regardless of the initial state, �u1; : : : ; u�j/2�� = �0; : : : ; 0� at time 0.

To see how the considering u makes things easier, let us prove a lemma similar
to Lemma 9 for First Fit.

Lemma 18. Suppose si�0� ≥ T . Then when ui+1 > 0, ui+1 behaves like a random
walk with probability at least 1/j of increasing at each step and probability at most 1/j
of decreasing at each step. Also, the time spent by ui+1 on each visit to 0 is stochastically
dominated by a random variable D with constant expectation (that depends only on
j). In particular, ui+1 ≥ T 1/16 for all but at most T 15/16 steps with probability at least
1− 1/T 2.

Proof. Since si�0� ≥ T , over the next T steps there is always a bin with remaining
capacity i ahead of all single item bins with remaining capacity i + 1 created after
time 0. This implies that ui+1 can decrease only when an item of size i + 1 arrives,
and hence decreases with probability at most 1/j at each step. When ui+1 > 0, then
ui+1 increases whenever an item of size k − i − 1 arrives, and hence it increases
with probability at least 1/j. The case where ui+1 = 0 is special, and is handled as
in Lemma 4. The final result, that ui+1 ≥ T 1/16 most of the time, now follows using
an argument similar to Lemma 9.

As in the proof for RF, we now want to extend the above lemma inductively.
Similar to the RF case, we would like to say that a bin of size i lies ahead of all
single item i + 1 bins most of the time, whenever the number of single item i + 1
bins is sufficiently small. In Lemma 13, we accomplished this by splitting each step
into two substeps, with the first substep re-ordering the bins randomly. We do not
have this luxury for the FF case. However, it seems intuitive that the bins should
be “almost” randomly distributed at each step. This point is made explicit in the
following lemma:

Lemma 19. Let E be the event that a single item i bin at time t lies ahead of all single
item i+ 1 bins. Let zb; ct = Pr�E�ui�t� = b; ui+1�t� = c�. Then zb; ct ≤ b/�b+ c�.

Proof. Consider any sequence a = a1; a2; : : : ; at of t items that ends with a single
item i + 1 bin ahead of all single item i bins with ui�t� = b and ui+1�t� = c. We
center on the steps where the single item i and i + 1 bins were created. We first
claim that if a single item i bin was created at step g and a single item i+ 1 bin was
created at step h, then switching the entering items at steps g and h switches the
order of these two bins, but has no other effect on the algorithm. This can easily be
proven by induction for all bins behind the first single item i+ 1 bin, since there is
no way a second item could have been placed in any of these bins. The only difficult
case is that of the first single item i+ 1 bin, call it B. The reason that B is a special
case is that it is possible that since B is the frontmost single item bin, it may be
that a second item could have been placed in it if we change its capacity. However,



254 ALBERS AND MITZENMACHER

since switching the appropriate steps g and h would only lower the capacity of B, it
is clear that if B has not obtained a second item in the original sequence, it cannot
in the modified sequence as well.

We now divide the sequences into equivalence classes. For a sequence a, let
Yit �a� be the set of times at which the single item i bins at time t were created.
Two sequences a and a′ are equivalent if Yit �a� ∪ Yi+1

t �a� = Yit �a′� ∪ Yi+1
t �a′� and

ui�t� = b, ui+1�t� = c for both sequences.
Take any sequence a with a single item i + 1 bin ahead of all single item i bins

at time t. From the first paragraph of the proof, permuting the times when a single
item i + 1 bin and a single item i bin were created yields equivalent sequences.
Hence, by taking all ways of splitting Yit �a� ∪ Yi+1

t �a� into two groups of size b and
c, and using this division to determine when single item i and i+ 1 bins are created,
we find that every sequence a has at least

(
b+c
b

)
sequences in its equivalence class.

Since the probability a and any of these other
(b+c
b

)
sequences occurring are equal,

it is straightforward to show combinatorially that there are at least b/c times as
many sequences with a single item i bin ahead of all single item i + 1 bins as
there are with a single item i + 1 bin ahead of all single item i bin. Hence zb; ct ≤
b/�b+ c�.

Lemma 19 suggests that the behavior of FF should not be worse than RF, with
the understanding that the ui now play the role of the si. As in the case of RF, we
would like to say the small tokens ui behave like an unbiased random walk over
most of the steps. This leads us to prove a variant of Lemma 13 in this setting,
which is phrased slightly differently to appropriately handle the conditioning.

Lemma 20. Suppose, over a period of T steps, ui−1 ≥ Tα over all but at most T 1−α

steps for some α ≤ 1/16 with probability at least 1/2. Then, conditioned on ui−1 ≥ Tα
over all but at most T 1−α steps, ui ≥ Tα/16 for all but at most T 1−α/16 steps with
probability at least 1− 4T−α/4.

Proof. As in Lemma 13, we must bound the number of steps for which the be-
havior of ui is not that of an unbiased random walk, and then apply an adversary
argument. Also as in Lemma 13, we will restrict our consideration to the behavior
of ui to the interval �0; Tα/4 − 1�. (This can be interpreted as though if ui ≥ Tα/4,
we may assume that a single item bin of size i + 1 lies ahead of all bins of size i,
which is a conservative assumption.)

To bound the number of steps the adversary controls, then, we bound the number
of steps X that satisfy the following conditions:

• ui−1 ≥ Tα.
• ui ≤ Tα/4 − 1.
• A single item i bin lies ahead of all single item i− 1 bins.

The value of X, in addition to the number of steps for which ui−1 < T
α, bounds

the number of steps where the adversary controls the walk; on all other steps, we
either have that ui ≥ Tα/4 or a single item i− 1 bin lies in front of all single item i
bins, and so ui behaves (at worst) as an unbiased random walk with p↑ = p↓ = 1/j.
(As usual, we ignore the discrepancy at ui = 0.)
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Let yt be the probability that on step t the above conditions hold. Then,

E�X� = E

[
T−1∑
t=0

yt

]
=

T−1∑
t=0

E�yt�

≤
T−1∑
t=0

Tα/4

Tα + Tα/4 < T
1−3α/4:

Although it would seem this is enough to bound the number of adversary steps,
we must be careful. Let E be the event that ui−1 ≥ Tα over all but T 1−α steps.
The expected number of additional adversary steps from single item i − 1 bins
being frontmost is not E�X�, but E�X�E�. From the hypothesis of the lemma that
Pr�E� ≥ 1/2, however, we must have E�X�E� ≤ 2T 1−3α/4. Using Markov’s law, we
have

Pr��X�E� ≥ T 1−α� ≤ 2T−α/4:

Hence, conditioned on E, the number of steps the adversary controls is at most
2T 1−α with probability at least 1 − 2T−α/4. The rest of the proof now proceeds as
in Lemma 13.

We are now ready to prove the main theorem:

Theorem 21. First Fit is stable under the distribution U�k− 2; k� for all k ≥ 3.

Proof. As in Theorem 14, it suffices to consider the drift of f �s� over a suitably
large interval T , and show that it is negative for all but a finite number of states.
The excluded set of states G will be

G = �s ∈ S: ∀i; si ≤ T�;

for some suitably large T . We now apply Lemmas 18 and 20 to obtain a bound on
E�f �T � − f �0��f �0�� similar to that in Theorem 14.

We would then like to apply Lemma 6; however, technically we cannot do so,
as the state space of the underlying Markov chain is not embedded in a fixed-
dimensional space. Similar results, however, can be applied in this setting, once we
have shown that the expected change in the waste f is negative for a suitably large
T . For example, [13, Theorem 13.0.1] can be used to show that the chain is ergodic,
and [6, Theorem 3.1] implies that in the stationary distribution, the distribution of
the waste has an exponentially decreasing tail.

5. SIMULATION RESULTS

In this section, we briefly provide some simulation results comparing the BF, RF, and
FF algorithms on the input distribution U�k− 2; k�. We emphasize that the purpose
of this section is not to provide a detailed simulation-based comparison. Rather, the
purpose is to gain further insight into some of the technical ideas presented in this
paper.
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Fig. 1. Average waste over long sequences.

In Figure 1, we present the average waste seen over the first one million time
steps for BF and FF for various values of k. Each data point is the average of 10
trials. Similarly, the average waste for some values of RF are shown. Here, we again
averaged over 10 trials, but used one hundred million time steps. We chose these
numbers of steps because they appeared sufficient for the waste to reach a stable
level. Although the decision for the number of time steps to be used was somewhat
subjective, we note that generally the maximum waste seen over the lifetime of
the process was often obtained significantly far from the end of the process, which
suggests that the system waste had reached a stable level.

The most visibly striking feature is that the waste from Random Fit grows signif-
icantly more rapidly with k than the waste from Best Fit and First Fit. Recalling
that the work of [10] showed that in the stationary distribution the expected waste
was at most exponential in k for Best Fit, these simulations suggest that our doubly
exponential bounds may be correct for Random Fit but incorrect for First Fit. In-
deed, the much slower convergence of Random Fit to a stable waste level suggests
this possibility as well. However, we caution that because the waste grows extremely
quickly with k, it is very difficult to assess the true behavior from these simulations.
Also, it is interesting to note that the jumps between consecutive values are much
larger between even–odd pairs than odd–even pairs. This suggests the technical-
ity in the analysis regarding whether k is even or odd corresponds to a significant
feature in the process.

In Figure 2 we examine the remaining capacity of the first bin in the First Fit
ordering over all time steps. As k grows, a bin with remaining capacity one is
almost always up front. Figure 2 validates the intuition that FF tends to order
the bins so that bins with smaller remaining capacity lie in front. We note that
for RF, although we have fewer results, the behavior trends appear the same. In
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Fig. 2. First Fit: remaining capacity of the first bin.

Fig. 3. Random Fit: how often the first bin has remaining capacity 1.
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Figure 3, we concentrate on the fraction of time a bin with remaining capacity one
is expected to be up front over various time scales. That is, at each step, we consider
the probability a bin with remaining capacity one will end up first after the bins are
randomly permuted, and Figure 3 shows the average of this probability observed
over the lifetime of this process. Again, as k rises, so does the fraction of the time
a bin with remaining capacity one lies up front. Figure 3 also demonstrates the slow
convergence of this behavior for RF, and the importance of carefully choosing the
time scale to judge the behavior of these processes through simulations.

6. CONCLUSIONS

We have demonstrated that the First Fit bin packing algorithm is stable on the
distribution U�k− 2; k�. We believe that our result demonstrates that the Markov
chain approach may be useful, even in situations where the natural description of a
problem does not have a convenient state space. Our analysis made use of insight
gained from a novel packing algorithm, Random Fit, which appears interesting in
its own right.

An open question is to tighten the bounds developed in this paper. For both First
Fit and Random Fit, our bounds for the expected waste are doubly exponential in j.
Simulations suggest that the expected waste for First Fit may only be exponential in
j. Unfortunately, the simulations for Random Fit seem to suggest that the expected
waste for Random Fit may indeed be doubly exponential in j, in which case it seems
that another approach may be necessary to achieve better bounds for First Fit.
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