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1. INTRODUCTION

A family of permutations % C S,, is called min-wise independent (abbreviated MWI)

if for any set X € [rn] = {1, ..., n} and any x € X, when = is chosen at random
in & according to some specified probability distribution, we have
1
Pr(min{7(X)} = m(x)) = - (1)

In other words we require that all the elements of any fixed set X have an equal
chance to become the minimum element of the image of X under .

When the distribution on % is nonuniform, the family is called biased, and it is
called unbiased otherwise. In general in this paper we will not specify the probability
distribution on % unless relevant, and from now on when we say “m chosen at
random in (the min-wise independent family) ” we mean “7 chosen in % according
to the probability distribution associated to & such that (1) holds.”

Together with Moses Charikar and Alan Frieze, we introduced this notion in [5],
motivated by the fact that such a family (under some relaxations) is essential to
the algorithm used in practice by the AltaVista web index software to detect and
filter near-duplicate documents. The crucial property that enables this application
is the following: let X be a subset of [n]. Pick a “sample” s(X) € X by choosing at
random a permutation 7 from a family of permutations % and letting

S(X) = 7~ (min{m(X)}) . 2
Then, if 2 is a MWI-family, for any two nonempty subsets 4 and B, we have

Pr(s(4) = s(B)) = :j Bg : . 3)

Hence, such samples can be used to estimate the relative size of the intersection of
sets, a quantity that we call the resemblance of A and B, defined as
|A N B|

|AUB|

R(A,B) = 4)
We estimate resemblance by first picking, say, 100 permutations from a MWI-family,
and then computing samples for each set of interest. Then the resemblance of
any two sets can be estimated simply by determining the fraction of samples that
coincide.

In practice we can allow small relative errors. We say that & C S, is approximately
min-wise independent with relative error € (or just approximately min-wise indepen-
dent, where the meaning is clear) if for any set X C [n] and any x € X, when 7 is
chosen at random in % we have

B 1 €

Pr(min{7(X)} = 7(x)) X < X ®)

For further details about the use of these ideas to estimate document similarity
see [7, 2, 3]. Takei, Itoh, and Shinozaki [14] presented an optimal (size-wise) con-
struction for a MWI-family under the uniform distribution. Their family has size
lem(1, ..., n), matching the lower bound of [5]. Explicit constructions of approx-
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imately MWI-families were obtained by Indyk [9] and by Saks et al. [13]. For an
application of these families to derandomization see [6].

We also note that concepts similar to min-wise independence have appeared prior
to our work [5] as well. For example, the monotone ranged hash functions described
in [10] have the min-wise independence property; Cohen [8] uses the property that
the minimum element of a random permutation is uniform to estimate the size of
the transitive closure, as well as to solve similar related problems; and Mulmuley
[12] uses what we call approximate min-wise independence to use fewer random
bits for several randomized geometric algorithms.

The main result of this paper, presented in Section 2, is that, rather surprisingly,
any sampling scheme that has property (3) is equivalent to a scheme derived via Eq.
(2) from a min-wise independent family of permutations. More precisely we have
the following theorem:

Theorem 1. Let F be a family of functions from nonempty subsets of [n] to some
arbitrary set ). Assume there exists a probability distribution on F such that when f is
chosen from F according to this distribution, for any two nonempty subsets A and B,

Pr(F(A) = FB) = 571

Then there exists a min-wise independent family of permutations % and a bijection
from F to P such that every f € F is defined by

) = f ({77 (min{m, ()}
for some my € P.
We note here some immediate consequences of the theorem:

(a) The induced family of permutations has the same size as the initial family of
functions, that is || = |7]|.

(b) Each f € 7 takes exactly n distinct values f({x}),..., f({x,}). (4 priori
each f can take 2" — 1 values.)

(c) Assume that we add the condition that for every X C [n], each f € 7 sat-
isfies f(X) € X; in other words, the “sample” must belong to the set being
sampled. Then for every x € [n] each f satisfies f({x}) = x, and hence each
f has the form

F(X) = 7 (min{m(X)}) -

(The converse of the assumption is also true: if for every x € [n] we have
f({x}) = x then f(X) € X follows. See Lemma 3 below.)

(d) Thus every estimation scheme that has property (3) is equivalent under re-
naming to a sampling scheme derived via Eq. (2) from a min-wise inde-
pendent family of permutations. (For each f, f({x,}) is the “name” of x,,
f({x,}) is the “name” of x,, etc.)

Of course in practice it might be more convenient to represent & directly rather
than via 2. (See [4] for an example.) But the fact remains that any method of
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sampling to estimate resemblance via Eq. (3) is equivalent to sampling with min-
wise independent permutations.

To develop some intuition, before plunging into the proof, we start by observing
that the choice of “min” in the definition (1) is somewhat arbitrary. Clearly if we
replace “min” with “max” both in (1) and in (2), property (3) holds. More generally,
we can fix a permutation o € S, (think of it as a total order on [n]), and require &
to satisfy the property

Pr(min{o(7(X))} = o(m(x))) = (6)

x|
Then we can choose samples according to the rule

s(X)=m! (a* (min{a(rr(X))})) .

(We obtain “max” by taking o(i) =n+1—1i.)

Is there any advantage to choosing a particular o? A moment of reflection in-
dicates that there is nothing to be gained since we can simply replace the family
% by changing every 7(-) € ? to o(m(-)). This is, in fact, a very simple instance
of Theorem 1. However, it could be of interest if a family 2 satisfies condition (6)
with respect to more than one order ¢. One reason is that, in practice, computing
7(X) is expensive (see [4] for details). If a family has the min-wise independence
property with respect to several orders, then we can extract a sample for each or-
der. Obviously these samples are correlated, but if the correlation can be bounded,
these samples are still usable.

Takei, Itoh, and Shinozaki [14] observed that their construction for a MWI-family
of size lem(1, ..., n) under the uniform distribution yields a family that is simul-
taneously min-wise independent and max-wise independent. In Section 3 we show
that this is not a fluke; in fact, any min-wise independent family is also max-wise in-
dependent. Moreover, if 2 C S, is min-wise independent, then for any set X C [n],

any x € X, and any fixed r € {1, ..., |X|}, when = is chosen at random in & we
have
1
Pr(rank(m(x), (X)) =r) = ] (7

where rank(x, X) for x € X is the number of elements in X not greater than x.
Hence the max-wise independence property follows by taking r = | X]|.

In Section 4 we discuss families that have the min-wise independence property
with respect to all possible orders o. We call such families robust. We show that
although not every min-wise independent family is robust, there are nontrivial robust
families. On the other hand, robust families under the uniform distribution of size
lem(1, ..., n) do not necessarily exist for every n.

2. ANY SAMPLING SCHEME IS A MWI-FAMILY

In this section we prove the following:

Theorem 1. Let F be a family of functions from nonempty subsets of [n] to some
arbitrary set Q). Assume there exists a probability distribution on F such that when f is
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chosen from F according to this distribution, for any two nonempty subsets A and B,

Pe(f(A) = FB) = 571

Then there exists a min-wise independent family of permutations % and a bijection
from F to P such that every f € F is defined by

@) = f ({77 (min{m, ()]

for some 7y € P.
Proof.  Assume the premises of the theorem. We start with four simple lemmas.

Lemma 1. Let X be a nonempty subset of [n]. Then for any x € X

Xn{x} 1

Pr(f(X) = f({x})) = Xogy X

Lemma 2. For any two distinct elements x, x, € [n] and each f € F.

f{x}) # f{x2}) -

Proof. By hypothesis

}{xl} N {x2}| —0

Pr(f({x;}) = f({x,})) = 1oy

Lemma 3. Let X = {x{,x,,..., X} be a nonempty subset of [n]. Then for each
fed

fX) e{f{xd), f{x})s -5 FHx DY -

Proof.

Pr(f(X) € {f({x})s FE0D. oo FExeDD)
k

=Y Pr(f(X) = f({x}) = 1.
i=1

Lemma 4. Let X = {x{, X5, ..., x;} and Y be nonempty subsets of [n]. If X C Y,
then for every f € F,if f(Y) € {f({x1}), f({x2}), ..., f({xx D)}, then f(Y) = f(X).
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Proof. By hypothesis

XnY|  k

IxXuy|l |Y|’

Pr(f(X)=f(Y))=
On the other hand,

Pr(f(X) = f(Y))
=Pr(f(X) = f{x ) A fF(Y) = f({xi}) + -
+Pr(f(X) = f({xe}) A F(Y) = f({x})
=Pr(f(X) = f{x: ) | F(Y) = f{e ) Pe(f(Y) = F{xi}) + -
+Pr(f(X) = f({x D) | F(Y) = F{a ) Pr(f(Y) = F({xi})
=Pr(f(X) = f({x: ) [ F(Y) = FHa ))A/IY)) + -
+Pr(f(X) = f({xe D) | £(Y) = F{a))A/[Y]).

(The last equality follows from Lemma 1.) Hence for every x; € X

Pr(f(X) = f({xDIF(Y) = f{xi}) =1,
and therefore for every f € F, if f(Y) = f({x;}) then f(X) = f({x;}) aswell. =

Returning to the proof of the theorem, we show now how to construct for each
J € F a permutation 7 such that for every nonempty set X

) = f ({7 (min{m 0O1}) - ®)

Note that the family & given by the 7, above is clearly min-wise independent by
Lemma 1, as for any x € X,
1

Pr (min{m;(X)} = m;(x)) = Pr(f(X) = f({x})) = x|

Fix f and let g: {f({x1}), ..., f({x,})} — [n] be the function defined by
g(f({x;})) = x;. In view of Lemma 2 g is well-defined. Now define a sequence
Vis Yoy -nns y, as follows:

i =g(f([n]))
y, = g(f([n]\{»}))
y3 = g(f([n]\ {3, ».}))
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In view of Lemma 3 g is correctly used and we have

fAnD) = fnd)
f(InI\N{nd) = F( )
FAIN Ay »21) = F({xs})

Furthermore yy, y,, ..., y, is a permutation of [n]. Finally we take 7, to be the
inverse of the permutation determined by the y;; that is, 7, maps y; to 1, y, to 2,
etc. We need to show that f satisfies Eq. (8) for every nonempty set X.

Fix X and consider the sets Y| = [n], Y, = [#]\{»}, Y3 =[#]\ {y, o}, -
Y, = {y,}. Let k be the largest index such that Y still includes X. This implies
that

(a) y, € X since otherwise we could have taken Y, ;.
® {y, ¥, ---» Y1} N X = since none of these elements belong to Y.

By definition f(Y,) = f({y}). But y, € X € Y, and therefore Lemma 4 im-
plies that f(X) = f({y.}) as well. On the other hand property (a) above implies
that min{7;(X)} < k and property (b) implies that min{7;(X)} > k — 1. Hence
min{7(X)} = k and wj?l(min{wf(X)}) =y, as required. |

3. RANK UNIFORMITY FOR MWI-FAMILIES

In this section, we show that any min-wise independent family actually has the
property that every item in any fixed set is equally likely to have any rank in the
image of the set—not just the minimum rank as required by definition. Our analysis
is based on the following lemma, which follows from Theorem 7 of [5].

Lemma 5. A family of permutations % is min-wise independent if and only if for any
set X C [n] of size k and any element x € [n]\ X,

Pr(m(X)=[k]Am(x) =k+1) = ﬁ
k

when 1 is chosen at random in 9.

In other words, if we fix a set X of size k and an extra element x, the probability that
x maps to k + 1 and X maps to {1, ..., k} in some arbitrary order is exactly what
“it should be” if we were sampling uniformly from the entire set of permutations S,,.
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Theorem 2. If & is min-wise independent, and 7 is chosen at random from P, then
for any set X C [n] and any element x € X,

1

Pr(rank(m(x), m(X))=r) = bR

)

Proof.  We sum over all the possible ways such that rank(w(x), m(X)) =
and 7(x) = s and consider which elements map to [s — 1]. Note that we must
have r < s < n — (|X| — r). There must be r — 1 other elements of X, call
them {xy, x,, ..., X,_1}, such that 7(x;) € [s — 1], and there are (l)r”ll) ways
to choose them. Similarly, there must be s — r elements of [n] \ X, call them
{y1> ¥2> --+» Ye_r}, such that 7(y;) € [s — 1] and there are ("Sl)fl) ways to choose
these elements. For each possible combination of choices, we have from Lemma 5
that the probability that these elements are mapped to [s — 1] and x is mapped to
s is

1

(sfl)(n -5+ 1) ‘

Hence

n—|X|+r (IX\fl)(n—\Xl)

Pr(rank(w(x), m(X))=r)= > ﬁ
s=r s—1

Zm%)ﬂflr

(The second equality is obtained by expanding binomials into factorials and regroup-
ing. The third equality is obtained by counting the ways of choosing | X| elements
out of [n] by summing over all possible values s for the rth largest element among
those chosen.) ]

4. ROBUST FAMILIES

We now consider robust families. As described in the Introduction, robustness is
an extension of min-wise independence. Formally, a family & is robust if for every
possible permutation o, when 7 is chosen at random in %

1

Pr(min{o(7(X))} = o(m(x))) = X (10)

Trivially, S, is a robust family. We first demonstrate that there exist non-trivial
robust families. To this end, we extend the condition for min-wise independent fam-
ilies given in Lemma 5 to the equivalent condition for robust families. Since robust



26 BRODER AND MITZENMACHER
families are min-wise independent under any order o we obtain the following:

Lemma 6. A family of permutations % is robust if and only if for any set X C [n] of
size k and any element x € [n]\ X, and any other set A C [n] of size also k and any
element a € [n]\ A

o
WICEION

Theorem 3. There exist biased robust families of size at most

" (2(:—_ 11)> '

Proof.  Following an idea used in [5] (apparently used first in [11]), we establish
a linear program for determining a robust family of the required size. There are n!
variables x . , one for each possible permutation ;. The variable x, represents the
probability that 7r; is chosen within our family; if x, = 0, we may exclude 7; from
the family.

Our linear program is based on Lemma 6. We set up an equation for each pair
(a, A) and (x, X) with |A| = | X|, with each equation representing the constraint
that (a, A) maps to (x, X) with the required probability. Hence there are

"Zlnz(n - 1)2 _ (2(11 —~ 1))

s i n—1

equations. We know there exists a solution to the linear program, since if each
permutation is chosen with probability 1/n! we have a robust family. Hence there
must be a basic feasible solution with at most n(*"~") variables taking nonzero
values. This solution yields a biased robust family. [ |

Pr(m(X)=AAm(x)=a) = (11)

It is also worthwhile to ask if there are any nontrivial unbiased robust families.
We demonstrate that in fact there are nontrivial families for n > 4.

Recall that the permutations S, can be split into two groups, each of size n!/2,
as follows: A permutation is called even if it can be obtained by an even number of
transpositions from the identity, and is called odd otherwise.

Theorem 4. For n > 4, the even permutations and the odd permutations of [n] both
yield robust families.

Proof.  We use Lemma 6. That is, we must show that for each pair (x, X) with
x € [n], X € [n], x ¢ X, the probability that 7(x) = @ and w(X) = A is correct
for every (a, A) with a € [n], A C [n], |A| = |X|,and a ¢ A.

Equivalently, since the odd permutations and even permutations divide the set of
all permutations into two equal-sized families, it suffices to show that the number
of even permutations mapping (x, X) into (a, A) is the same as the number of odd
permutations that do so. Note that as n > 4, either | X| > 2 or |[n] — X — {x}| = 2.
In the first case, we can determine a one-to-one mapping of even permutations to
odd permutations that map (x, X) into (a, A) by choosing two particular elements
of X (say the two smallest) and transposing them. In the second case, we may do
the same by transposing two elements of [n] — X — {x}. [ |



PROPERTIES OF MIN-WISE INDEPENDENT PERMUTATIONS 27

From the lower bound in [5], we know that unbiased min-wise indepen-
dent families (and hence robust families) have size at least lem(1, ..., n). As
lem(1, ..., n) = n!/2 for n = 4 and n = 5, the result of Theorem 4 is optimal
for these cases. We suspect that Theorem 4 is in fact optimal for all n > 4; that
is, there is no unbiased robust family of size less than n!/2. While we cannot yet
show this, we can show that for n = 6, there is no unbiased robust family of size
lem(1, ..., n) = 60.

Theorem 5. All the unbiased robust families of permutations of {1, 2, 3, 4, 5, 6}
have size greater than 60.

Proof.  The smallest possible robust family has size 60, so we simply show that
no such family of this size exists. The proof uses an exhaustive search, where the
search is reduced using symmetry and Lemma 6.

Assume that an unbiased robust family of size 60 exists. Let us use the follow-
ing shorthand: we write, for example, 342156 to represent the permutation 7 on
{1, 2, 3, 4, 5, 6} where 7(1) = 3, m(2) = 4, etc. In this form, by Lemma 6 there
must be 10 permutations in the family that begin with 1; in fact, by Lemma 6 there
must be two permutations that begin with 12, two that begin with 13, etc. Now with-
out loss of generality, we may assume (by symmetry) that two of the permutations
in our family begin with 123 and 124.

Now, if some permutation in our family begins with 123, then no other permuta-
tion in our family can begin with 132, or Lemma 6 would be contradicted. Hence
there are three possibilities for the two permutations in our family that begin with
13, namely 134, 135, and 136. Similarly, there are three possibilities for the two
permutations in our family that begin with 14, namely 143, 145, and 146. Again
by Lemma 6, both 134 and 143 cannot begin permutations in our family, so again
without loss of generality we take 143, 135, and 136 to begin permutations in our
family. Similarly we must then choose whether to take 145 or 146 in our family, and
without loss of generality by symmetry we may take 145.

To this point, we have shown that, without loss of generality, we may assume our
permutation family of size 60 has 10 permutations with the following prefixes:

123, 124, 135, 136, 143, 145, 152, 156, 162, 164.

We may then attempt to find valid completions to these 10 prefixes using an ex-
haustive computer search. For a set of completions to be valid, each permutation
must in fact be a valid permutation of the numbers 1 through 6. Also, by Lemma 6,
for the 10 permutations that begin with a 1, every other pair of positions must con-
tain each unordered pair of the numbers 2 through 6 exactly once. These conditions
make the exhaustive search process relatively simple. We find six possibilities, given
in the top of Table 4.

To complete the proof, we now consider the 10 permutations with a 1 in the sec-
ond position in our family. Since we have assumed that permutations with prefixes
123 and 124 are in our family, the two permutations that begin with 21 must be
215 and 216, by Lemma 6. Similarly, we find our permutation family must have 10
permutations with the following prefixes:

215, 216, 312, 314, 412, 416, 513, 514, 613, 615.
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TABLE 1 Possible Subsets of a Robust Permutation Family.

123654 123465 123546 123456 123645 123564
124365 124536 124653 124563 124356 124635
135642 135264 135426 135246 135624 135462
136425 136542 136254 136524 136452 136245
143526 143652 143265 143625 143562 143256
145263 145326 145632 145362 145236 145623
152346 152634 152463 152643 152364 152436
156234 156423 156342 156432 156243 156324
162453 162345 162534 162354 162435 162543
164532 164253 164325 164235 164523 164352
215634 215463 215346 215436 215643 215364
216345 216534 216453 216543 216354 216435
312465 312546 312654 312564 312456 312645
314652 314265 314526 314256 314625 314562
412536 412653 412365 412635 412563 412356
416253 416325 416532 416352 416235 416523
513264 513426 513642 513462 513246 513624
514326 514632 514263 514623 514362 514236
613542 613254 613425 613245 613524 613452
615423 615342 615234 615324 615432 615243

Again we now complete these prefixes using exhaustive search; the six possibilities
are given in the bottom of Table 4.

We now consider the 36 possible sets of 20 permutations obtained by taking one
solution from the top and one solution from the bottom of Table 4. It is straight-
forward to check that in each of the 36 combinations Lemma 6 is violated. Hence
our initial assumption that a robust familiy of permutations on {1, 2, 3, 4, 5, 6} of
size 60 exists must be incorrect. ]

Given the development of approximate min-wise independent families of permu-
tations developed in [5], it is natural to ask about approximate robust families of
permutations as well. A family of permutations is said to be approximately robust
with relative error € if and only if for every permutation order o,

Pr(min{c(7(X))} = o(m(x))) — % < % . (12)

That is, regardless of o, the probability over the choice of 7 that an element x is
the minimum of a set |X| is within a factor of (1 &+ €) of the natural probability
1/]X]|. It is straightforward to show that there must be small approximate robust
families.

Theorem 6. There are approximate robust families of size O(n*log(n)/e€?).
Proof.  The proof follows Theorem 3 of [5]. We simply choose a random set of

permutations of the appropriate size, and show that with some probability, we obtain
an unbiased approximate robust family.
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For a permutation 7 chosen uniformly at random from S,,,

Pr(o(m(x)) = min o(7w(X))) = l%| .
Suppose we pick f permutations uniformly at random from S,. Consider a per-
mutation o, a set X, and an element x € X. Let A(o, x, X) be the number of
permutations for which o(7(x)) = min o(7(X)). Note that A(o, x, X) has the bi-
nomial distribution Bin(f, 1/|X]). Then E[A(o, x, X)] = f/|X]|. Let B(o, x, X)
be the event |A(o, x, X) — (f/|X|)| > €(f/|X|). The event B(o, x, X) is consid-
ered a bad event for the triple (o, x, X). We will be interested in bounding the
probability of bad events. Applying Chernoff bounds (see for example [1]), we have

Pr(B(o, x, X)) < 2e — (f2/3|X|) < 2e — (f*/3n).

This must hold for all triples (o, x, X) such that x € X C [n]. There are n2""'n!
such triples. Hence the probability that at least one bad event B(o, x, X) occurs
is at most n2"nle — (fe*/3n. For f > 3n(In n! 4+ n In 2 + In n)/€>, this probability is
less than 1. Hence, for f this large, with nonzero probability no bad event occurs,
and therefore there is some family of permutations that is approximately robust
with relative error e. ]

5. CONCLUSIONS

Our work raises several open questions. A more complete understanding of ro-
bust permutation families as well as families that are approximately robust or have
approximate rank uniformity would be interesting, Another important question is
whether our main result can be extended to approximate min-wise independent per-
mutation families. Recall that we have shown that any sampling scheme (denoted
by s) for the relative intersection of sets with the property

_|4nB|

Pr(s(A) = s(B)) = AUB]

is equivalent to a min-wise independent family of permutations in Theorem 1. Can
a similar relationship be shown with approximately min-wise independent families
in the case where the sampling scheme is only approximate? That is, if we have a
sampling scheme

|ANB| < Pr(S(A) :s(B)) < (1—}-6)::;182:,

(=€) 755 =

must the sampling scheme naturally map to an approximately min-wise independent
family?
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