
Analysis of Random

Michael G. Luby*

Processes via And-Or Tree Evaluation

Michael Mitzenmachert M. Amin Shokrollahiz

Abstract distributions not considered by previous analyses.
We introduce a new set of probabilistic analysis tools
based on the analysis of And-Or trees with random in-
puts. These tools provide a unifying, intuitive, and pow-
erful framework for carrying out the analysis of several
previously studied random processes, including random
loss-resilient codes, solving random L-SAT formulae us-
ing the pure literal rule, the greedy algorithm for match-
ings in random graphs. In addition, these tools allow
generalizations of these problems not previously ana-
lyzed to be analyzed in a straightforward manner. We
illustrate our methodology on the three problems listed
above.

1 Introduction

We introduce a new set of probabilistic analysis tools
related to the amplification method introduced by [15]
and further developed and used in [17, 61. These
tools provide a unifying, intuitive, and powerful frame-
work for carrying out the analysis of several previously
studied random processes, including the random loss-
resilient codes introduced in [ll], the greedy algorithm
for matchings in random graphs studied in [9], the
threshold for solving random k-SAT formulae using the
pure literal rule [5], the emergence of a giant k-core [16],
and error-correcting codes introduced in [8, 121. In ad-
dition, generalizations of these problems not previously
analyzed can now be analyzed in a straightforward man-
ner. For example, we can analyze generalizations of the
loss-resilient codes considered in [ll] where the goal is
to recover a certain fraction of the message packets. As
another example, we can analyze the behavior of the
pure literal rule on random SAT formulae chosen from

*International Computer Science Institute, Berkeley, CA.
Parts of this research were done while still at the Digital Equip-
ment Corporation Systems Research Center, Palo Alto, CA. Re-
search partially supported by NSF operating grant NCR-9416101.

tDigita1 Equipment Corporation, Systems Research Center,
Palo Alto, CA.

tInternational Computer Science Institute Berkeley, and Insti-
tut fiir Informatik der Universitgt Bonn, Germany. Research sup
ported by a Habilitationsstipendium of the Deutsche Forschungs-
gemeinscbaft, Grant Sh 57/1-l.

Our main tool is a simple analysis of the probability
an And-Or tree formula evaluates to 1. The simple
version of this And-Or tree evaluation problem is the
following. Let TL be a tree of depth 2e with each leaf
node labeled with either 0 or 1. (The root of the tree is
at depth 0, and the leaves are at depth 2f!.) Each node
at depth 0,2,4 ,..., 2t! - 2 is labeled as an “OR” gate
(and it evaluates to the “OR” of its children), and each
node at depth 1,3,5,. . . , 21- 1 is labeled ss an “AND”
gate (and it evaluates to the “AND” of its children). We
say the tree is (do&&-regular if each “OR” node has
do, children and each “AND” node has d,d children.

Our analysis is related to the study of amplification,
initiated by Moore and Shannon [15], and continued in
several works [17, 61. Consider the probability that the
root of Tl evaluates to 0 when the value of each leaf is
independently chosen to be 0 with probability p. Let us
denote this probability aa yl. One typical amplification
question with respect to And-Or trees is whether or not
there is a threshold phenomenon, i.e., is there a critical
value 4 such that if p > 4 then ye goes to 1 as .fY goes
to infinity and if p < 4 then as yl goes to 0 as 1 goes to
infinity. Of primary interest in these studies is the rate
of amplification, i.e., the rate at which yl goes to either
0 or 1 as a function of e.

One work that uses exactly this type of analysis
is the elegant randomized construction, given in [17],
of a polynomial size monotone boolean formula that
computes the majority function. The basic idea behind
the construction and proof exploits the fact that a
(2,2)-regular And-O r t ree has a critical value of 4 =
(3 - &)/2, and that if ye-1 = 4 + c then yl > 4 + cc
for a constant c > 1. (Analogously, if yl-i = 4 - e,
then yl < 4 - cc.) In further work, [4] and [S] provide
beautiful proofs that the construction size of [17] is
optimal, this time using amplification analysis to prove
a lower bound. This type of analysis has also been noted
se a possible attack for specific random graph problems,
including the greedy matching algorithm of [9] and the
emergence of the k-core [16].

Our work has a similar spirit to this previous work,
but it differs in several ways. We generalize to allow the

364

365

number of children of each node to vary in the following the random process and that of the polynomial. One
way. Let (ao,Ql, . . ., a~) be a probability vector, i.e., of the ingredients lacking in the previous analysis of
ai > 0 for all i E (0,. . .,A} and ct=,ai = 1. these codes was a simple intuitive connection between
Similarly, let (PO, & , . . . ,/3~) be a probability vector. the polynomial solution and the original process. With
Starting at the root and working down the tree, each the new analysis, this intuitive connection is direct and
“OR” node chooses to have i children with probability compelling. In addition, the new tools can be easily
(pi independent of any other node, and similarly each used to analyze important generalizations of the origi-
“AND” node choose to have j children with probability nal process, which would have been much more difficult
pj independent of any other node. (Some previous using the previous analysis. Finally, the simplicity and
research, e.g., [6], introduced a variant of this form generality of the new analysis will undoubtably lead to
and used it in a limited way in their construction.) A a number of other applications. We do note, however,
further generalization is to allow two positive values a that the differential equations approach can lead to a
and b such that each “OR? node is independently short much more sophisticated analysis of the underlying pro-
circuited to produce the value 1 with probability a, and cesses (see, for example, [16] or [3]). Hence we believe
each “AND” node is independently short circuited to our analysis tools will prove most useful in conjunction
produce the value 0 with probability b. with differential equations.

Our new analysis is based on the following simple
definitions and lemma. Define

In the next three sections, we apply Lemma 1 to
the analysis of loss-resilient codes, the pure literal rule
for random B-CNF formula, and the greedy matching
algorithm for random graphs.

i=o

p(z) = &lj * xi,
i=o

f(x) = (1 -a) .a(1 - (1 -b) ./3(1-z)).

2 Loss-Resilient Code Analysis

2.1 Essentials of the Codes

The codes described in [ll] consist of a cascading
sequence of random bipartite graphs. Because the code

LEMMA 1. Define yo = p to be the probability a leaf
node is labeled 0. Then for all e 2 1, yf = f(yl-1).
Although this lemmais simple to prove (in fact,, we leave
it as an exercise), as we shall see it is quite powerful.

The most significant difference between our work
and previous work on amplification is our goals. For
example, for the loss-resilient codes, our final goal is to
design ((~0,. . . , (YA) and (PO, . . . , /3~) so that the average
number of children per node is not too large, the average
number of children for an “OR” gate and for an “AND”
gate satisfies a certain ratio, and for as small as possible
a value .of a and as large as possible a value of b the
critical value of the tree is as close to 1 as possible.

Some of the analyses we present in the paper were
previously done using different methodologies. One
common technique involved modeling the random pro-
cess using differential equations. This type of approach
was pioneered in the analysis of algorithms domain in
by Karp and Sipser, who used it to analyze a greedy
algorithm for matchings in [9]. It has also been used to
analyze the pure literal on random k-SAT formulae [14].
(See also [13, 14, 161 f or references to other uses.) Sim-
ilarly, the analysis of the loss-resilient codes described
in [ll] was done by modeling the random process using
differential equations, solving the equations to obtain
a polynomial, and using a version of Kurtz’s theorem
[lo] to make the connection between the behavior of

requires the same properties from all of these bipartite
graphs, it is enough to consider one generic bipartite
graph in the sequence when describing the encoding and
decoding process and its analysis. Let G be a bipartite
graph with n nodes on the left side, m nodes on the
right side, and e edges in total between the nodes on the
left and the right. We associate one message bit with
each left node and one check bit with each right node.
(This is for simplicity of description; in practice it is
more efficient to associate several bytes of information
with each node.) The encoding process computes the
check bits from the message bits in the obvious way:
the check bit associated with right node w is computed
as the exclusive-or of all the message bits associated
with the neighbors of w.

The entire encoding is transmitted, and we would
like to recover all the message bits from a random
fraction of the entire encoding, where this fraction
is as small as possible. Assume inductively that all
the check bits associated with the right nodes have
already been recovered. Label the left nodes with a
0 if the associated message bit is missing, and with a
1 if the associated message bit has been either received
directly or recovered indirectly as described below. The
decoding process to recover the missing message bits
invokes the following rule as long as it is applicable.

Substitution Recovery Rule: The rule can be ap-

366

plied at any left node v with label 0 that has at least
one right neighbor w such that all the left neighbors of
w excluding v are labeled with a 1. The value of v can
be recovered by computing the exclusive-or of the check
bit associated with w and all the values associated with
neighbors of w excluding v. Since the message bit asso-
ciated with v has been recovered, the label of v is changed
to 1 at this point.

In terms of a graph process, the substitution recov-
ery rule can be written more succinctly as follows:

Graph Substitution Recovery Rule: A left node v
with label 0 is allowed to change its label to a 1 if it has
at least one right neighbor w such that all left neighbors
of w except v have label 1.

The decoding process terminates successfully with
all message bits recovered if and only if the graph
substitution recovery rule ends with no remaining left
nodes with label 0.

2.2 New Analysis of the Original Process

The paper [ll] gave an analysis of the decoding process
described in the previous subsection using differential
equations’to model the process, and then solving these
equations as polynomials. In this subsection, we obtain
the same result using Lemma 1. The advantage of the
analysis here is that it gives direct and intuitive insight
into how the final condition arises. In the following
subsections we show how this new analysis can be used
to derive several additional results.

Let (PO, PI , . . . ,p~) and (qo, ql, . . . , QR) be probabil-
ity vectors. As in [ll], consider choosing a random bi-
partite graph with n left nodes and m right nodes as
follows: each node on the left is chosen to have de-
gree i with probability pi, and each node on the right is
chosen to have degree j with probability pj, where all
choices are made independently. Counting the number
e of edges using the left and the right nodes gives

L R

e=n.
c

ipj = m . c 5l.i.
i=o j=O

A random permutation ?r of { 1, . . . , e} is chosen, and
then, for all i E (1,. . ., e}, the edge with index i out
of the left side is identified with the edge with index pi
out of the right side.

For fixed probability vectors (~0, pl , . . . , pi) and

(QO,Ql,... , QR) and for a fixed constant c > 0, we are
interested in properties of such a graph as n and m = cn
grow to infinity.

Consider the random subgraph GL of this graph
obtained by the following process: choose an edge (v, w)
uniformly at random from among all edges, and then

consider the subgraph Gt induced by the left node v
and all neighbors of v within distance 24 after deleting
the edge (v, w).

We claim that the probability that GL fails to be
a tree is proportional to l/n., i.e., asymptotically this
probability goes to zero as n grows to infinity for
a fixed value of fJ. Furthermore, asymptotically the
distribution on the shape of GL can be described as
follows. For all i = 1 , . . . , L, Xi := ipi/ Efzl jpj is the
probability that a uniformly chosen edge is attached to
a left node of degree i. Similarly, for all i = 1,. . . , R,
Pi = Gil ET=1 j qj is the probability that a uniformly
chosen edge is attached to a right node of degree i.
The asymptotic distribution on the shape of Gl as n
goes to infinity is as described above for a randomly
chosen And-Or tree with the following parameters: the
number of children of an “OR” node is i - 1 with
probability &, for all i = 1,. . . , L; the number of
children of an “AND” node is i - 1 with probability pi,
foralli=l,..., R. Hereafter, we make the assumption
that Gl is a tree and that the distribution on Gl is
the asymptotic distribution. This assumption can be
shown to change the analysis by asymptotically small
quantities, and these changes can be dealt with using an
appropriate martingale argument, see e.g., Section 2.3.

Consider a process where at the start each left node
in the graph is labeled with 0 initially with probability
S, and is labeled with 1 with probability 1 - S. This
corresponds to missing a random fraction 6 of the
message bits. The goal is to eliminate as many as
possible 0 labels according to the graph substitution
recovery rule described in the previous subsection, i.e.,
to recover as many of the missing message bits as
possible using the simple decoding process.

Let us analyze the probability yf that the left node
v of a uniformly chosen edge (v, w) is labeled with 0
considering the process running only on the subgraph
Gl induced by v. (It is clear that v will definitely change
its label to 1 in the process running on the entire graph
if it does so with process running just on GL.) Note that
v obtains the label 1 with respect to G1 if it is either
received directly (with probability l-6)) or if for at least
one of its right neighbors w’ (w # w’), all left neighbors
of w’ excluding v are received directly. Note that v has
i - 1 right children excluding w with probability Xi, and
that for any child w’ of v, WI has i - 1 left children
excluding v with probability pi. Define the polynomials

X(Z) = &Xi . &‘, and
i=l

p(z) = ep’ .2-l.
i=l

367

Then from Lemma 1, yl = 6 . X(1 - p(1 - yl-I)). Using
this equation, the probability that ‘u has label 0 with
respect to Gl can be computed iteratively starting with
the equation ys = 6. We would like that yl goes to 0 as
e grows. This condition will be true if

(2.1) 6 * X(1 - p(l - 2)) < 2

for all z E (0, S]. (B ecaue X and p are continuous and the
yt are decreasing, the limit of the ye is easily shown to be
0 if this condition holds.) This turns out to equivalent
to the condition given in [ll] for this process to end
successfully.

2.3 The Overall Analysis

It is not hard to argue that the process terminates
with all message values successfully recovered with high
probability if the probability that a message bit is not
directly received is S and if Condition (2.1) is fulfilled.
However, the details are somewhat tedious and thus we
only sketch the proof here.

Suppose that X, p, and 6 satisfy Condition (2.1).
Then for any constant 7 > 0 we can set L to a constant
so that yf < 7. If 1 is a constant then the number of
nodes in the graph Gl is also a constant.

We can use this fact and standard martingale
arguments to show that the true fraction of bits not
recovered after e rounds is highly concentrated around
yf. We first utilize an edge exposure martingale to
show that the number of trees of each shape is close
to its expectation with high probability. With this
fact, a vertex exposure martingale that tracks whether
a node is labeled 1 initially or not can be used to
show the strong concentration around yf. Hence the
number of message bits not recovered at the end of the
decoding process is greater than y/n with probability
exponentially small in n, for 7’ M 7.

Then using the expansion properties of the random
graph, which follows from standard combinatorial argu-
ments as outlined in [ll], it is not hard to argue that
if at most 7’n message bits are left recovered then the
decoding process fails to recover more than O(n7”) mes-
sage bits with probability at most inverse polynomial in
n, for some constant 7” < 1. Finally, by a small sup
plement to the graph (adding a few nodes on the right
and having three additional edges out of each node on
the left mapping randomly to these few additional right
nodes), one can see that if the process fails to recover at
most O(n7”) of the message bits in the original graph,
then in the supplemented graph all message bits fail to
be recovered with probability at most inverse polyno-
mial in n. From this it follows that, with high probabil-
ity, when the decoding process terminates all message
bits have been successfully recovered.

2.4 The Dual Inequality

In [ll] a procedure is described for finding (close to)
optimal right probabilities pi, . . . , PR for a given set of
left probabilities Ai, . . . , XL using a linear programming
approach. However, [ll] did not describe how to find
the optimal left probabilities for a given set of right
probabilities. Using Condition (2.1), it is easy to see
how to use the methodology described in [ll] to do
exactly this. In fact, Condition (2.1) is in some sense the
dual of the corresponding condition described in [ll],
which was

(2.2) p(l -8 * X(1 - z)) > t

for all z E (O,l]. It is from Condition (2.2) that [ll]
shows how to find the optimal right probabilities for a
given set of left probabilities. We leave it as an exercise
how to use the And-Or tree analysis to easily derive
Condition (2.2). It turns out that Condition (2.2) can
also be derived from Condition (2.1) using a few simple
algebraic manipulations. We leave this as an exercise as
well.

One advantage of being able to solve for both
the optimal left probabilities for a given set of right
probabilities and the optimal right probabilities for a
given set of left probabilities is that we can invoke
a “back and forth” strategy to get a good pair of
distributions. This strategy consists of starting with
any given set of left and right probabilities with a given
average degree, and then iteratively invoking the “find
the best left for the given right” followed by “find the
best right for the given left”. We have tried this strategy
and it gives good results, although at this point we have
not proved anything about its convergence to a (possibly
optimal) pair of probability distributions.

2.5 Fraction of Left Nodes Unrecovered

The new analysis of the decoding process also yields ex-
tensions that help to overcome other practical problems
in the design of loss-resilient codes. In the original anal-
ysis it is assumed inductively that all the check bits are
received when trying to recover the message bits. The
reason we made this assumption is that in the original
construction the cascading sequence of bipartite graphs
is completed by adding a standard loss-resilient code at
the last level.

There are some practical problems with this. One
annoyance is that it is inconvenient to combine two
different types of codes. A more serious problem is
that standard loss-resilient codes take quadratic time to
encode and decode. Suppose the message is stretched
to an encoding twice its length. In order to have the
combined code run in linear time, this implies that the
last graph in the cascading sequence has fi left nodes,

368

where n is the number of nodes associated with the
original message, i.e., there are log(n)/2 graphs in the
sequence. In the analysis, we assume that an equal
fraction of the nodes in each level of the graph are
received. However, there is variance in this fraction at
each level, with the worst expected fractional variance
at the last level of l/i/51. Thus, if a message of length
65,536 is stretched to an encoding of length 131,072,
then just because of the variance of l/i/Fi = 0.063, we
expect to have to receive 1.063 times the message length
of the encoding in order to recover the message.

A solution to this problem is to use many fewer
levels of graphs in the cascade, and at the last level
also use a random graph in place of a standard loss
resilient code. We have tried this idea, with the last
graph chosen from an appropriate distribution, and it
works quite well. For example, using only three levels
of graphs we can reliably recover a message of length
65,536 from a random portion of length 67,700 (i.e.,
1.033 times the optimal of 65,536) of an encoding of
length 131,072.

the graph until it is in practice able to recover all of
the first (message) layer. That is, the constant fraction
left unrecovered is so small that in practice all nodes
corresponding to the message are recovered.

Given the fractions of left nodes pi and right nodes
qi of degree i for all i, X(z) and p(z) can be easily de-
rived, and then the largest value x* for which Condi-
tion (2.4) is valid can be computed. We show here how
to compute the fraction of unrecovered nodes on the left
at this final value z* .

The value of z* has a natural interpretation, i.e., it
is the fraction of edges (v, w) for which all of the left
neighbors of ‘UI, excluding u, have label 1 at the end of
the process. Thus; this is the fraction of edges (v, w)
which could cause v to receive the label 1, assuming
that w is directly received. Define

L

p(X) = Cp’ . Xi.
i=O

To design the graph for this solution, we need to
analyze the decoding process when a random portion of
both the message bits and the check bits are missing.
With the And-Or tree analysis, this is straightforward.
Recall the terminology established in Subsection 2.2.
Suppose that a random fraction 6 of the message bits
are not received directly and a random fraction 6’ of the
check bits are not received directly. The generalization
of Condition (2.1) for this case when there are losses
on both sides is that the process terminates in a state
where a uniformly chosen edge is adjacent to a left node
with a missing message bit with probability at most y
if

P-3) 6 * X(1 - (1 - 6’) . p(l - z)) < 2

for all 2 E (-y,J].

From this interpretation, it can be seen that the fraction
of unrecovered left nodes at the termination of the
process is

6. p(l - (1 - a’)%*).

This is because y = 1 - (l-8)2* is the fraction of edges
(v, w) which cannot help to recover v. Thus, a left node
v of degree i is not recovered at the end with probability
S (its original missing probability) times y’, and there
is a pi fraction of such left nodes.

3 Pure Literal Analysis

The more general version of Condition (2.2), when
a fraction 6’ of the right nodes are missing, is

(24 p(l - 6. X(1 - (1 - 6’)t)) > 2

The Condition (2.4) is not possible to satisfy for all
I: E (0, l] if 6’ > 0, for any value of S. This is
because there is a constant probability that all the right
neighbors of a missing left node are also missing, e.g.,
if the left node has degree d then the probability is Std.
However, it turns out to be an interesting question to
see what fraction of the left nodes can be recovered
when a fraction 6’ of the right nodes are missing. The
answer to this question can be used to design cascading
codes where the decoding process moves from right to
left bootstrapping up to recover a higher and higher

In this section, we consider a simple heuristic, called
the pure literal rule, for finding a satisfying truth
assignment to a boolean formula. The behavior of
the pure literal rule has been studied previously with
respect to randomly chosen L-SAT formulae ([5, 141).
(See also [7] for related results using more sophisticated
heuristics.) Here, we show how the tree analysis gives a
direct explanation of the behavior of the pure literal rule
for a randomly chosen k-SAT formula with respect to
the same distributions considered in [5] and [14]. With
this new analysis, it is also straightforward to analyze
distributions that were not previously considered and
which would be much harder to analyze using previous
techniques applied to this problem.

A B-SAT formula F with m clauses on n variables
{Xl,...,Xn} consists of m clauses Ci, . . . , C,,,, each
clause containing exactly k of the 2n possible literals

A:={Xl,X1,...) Xn,Xn}.

Then the formula F is the “AND” of the m clauses, and
fraction of nodes at each successive decoded layer of each clause is the “OR” of the k literals it contains, i.e.,

369

for any O/l assignment to the variables, F evaluates to with the same label with probability qi, and the distri-
1 if and only if in each clause there is at least one literal bution is the same for both possible labels. Counting
that has value 1 with respect to the assignment. The the number e of edges using the left and the right nodes
most widely studied distribution on F is the uniform gives
distribution. For fixed value of k, m, n the uniform R
distribution on choosing a formula F can be described e=m
as follows: for each i E { 1,. . . , m} and for each j E

-Cjpj =2n*~ig.
j=O i=o

{l,...,kl, each of the 2n possible literals is chosen with
equal probability to be the jth literal in clause Ci.

The pure liteml rule heuristic for finding a satisfy-
ing assignment consists of repeated application of the
following:

Pure Literal Rule: While there is a literal Z E A that
appears in zero clauses, remove all clauses containing
the negation .%? of 2, assign ,?? the value 1 (and thus 2’
is assigned 0), and remove both Z and .!? from A.

The problem of interest is to study the asymptotic
behavior of the pure literal rule with respect to uni-
formly chosen k-SAT formulae for a fixed value of k,
and for a fixed ratio c = m/n of the number of clauses
to the number of variables, as the number of variables
n grows to infinity. The more particular question is for
which values of k and c will the pure literal rule almost
surely (with respect to a uniformly chosen formula F)
find an assignment which makes F evaluate to 1 as n
goes to.infinity.

Similar to the loss-resilient codes, we can describe
the structure of the formula F as a bipartite graph,
only in this case the edges are labeled. There are n
right nodes in the graph corresponding to the variables,
and there are m left nodes corresponding to the clauses.
There is an edge labeled “+” from variable X to all
clauses that contain X, and there is an edge labeled
“_,, from variable X to all clauses that contain X.

One can describe the behavior of the pure literal
rule on this graph. The pure literal rule is equivalent
to repeated application of the following process on this
graph:

Graph Pure Literal Rule: Zf there is a variable X
such that all edges touching X have the same label (ei-
ther all “+ ’ or all “- “) then delete X, all neighboring
clauses of X, and all edges touching any of these nodes.

The pure literal rule finds an assignment that
satisfies the formula if and only if there are no remaining
right nodes after all possible applications of this process
have been made.

We describe a general way of choosing a random
formula F in the terminology of bipartite graphs. Let
(PO,Pl, * *. ,PL) and (me,. . ., qn) be probability vec-
tors. Suppose each clause chooses independently to have
degree j with probability pj. Suppose each variable X
chooses independently to have i edges attached to it

A random permutation 1~ of { 1, . . . , e} is chosen, and
then, for all i E (1,. . . , e}, the edge with index i out
of the left side is identified with the edge with index ni
out of the right side.

For the special case of the uniform distribution on k-
SAT, each clause has degree k, and the number of edges
with the same label out of each variable (corresponding
to the number of appearances of the corresponding lit-
eral in clauses) is asymptotically distributed according
to the Poisson distribution with mean 0 = km/2n as n
goes to infinity, i.e., the probability that a particular lit-
eral appears in i clauses is asymptotically exp(f9) . ~9’/6!.

Consider the random subgraph GL of this graph ob-
tained as follows: choose an edge uniformly at random
from among all edges, and suppose it is an edge between
clause C and variable X with label * E {+, -}. Con-
sider the subgraph Gl obtained by the following search.
Consider variable X to be at the zeroth level of the
search. Follow all the edges out of X with the opposite
label of *. This leads to a first level of clause nodes. Let
C’ be one of the clauses at the first level. Follow all edges
out of C’ except the edge that led into Ct. This leads to
a second level of variable nodes. Let *’ E {+, -} be the
label of an edge from C’ to some variable X’. Follow
all the edges out of X’ with the opposite label of *I. In
a similar pattern, continue this breadth first search out
to level 24.

As was the case for the loss-resilient codes, Gl is
a tree with high probability for a fixed value of e as
n goes to infinity. Furthermore, asymptotically the
distribution on the shape of Gl can be described ss
follows. For all i = 1 , . . . , L, let Xi = ipi/CtZ1 jpj be
the probability that a uniformly chosen edge is attached
to a clause node of degree i. For all i = 0,. . . , R,
let pi = qi be the probability that a uniformly chosen
edge is attached to a variable node with i edges of the
opposite label attached. Then the distribution on the
shape of Gl is as described above for a randomly chosen
And-Or tree with the following parameters: the number
of children of a clause node is i - 1 with probability Xi,
foralli= l,..., L. The number of children of a variable
node is i with probability pi, for all i = 0, . . . , R.

Consider the following labeling process of the nodes
in the tree Gl that starts at the leaves at level 21 and
works up towards the root at level 0. A leaf variable
node is labeled with a 1 if and only if it would have

370

no descendants if the tree were extended one additional
level. An internal variable node is labeled with a 1 if
and only if it either has no direct descendants or else
they are all labeled with a 1. A clause node is labeled
with a 1 if and only if at least one direct descendant is
labeled with a 1. It can be checked that if the root node
receives the label 1 then the pure literal rule will give
that variable an assignment.

Let ye be the probability that the root node of Ge
will receive the label 1 by the above labeling process.
Define the polynomials

L

X(z) = CXi . xi-’ and
i=l

p(z) = & .zi.

i=o

From Lemma 1 it follows that this can be expressed as

Ye = p(1 - X(1 - Ye-l))

In order for the pure literal rule to end with a com-
plete assignment that satisfies the formula, we want all
variables to disappear from the formula, or equivalently,
receive the label 1. This means that we want

(34 PP - Xl - Y)) > Y

for all y in the range [PO, 1) (Note that ys = ~0.)
For a uniformly chosen k-SAT formula we have

X(z) = P-1 and p(z) = exp(e(x - l)), where 0 = kc/2.
For a specific k we can easily determine the threshold
value c for which (3.5) is satisfied. In particular, for
k = 3 we obtain the value c - 1.63. This result has
been found previously by [5] and [14] using a different
approach. The advantage of the tree analysis approach
employed in this paper is that, with little additional
difficulty, it is easily possible to analyze substantially
different distributions for choosing the formula, merely
by establishing the proper functions p(x) and X(z).

It requires some additional technical work, as in
Section 2.3, to prove that if (3.5) is satisfied then the
pure literal rule finds a solution with high probability.
Specifically, we need an expansion based argument like
that given in [5, Lemma 4.41 to show that once all but
a constant fraction of the literals are assigned values,
the process must complete with high probability. Also,
technically we have only proven one direction, namely
that the pure literal rule finds a solution is (3.5) is
satisfied. In fact we can also show that if (3.5) is not
satisfied, that is if c is chosen larger than the threshold,
then with high probability the pure literal rule does

require using the differential equations based approach,
as our tree-based approach only shows that there is
a witness for the satisfiability of a random formula
with high probability. (See, for example, the discussion
in [16], or the proof of [9, Theorem 91.) Intuitively,
however, it is clear that as long as the limiting behavior
of ye behaves properly, this methodology finds the
correct threshold.

4 Greedy Matching Analysis

In the paper [9], the analysis of a simple and fast heuris-
tic for finding matchings was described and analyzed
with respect to randomly chosen graphs. (This analy-
sis has since been extended in [3].) The tree approach
provides an analysis of what they call “Phase 1”; in
fact, Karp and Sipser provide an argument based on a
similar tree argument. The details are similar to, but
somewhat different than, those presented above to an-
alyze the loss-resilient codes. As mentioned above, the
advantage of the tree analysis is that it can be adopted
to analyze a variety of distributions on the graph with
little additional effort.

The first phase of [9] is a greedy matching algorithm
in a random graph. The basic step of the first phase of
their algorithm is the following.

Greedy Matching Step: Find a node v of degree one
in the graph; match it to its unique neighbor w; remove
v, w, and all edges touching either v or w, from the
graph.

This matching step is applied iteratively until there
are no degree one nodes in the graph. The basic
quantity of interest is the expected number of edges
in the matching produced by this phase in a random
graph.

In the work of [9], this basic quantity is analyzed
with respect to a random graph with n nodes chosen
as follows: each edge is chosen to exist with probability
0/(n-1) independently of all other edges. Using the tree
approach, we can easily generalize this to the following.

Let (PO,PI,. . . , pi) be a probability vector. Each node
is chosen to have degree i with probability pi. The
distribution analyzed by [9] is the special case where
pi = exp(-0)(0)‘/a’!.

Once the graph is fixed, the edges in the matching
produced by repeated application of the greedy match-
ing step described above depend on the order in which
the nodes are chosen. Nevertheless, it is clear that the
size of the matching produced by repeated application
of the greedy matching step does not depend on this or-
dering. To be able to analyze the size of the matching,
we now describe an order invariant labeling process on

not find a solution. Unfortunately, doing so appears to the graph which will be used to analyze the matching

371

process.
For each edge (v, w) in the graph, we form directed

edge (21, w) pointing from PI to w and directed edge (w, V)
pointing from w to v. The process labels each directed
edge with one of the three symbols {?,O, 1). Initially,
each directed edge is labeled with ?. The labeling
process consists of repeated application of either one of
the two cases in the greedy labeling step until no more
applications are possible.

Greedy Labeling Step:

l Label directed edge (v, w) with a 1 if all (possibly
zero) directed edges pointing out of w excluding
directed edge (w, v) are labeled 0.

l Label directed edge (v, w) with a 0 if at least one
directed edge pointing out of w excluding directed
edge (w, v) is labeled 1.

The key point is that there is the following cor-
respondence between directed edges with label 1 and
the matching produced by any execution of the greedy
matching process.

l If directed edge (v, w) is labeled 1 and the reverse
directed edge (w, v) is also labeled 1 then edge
(v, w) is in the matching for every execution of the
greedy matching process.

l For all k 2 1, if there are k directed edges labeled
1 pointing out of a node then in every execution of
the greedy matching process exactly one of these
k edges (considered as undirected edges) is in the
matching.

l For every execution of the greedy matching process,
for each edge (v, w) in the matching produced by
the execution, at least one the directed edges (v, w)
and (w,~) is labeled 1.

From this, we can calculate the size of the matching
produced by any execution of the greedy matching
process as follows. Let M be the set of directed edges
labeled 1 for which the reverse directed edge is also
labeled 1. For all k: 2 2, let Nk be the set of directed
edges labeled 1 that are pointing out of a node w such
that w has in total k directed edges labeled 1 pointing
out of it. Then the size of the matching is exactly

We first justify the Cf=, INkl/k terms in (4.6).
Consider a node v with k 2 2 directed edges with label
1 pointing out of it. Note that there cannot be any

directed edges with label 1 pointing into v. Thus the
directed edges in M and Nk for k 2 2 are disjoint.
Furthermore, the k directed edges labeled 1 pointing out
of v are all in Nk , and there is exactly one corresponding
matched edge in any execution of the greedy matching
process. These k edges contribute k/k = 1 as required
to these terms.

We now justify the INil - IM1/2 terms in (4.6).
Consider a node v with exactly one directed edge (v, w)
with label 1 pointing out of it. Then the edge (v, w)
is in the matching produced by the greedy matching
process, and the total contribution to the size of the
matching should be 1. There are two cases to consider,
depending on whether directed edge (w, v) is labeled 1
or not. Suppose (w, v) is not labeled 1. Then neither
(v, w) nor (w, v) is in M, and only (v, w) is in Ni. These
two directed edges contribute 1 - O/2 = 1 to (4.6), as
required. Suppose (w, v) is labeled 1. Then both (v, w)
and (w, v) are in both M and Ni. These two directed
edges contribute 2 - 2/2 = 1 to (4.6), as required.

The strategy now is to first estimate the probability
that a uniformly chosen directed edge is labeled 1 by the
greedy labeling process, and then to use this probability
to estimate the size of the matching produced by the
greedy matching algorithm based on the observations
just made. As in the analysis of loss-resilient codes, we
are interested in properties of such a graph as n grows to
infinity. Also as before, it turns out that it is easiest to
analyze the properties by considering a randomly chosen
edge from the graph. Fix a directed edge (v, w) in the
graph, and let GL(v, w) be the subgraph induced by
the edge (v, w) and all neighbors of w reachable within
distance 2L, following the rule that if node w’ is reached
using directed edge (v’, w’) then the reverse edge (w’, v’)
is not used. As was true for the loss-resilient code
analysis, the probability that GL(v, w) fails to be a

directed tree for a uniformly chosen edge (v, w) of the
graph is proportional to l/n, i.e., asymptotically this
probability goes to zero as n grows to infinity for a fixed
value of e. Furthermore, asymptotically the distribution
on the shape of GL(v, w) for uniformly chosen (v, w)
can be described aa follows. For all i = l,...,L,
Xi := ipi/ xTZ1 jpj is the probability that a uniformly
chosen edge is attached to a node of degree i. Each
node in the tree GL(v, w) at distance less than 2e from
the root has i - 1 children with probability Xi, for all
i=l ,“‘> L.

Consider the following labeling process on the di-
rected edges of tree GL(v, w). The tree labeling process
starts with all nodes labeled ?, and then works up from
the leaves towards the root. Each directed edge (v’, w’)
pointing to a leaf node WI at distance 2& from w is la-
beled with a 1 if there is no directed edge other than

372

the reverse edge (w’,v’) pointing out of w’ in the en-
tire graph. The labeling of the rest of the tree, and the
directed edge (v, w), works according to the greedy la-
beling step described previously. The difference between
the tree labeling and the greedy labeling process is that
the tree labeling makes a decision to label a leaf with
a 1 only in the case when the leaf has no other edges
attached to it, whereas in the greedy labeling process
the leaf may also receive the label 1 when the leaf has
degree greater than 1 in the original graph.

It is not hard to verify that if the directed edge
(v, w) receives the label 1 in the tree labeling of GL(v, UJ)
then it receives the label 1 in the greedy labeling process.
Although the reverse is not true, the claim is that as
e grows, the probability of these two events approach
one another. More formally, let z be the probability
that a uniformly chosen directed edge receives the label
1 in the greedy labeling process on a randomly chosen
graph. Let yl be the probability that a uniformly chosen
directed edge (v, w) receives the label 1 in the tree
labeling of GL(v, w). It is clear that z 2 ?/L for all 1.
We claim that yl approaches P as 1 grows; however, the
only justificrrtion we currently know for this relies on
the differential equation approach. (See Theorem 9 of
[9].) We assume that this is the case hereafter.

Let, us analyze the probability yt that a uniformly
chosen directed edge (v, TN) is labeled with 1 in the tree
labeling of Gl(v, w). As before, define the polynomial

A(z) = kXi .2--l.
i=l

Then from Lemma 1 and the description of the process,
yf = X(1 - X(1 - ~1-1)). Using this equation, the yl
can be computed iteratively starting with the equation

Yo = Xl.

Let y be the asymptotic limit of yf as f! grows.
We need a couple of additional observations in order
to be able to compute the expected size of the matching
returned by the greedy matching process as a function
of y. The observations are that asymptotically, as n
goes to infinity:

l The labels received by a given set of directed edges
pointing out of a particular node are independent
of one another.

l The labels of a given directed edge and its reverse
directed edge are independent of one another.

From these observations, we can conclude that the
probability a randomly chosen directed edge is in Nk

Furthermore, the probability a randomly chosen di-
rected edge is in M is 9. Thus, the expected size of
the matching produced by the greedy algorithm is equal
to the expected number of directed edges in the graph
times

L

c ak/k - Y2/2.

k=l

5 Acknowledgements

The second author thanks Alan Frieze for the references
to [16] and [3], and thanks Alan Frieze and Andrei
Broder for several useful discussions.

References

PI

PI

PI

[41

[51

PI

[71

PI

PI

[W

Pll

WI

N. AIon, J. Edmonds, M. Luby, “Linear Time Erasure
Codes With Nearly Optimal Recovery”, Proc. of the
36th Annual Symp. on Foundations of Computer Sci-
ence, 1995, pp. 512-519.
N. Alon, M. Luby, “A Linear Time Erasure-Resilient
Code With Nearly Optimal Recovery”, IEEE Tmns-
actions on Information Theory (special issue devoted
to coding theory), Vol. 42, No. 6, November 1996,
pp. 1732-1736.
J. Aronson, A. %eze, B. G. Pittel, “Maximum Match-
ings in Sparse Random Graphs: Karp-Sipser revisited”,
preprint.
R. Boppana, “Amplification of probabilistic Boolean
formulas”, Advances in Computer Research, Vol. 5:
Randomness and Computation, JAI Press, Greenwich,
CI, 1989, pp. 27-45.
A. Broder, A. Frieze, E. UpfaI, “On the Satisfiabiity
and Maximum SatisfiabiIity of Random 3-CNF Formu-
las”, Proc. of the 4th ACM-SIAM Symp. on Discrete
Algorithms, 1993, pp. 322-330.
M. Dubiner, U. Zwick, “Amplification by Read-Once
Formulas”, Siam J. on Computing, Vol. 26, No. 1, Feb.
1997, pp. 15-38.
A. tieze, S. Suen, “Analysis of Two Simple Heuristics
on a Random Instance of k-SAT”, J. of Algorithms,
Vol. 20, 1996, pp. 312355.
R. G. Gallager, Low-Density Parity-Check Codes,
MIT Press, 1963.
R. Karp, M. Sipser, “Maximum Matchings in Sparse
Random Graphs”, FOCS, 1981, pp. 364-375.
T.G. Kurtz, Approximation of Population Pro-
cesses, CBMS-NSF Regional Conf. Series in Applied
Math, SIAM, 1981.
M. Luby, M. Mitzenmacher, M. A. ShokroIlahi,
D. Spielman, V. Stemann, “Practical Loss-Resilient
Codes”, Proc. 2gth Symp. on Theory of Computing,
1997, pp. 150-159.
M. Luby, M. Mitzenmacher, M. A. ShokroIIahi, D.
Spielman, “Analysis of Low Density Codes and Im-
proved Designs using Irregular Graphs”, submitted to
STOC 1998.

373

[13] M. Mitzenmacher, Ph.D. thesis. University of Califor-
nia, Berkeley, 1996.

[14] M. Mitzenmacher, “Tight Thresholds for the Pure
Literal Rule”, DEC/SRC Technical Note 1997-011,
June 1997.

[15] E. Moore, C. Shannon, “Reliable Circuits Using Less
Reliable Relays”, .I. Franklin Inst., 262, 1956, pp. 191-
208 and 281-297.

[16] B. Pittel, J. Spencer, N. Wormald, “Sudden Emergence
of a Giant k-Core in a Random Graph”, J. of Combi-
natorial Theory, Series B, 67, 1996, pp. 111-151.

[17] L. G. Valiant, “Short Monotone Formulae for the
Majority Function”, J. of Algorithms, Vol. 5, 1984,
pp. 363-366.

