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Abstract distributions not considered by previous analyses. 
We introduce a new set of probabilistic analysis tools 
based on the analysis of And-Or trees with random in- 
puts. These tools provide a unifying, intuitive, and pow- 
erful framework for carrying out the analysis of several 
previously studied random processes, including random 
loss-resilient codes, solving random L-SAT formulae us- 
ing the pure literal rule, the greedy algorithm for match- 
ings in random graphs. In addition, these tools allow 
generalizations of these problems not previously ana- 
lyzed to be analyzed in a straightforward manner. We 
illustrate our methodology on the three problems listed 
above. 

1 Introduction 

We introduce a new set of probabilistic analysis tools 
related to the amplification method introduced by [15] 
and further developed and used in [17, 61. These 
tools provide a unifying, intuitive, and powerful frame- 
work for carrying out the analysis of several previously 
studied random processes, including the random loss- 
resilient codes introduced in [ll], the greedy algorithm 
for matchings in random graphs studied in [9], the 
threshold for solving random k-SAT formulae using the 
pure literal rule [5], the emergence of a giant k-core [16], 
and error-correcting codes introduced in [8, 121. In ad- 
dition, generalizations of these problems not previously 
analyzed can now be analyzed in a straightforward man- 
ner. For example, we can analyze generalizations of the 
loss-resilient codes considered in [ll] where the goal is 
to recover a certain fraction of the message packets. As 
another example, we can analyze the behavior of the 
pure literal rule on random SAT formulae chosen from 
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Our main tool is a simple analysis of the probability 
an And-Or tree formula evaluates to 1. The simple 
version of this And-Or tree evaluation problem is the 
following. Let TL be a tree of depth 2e with each leaf 
node labeled with either 0 or 1. (The root of the tree is 
at depth 0, and the leaves are at depth 2f!.) Each node 
at depth 0,2,4 ,..., 2t! - 2 is labeled as an “OR” gate 
(and it evaluates to the “OR” of its children), and each 
node at depth 1,3,5,. . . , 21- 1 is labeled ss an “AND” 
gate (and it evaluates to the “AND” of its children). We 
say the tree is (do&&-regular if each “OR” node has 
do, children and each “AND” node has d,d children. 

Our analysis is related to the study of amplification, 
initiated by Moore and Shannon [15], and continued in 
several works [17, 61. Consider the probability that the 
root of Tl evaluates to 0 when the value of each leaf is 
independently chosen to be 0 with probability p. Let us 
denote this probability aa yl. One typical amplification 
question with respect to And-Or trees is whether or not 
there is a threshold phenomenon, i.e., is there a critical 
value 4 such that if p > 4 then ye goes to 1 as .fY goes 
to infinity and if p < 4 then as yl goes to 0 as 1 goes to 
infinity. Of primary interest in these studies is the rate 
of amplification, i.e., the rate at which yl goes to either 
0 or 1 as a function of e. 

One work that uses exactly this type of analysis 
is the elegant randomized construction, given in [17], 
of a polynomial size monotone boolean formula that 
computes the majority function. The basic idea behind 
the construction and proof exploits the fact that a 
(2,2)-regular And-O r t ree has a critical value of 4 = 
(3 - &)/2, and that if ye-1 = 4 + c then yl > 4 + cc 
for a constant c > 1. (Analogously, if yl-i = 4 - e, 
then yl < 4 - cc.) In further work, [4] and [S] provide 
beautiful proofs that the construction size of [17] is 
optimal, this time using amplification analysis to prove 
a lower bound. This type of analysis has also been noted 
se a possible attack for specific random graph problems, 
including the greedy matching algorithm of [9] and the 
emergence of the k-core [16]. 

Our work has a similar spirit to this previous work, 
but it differs in several ways. We generalize to allow the 
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number of children of each node to vary in the following the random process and that of the polynomial. One 
way. Let (ao,Ql, . . ., a~) be a probability vector, i.e., of the ingredients lacking in the previous analysis of 
ai > 0 for all i E (0,. . .,A} and ct=,ai = 1. these codes was a simple intuitive connection between 
Similarly, let (PO, & , . . . ,/3~) be a probability vector. the polynomial solution and the original process. With 
Starting at the root and working down the tree, each the new analysis, this intuitive connection is direct and 
“OR” node chooses to have i children with probability compelling. In addition, the new tools can be easily 
(pi independent of any other node, and similarly each used to analyze important generalizations of the origi- 
“AND” node choose to have j children with probability nal process, which would have been much more difficult 
pj independent of any other node. (Some previous using the previous analysis. Finally, the simplicity and 
research, e.g., [6], introduced a variant of this form generality of the new analysis will undoubtably lead to 
and used it in a limited way in their construction.) A a number of other applications. We do note, however, 
further generalization is to allow two positive values a that the differential equations approach can lead to a 
and b such that each “OR? node is independently short much more sophisticated analysis of the underlying pro- 
circuited to produce the value 1 with probability a, and cesses (see, for example, [16] or [3]). Hence we believe 
each “AND” node is independently short circuited to our analysis tools will prove most useful in conjunction 
produce the value 0 with probability b. with differential equations. 

Our new analysis is based on the following simple 
definitions and lemma. Define 

In the next three sections, we apply Lemma 1 to 
the analysis of loss-resilient codes, the pure literal rule 
for random B-CNF formula, and the greedy matching 
algorithm for random graphs. 

i=o 

p(z) = &lj * xi, 
i=o 

f(x) = (1 -a) .a(1 - (1 -b) ./3(1-z)). 

2 Loss-Resilient Code Analysis 

2.1 Essentials of the Codes 

The codes described in [ll] consist of a cascading 
sequence of random bipartite graphs. Because the code 

LEMMA 1. Define yo = p to be the probability a leaf 
node is labeled 0. Then for all e 2 1, yf = f(yl-1). 
Although this lemmais simple to prove (in fact,, we leave 
it as an exercise), as we shall see it is quite powerful. 

The most significant difference between our work 
and previous work on amplification is our goals. For 
example, for the loss-resilient codes, our final goal is to 
design ((~0,. . . , (YA) and (PO, . . . , /3~) so that the average 
number of children per node is not too large, the average 
number of children for an “OR” gate and for an “AND” 
gate satisfies a certain ratio, and for as small as possible 
a value .of a and as large as possible a value of b the 
critical value of the tree is as close to 1 as possible. 

Some of the analyses we present in the paper were 
previously done using different methodologies. One 
common technique involved modeling the random pro- 
cess using differential equations. This type of approach 
was pioneered in the analysis of algorithms domain in 
by Karp and Sipser, who used it to analyze a greedy 
algorithm for matchings in [9]. It has also been used to 
analyze the pure literal on random k-SAT formulae [14]. 
(See also [13, 14, 161 f or references to other uses.) Sim- 
ilarly, the analysis of the loss-resilient codes described 
in [ll] was done by modeling the random process using 
differential equations, solving the equations to obtain 
a polynomial, and using a version of Kurtz’s theorem 
[lo] to make the connection between the behavior of 

requires the same properties from all of these bipartite 
graphs, it is enough to consider one generic bipartite 
graph in the sequence when describing the encoding and 
decoding process and its analysis. Let G be a bipartite 
graph with n nodes on the left side, m nodes on the 
right side, and e edges in total between the nodes on the 
left and the right. We associate one message bit with 
each left node and one check bit with each right node. 
(This is for simplicity of description; in practice it is 
more efficient to associate several bytes of information 
with each node.) The encoding process computes the 
check bits from the message bits in the obvious way: 
the check bit associated with right node w is computed 
as the exclusive-or of all the message bits associated 
with the neighbors of w. 

The entire encoding is transmitted, and we would 
like to recover all the message bits from a random 
fraction of the entire encoding, where this fraction 
is as small as possible. Assume inductively that all 
the check bits associated with the right nodes have 
already been recovered. Label the left nodes with a 
0 if the associated message bit is missing, and with a 
1 if the associated message bit has been either received 
directly or recovered indirectly as described below. The 
decoding process to recover the missing message bits 
invokes the following rule as long as it is applicable. 

Substitution Recovery Rule: The rule can be ap- 
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plied at any left node v with label 0 that has at least 
one right neighbor w such that all the left neighbors of 
w excluding v are labeled with a 1. The value of v can 
be recovered by computing the exclusive-or of the check 
bit associated with w and all the values associated with 
neighbors of w excluding v. Since the message bit asso- 
ciated with v has been recovered, the label of v is changed 
to 1 at this point. 

In terms of a graph process, the substitution recov- 
ery rule can be written more succinctly as follows: 

Graph Substitution Recovery Rule: A left node v 
with label 0 is allowed to change its label to a 1 if it has 
at least one right neighbor w such that all left neighbors 
of w except v have label 1. 

The decoding process terminates successfully with 
all message bits recovered if and only if the graph 
substitution recovery rule ends with no remaining left 
nodes with label 0. 

2.2 New Analysis of the Original Process 

The paper [ll] gave an analysis of the decoding process 
described in the previous subsection using differential 
equations’to model the process, and then solving these 
equations as polynomials. In this subsection, we obtain 
the same result using Lemma 1. The advantage of the 
analysis here is that it gives direct and intuitive insight 
into how the final condition arises. In the following 
subsections we show how this new analysis can be used 
to derive several additional results. 

Let (PO, PI , . . . ,p~) and (qo, ql, . . . , QR) be probabil- 
ity vectors. As in [ll], consider choosing a random bi- 
partite graph with n left nodes and m right nodes as 
follows: each node on the left is chosen to have de- 
gree i with probability pi, and each node on the right is 
chosen to have degree j with probability pj, where all 
choices are made independently. Counting the number 
e of edges using the left and the right nodes gives 

L R 

e=n. 
c 

ipj = m . c 5l.i. 
i=o j=O 

A random permutation ?r of { 1, . . . , e} is chosen, and 
then, for all i E (1,. . ., e}, the edge with index i out 
of the left side is identified with the edge with index pi 
out of the right side. 

For fixed probability vectors (~0, pl , . . . , pi) and 

(QO,Ql,... , QR) and for a fixed constant c > 0, we are 
interested in properties of such a graph as n and m = cn 
grow to infinity. 

Consider the random subgraph GL of this graph 
obtained by the following process: choose an edge (v, w) 
uniformly at random from among all edges, and then 

consider the subgraph Gt induced by the left node v 
and all neighbors of v within distance 24 after deleting 
the edge (v, w). 

We claim that the probability that GL fails to be 
a tree is proportional to l/n., i.e., asymptotically this 
probability goes to zero as n grows to infinity for 
a fixed value of fJ. Furthermore, asymptotically the 
distribution on the shape of GL can be described as 
follows. For all i = 1 , . . . , L, Xi := ipi/ Efzl jpj is the 
probability that a uniformly chosen edge is attached to 
a left node of degree i. Similarly, for all i = 1,. . . , R, 
Pi = Gil ET=1 j qj is the probability that a uniformly 
chosen edge is attached to a right node of degree i. 
The asymptotic distribution on the shape of Gl as n 
goes to infinity is as described above for a randomly 
chosen And-Or tree with the following parameters: the 
number of children of an “OR” node is i - 1 with 
probability &, for all i = 1,. . . , L; the number of 
children of an “AND” node is i - 1 with probability pi, 
foralli=l,..., R. Hereafter, we make the assumption 
that Gl is a tree and that the distribution on Gl is 
the asymptotic distribution. This assumption can be 
shown to change the analysis by asymptotically small 
quantities, and these changes can be dealt with using an 
appropriate martingale argument, see e.g., Section 2.3. 

Consider a process where at the start each left node 
in the graph is labeled with 0 initially with probability 
S, and is labeled with 1 with probability 1 - S. This 
corresponds to missing a random fraction 6 of the 
message bits. The goal is to eliminate as many as 
possible 0 labels according to the graph substitution 
recovery rule described in the previous subsection, i.e., 
to recover as many of the missing message bits as 
possible using the simple decoding process. 

Let us analyze the probability yf that the left node 
v of a uniformly chosen edge (v, w) is labeled with 0 
considering the process running only on the subgraph 
Gl induced by v. (It is clear that v will definitely change 
its label to 1 in the process running on the entire graph 
if it does so with process running just on GL.) Note that 
v obtains the label 1 with respect to G1 if it is either 
received directly (with probability l-6)) or if for at least 
one of its right neighbors w’ (w # w’), all left neighbors 
of w’ excluding v are received directly. Note that v has 
i - 1 right children excluding w with probability Xi, and 
that for any child w’ of v, WI has i - 1 left children 
excluding v with probability pi. Define the polynomials 

X(Z) = &Xi . &‘, and 
i=l 

p(z) = ep’ .2-l. 
i=l 
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Then from Lemma 1, yl = 6 . X( 1 - p( 1 - yl-I)). Using 
this equation, the probability that ‘u has label 0 with 
respect to Gl can be computed iteratively starting with 
the equation ys = 6. We would like that yl goes to 0 as 
e grows. This condition will be true if 

(2.1) 6 * X(1 - p(l - 2)) < 2 

for all z E (0, S]. (B ecaue X and p are continuous and the 
yt are decreasing, the limit of the ye is easily shown to be 
0 if this condition holds.) This turns out to equivalent 
to the condition given in [ll] for this process to end 
successfully. 

2.3 The Overall Analysis 

It is not hard to argue that the process terminates 
with all message values successfully recovered with high 
probability if the probability that a message bit is not 
directly received is S and if Condition (2.1) is fulfilled. 
However, the details are somewhat tedious and thus we 
only sketch the proof here. 

Suppose that X, p, and 6 satisfy Condition (2.1). 
Then for any constant 7 > 0 we can set L to a constant 
so that yf < 7. If 1 is a constant then the number of 
nodes in the graph Gl is also a constant. 

We can use this fact and standard martingale 
arguments to show that the true fraction of bits not 
recovered after e rounds is highly concentrated around 
yf. We first utilize an edge exposure martingale to 
show that the number of trees of each shape is close 
to its expectation with high probability. With this 
fact, a vertex exposure martingale that tracks whether 
a node is labeled 1 initially or not can be used to 
show the strong concentration around yf. Hence the 
number of message bits not recovered at the end of the 
decoding process is greater than y/n with probability 
exponentially small in n, for 7’ M 7. 

Then using the expansion properties of the random 
graph, which follows from standard combinatorial argu- 
ments as outlined in [ll], it is not hard to argue that 
if at most 7’n message bits are left recovered then the 
decoding process fails to recover more than O(n7”) mes- 
sage bits with probability at most inverse polynomial in 
n, for some constant 7” < 1. Finally, by a small sup 
plement to the graph (adding a few nodes on the right 
and having three additional edges out of each node on 
the left mapping randomly to these few additional right 
nodes), one can see that if the process fails to recover at 
most O(n7”) of the message bits in the original graph, 
then in the supplemented graph all message bits fail to 
be recovered with probability at most inverse polyno- 
mial in n. From this it follows that, with high probabil- 
ity, when the decoding process terminates all message 
bits have been successfully recovered. 

2.4 The Dual Inequality 

In [ll] a procedure is described for finding (close to) 
optimal right probabilities pi, . . . , PR for a given set of 
left probabilities Ai, . . . , XL using a linear programming 
approach. However, [ll] did not describe how to find 
the optimal left probabilities for a given set of right 
probabilities. Using Condition (2.1), it is easy to see 
how to use the methodology described in [ll] to do 
exactly this. In fact, Condition (2.1) is in some sense the 
dual of the corresponding condition described in [ll], 
which was 

(2.2) p(l -8 * X(1 - z)) > t 

for all z E (O,l]. It is from Condition (2.2) that [ll] 
shows how to find the optimal right probabilities for a 
given set of left probabilities. We leave it as an exercise 
how to use the And-Or tree analysis to easily derive 
Condition (2.2). It turns out that Condition (2.2) can 
also be derived from Condition (2.1) using a few simple 
algebraic manipulations. We leave this as an exercise as 
well. 

One advantage of being able to solve for both 
the optimal left probabilities for a given set of right 
probabilities and the optimal right probabilities for a 
given set of left probabilities is that we can invoke 
a “back and forth” strategy to get a good pair of 
distributions. This strategy consists of starting with 
any given set of left and right probabilities with a given 
average degree, and then iteratively invoking the “find 
the best left for the given right” followed by “find the 
best right for the given left”. We have tried this strategy 
and it gives good results, although at this point we have 
not proved anything about its convergence to a (possibly 
optimal) pair of probability distributions. 

2.5 Fraction of Left Nodes Unrecovered 

The new analysis of the decoding process also yields ex- 
tensions that help to overcome other practical problems 
in the design of loss-resilient codes. In the original anal- 
ysis it is assumed inductively that all the check bits are 
received when trying to recover the message bits. The 
reason we made this assumption is that in the original 
construction the cascading sequence of bipartite graphs 
is completed by adding a standard loss-resilient code at 
the last level. 

There are some practical problems with this. One 
annoyance is that it is inconvenient to combine two 
different types of codes. A more serious problem is 
that standard loss-resilient codes take quadratic time to 
encode and decode. Suppose the message is stretched 
to an encoding twice its length. In order to have the 
combined code run in linear time, this implies that the 
last graph in the cascading sequence has fi left nodes, 
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where n is the number of nodes associated with the 
original message, i.e., there are log(n)/2 graphs in the 
sequence. In the analysis, we assume that an equal 
fraction of the nodes in each level of the graph are 
received. However, there is variance in this fraction at 
each level, with the worst expected fractional variance 
at the last level of l/i/51. Thus, if a message of length 
65,536 is stretched to an encoding of length 131,072, 
then just because of the variance of l/i/Fi = 0.063, we 
expect to have to receive 1.063 times the message length 
of the encoding in order to recover the message. 

A solution to this problem is to use many fewer 
levels of graphs in the cascade, and at the last level 
also use a random graph in place of a standard loss 
resilient code. We have tried this idea, with the last 
graph chosen from an appropriate distribution, and it 
works quite well. For example, using only three levels 
of graphs we can reliably recover a message of length 
65,536 from a random portion of length 67,700 (i.e., 
1.033 times the optimal of 65,536) of an encoding of 
length 131,072. 

the graph until it is in practice able to recover all of 
the first (message) layer. That is, the constant fraction 
left unrecovered is so small that in practice all nodes 
corresponding to the message are recovered. 

Given the fractions of left nodes pi and right nodes 
qi of degree i for all i, X(z) and p(z) can be easily de- 
rived, and then the largest value x* for which Condi- 
tion (2.4) is valid can be computed. We show here how 
to compute the fraction of unrecovered nodes on the left 
at this final value z* . 

The value of z* has a natural interpretation, i.e., it 
is the fraction of edges (v, w) for which all of the left 
neighbors of ‘UI, excluding u, have label 1 at the end of 
the process. Thus; this is the fraction of edges (v, w) 
which could cause v to receive the label 1, assuming 
that w is directly received. Define 

L 

p(X) = Cp’ . Xi. 
i=O 

To design the graph for this solution, we need to 
analyze the decoding process when a random portion of 
both the message bits and the check bits are missing. 
With the And-Or tree analysis, this is straightforward. 
Recall the terminology established in Subsection 2.2. 
Suppose that a random fraction 6 of the message bits 
are not received directly and a random fraction 6’ of the 
check bits are not received directly. The generalization 
of Condition (2.1) for this case when there are losses 
on both sides is that the process terminates in a state 
where a uniformly chosen edge is adjacent to a left node 
with a missing message bit with probability at most y 
if 

P-3) 6 * X(1 - (1 - 6’) . p(l - z)) < 2 

for all 2 E (-y,J]. 

From this interpretation, it can be seen that the fraction 
of unrecovered left nodes at the termination of the 
process is 

6. p(l - (1 - a’)%*). 

This is because y = 1 - (l-8)2* is the fraction of edges 
(v, w) which cannot help to recover v. Thus, a left node 
v of degree i is not recovered at the end with probability 
S (its original missing probability) times y’, and there 
is a pi fraction of such left nodes. 

3 Pure Literal Analysis 

The more general version of Condition (2.2), when 
a fraction 6’ of the right nodes are missing, is 

(24 p(l - 6. X(1 - (1 - 6’)t)) > 2 

The Condition (2.4) is not possible to satisfy for all 
I: E (0, l] if 6’ > 0, for any value of S. This is 
because there is a constant probability that all the right 
neighbors of a missing left node are also missing, e.g., 
if the left node has degree d then the probability is Std. 
However, it turns out to be an interesting question to 
see what fraction of the left nodes can be recovered 
when a fraction 6’ of the right nodes are missing. The 
answer to this question can be used to design cascading 
codes where the decoding process moves from right to 
left bootstrapping up to recover a higher and higher 

In this section, we consider a simple heuristic, called 
the pure literal rule, for finding a satisfying truth 
assignment to a boolean formula. The behavior of 
the pure literal rule has been studied previously with 
respect to randomly chosen L-SAT formulae ([5, 141). 
(See also [7] for related results using more sophisticated 
heuristics.) Here, we show how the tree analysis gives a 
direct explanation of the behavior of the pure literal rule 
for a randomly chosen k-SAT formula with respect to 
the same distributions considered in [5] and [14]. With 
this new analysis, it is also straightforward to analyze 
distributions that were not previously considered and 
which would be much harder to analyze using previous 
techniques applied to this problem. 

A B-SAT formula F with m clauses on n variables 
{Xl,...,Xn} consists of m clauses Ci, . . . , C,,,, each 
clause containing exactly k of the 2n possible literals 

A:={Xl,X1,...) Xn,Xn}. 

Then the formula F is the “AND” of the m clauses, and 
fraction of nodes at each successive decoded layer of each clause is the “OR” of the k literals it contains, i.e., 
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for any O/l assignment to the variables, F evaluates to with the same label with probability qi, and the distri- 
1 if and only if in each clause there is at least one literal bution is the same for both possible labels. Counting 
that has value 1 with respect to the assignment. The the number e of edges using the left and the right nodes 
most widely studied distribution on F is the uniform gives 
distribution. For fixed value of k, m, n the uniform R 
distribution on choosing a formula F can be described e=m 
as follows: for each i E { 1,. . . , m} and for each j E 

-Cjpj =2n*~ig. 
j=O i=o 

{l,...,kl, each of the 2n possible literals is chosen with 
equal probability to be the jth literal in clause Ci. 

The pure liteml rule heuristic for finding a satisfy- 
ing assignment consists of repeated application of the 
following: 

Pure Literal Rule: While there is a literal Z E A that 
appears in zero clauses, remove all clauses containing 
the negation .%? of 2, assign ,?? the value 1 (and thus 2’ 
is assigned 0), and remove both Z and .!? from A. 

The problem of interest is to study the asymptotic 
behavior of the pure literal rule with respect to uni- 
formly chosen k-SAT formulae for a fixed value of k, 
and for a fixed ratio c = m/n of the number of clauses 
to the number of variables, as the number of variables 
n grows to infinity. The more particular question is for 
which values of k and c will the pure literal rule almost 
surely (with respect to a uniformly chosen formula F) 
find an assignment which makes F evaluate to 1 as n 
goes to.infinity. 

Similar to the loss-resilient codes, we can describe 
the structure of the formula F as a bipartite graph, 
only in this case the edges are labeled. There are n 
right nodes in the graph corresponding to the variables, 
and there are m left nodes corresponding to the clauses. 
There is an edge labeled “+” from variable X to all 
clauses that contain X, and there is an edge labeled 
“_,, from variable X to all clauses that contain X. 

One can describe the behavior of the pure literal 
rule on this graph. The pure literal rule is equivalent 
to repeated application of the following process on this 
graph: 

Graph Pure Literal Rule: Zf there is a variable X 
such that all edges touching X have the same label (ei- 
ther all “+ ’ or all “- “) then delete X, all neighboring 
clauses of X, and all edges touching any of these nodes. 

The pure literal rule finds an assignment that 
satisfies the formula if and only if there are no remaining 
right nodes after all possible applications of this process 
have been made. 

We describe a general way of choosing a random 
formula F in the terminology of bipartite graphs. Let 
(PO,Pl, * *. ,PL) and (me,. . ., qn) be probability vec- 
tors. Suppose each clause chooses independently to have 
degree j with probability pj. Suppose each variable X 
chooses independently to have i edges attached to it 

A random permutation 1~ of { 1, . . . , e} is chosen, and 
then, for all i E (1,. . . , e}, the edge with index i out 
of the left side is identified with the edge with index ni 
out of the right side. 

For the special case of the uniform distribution on k- 
SAT, each clause has degree k, and the number of edges 
with the same label out of each variable (corresponding 
to the number of appearances of the corresponding lit- 
eral in clauses) is asymptotically distributed according 
to the Poisson distribution with mean 0 = km/2n as n 
goes to infinity, i.e., the probability that a particular lit- 
eral appears in i clauses is asymptotically exp(f9) . ~9’/6!. 

Consider the random subgraph GL of this graph ob- 
tained as follows: choose an edge uniformly at random 
from among all edges, and suppose it is an edge between 
clause C and variable X with label * E {+, -}. Con- 
sider the subgraph Gl obtained by the following search. 
Consider variable X to be at the zeroth level of the 
search. Follow all the edges out of X with the opposite 
label of *. This leads to a first level of clause nodes. Let 
C’ be one of the clauses at the first level. Follow all edges 
out of C’ except the edge that led into Ct. This leads to 
a second level of variable nodes. Let *’ E {+, -} be the 
label of an edge from C’ to some variable X’. Follow 
all the edges out of X’ with the opposite label of *I. In 
a similar pattern, continue this breadth first search out 
to level 24. 

As was the case for the loss-resilient codes, Gl is 
a tree with high probability for a fixed value of e as 
n goes to infinity. Furthermore, asymptotically the 
distribution on the shape of Gl can be described ss 
follows. For all i = 1 , . . . , L, let Xi = ipi/CtZ1 jpj be 
the probability that a uniformly chosen edge is attached 
to a clause node of degree i. For all i = 0,. . . , R, 
let pi = qi be the probability that a uniformly chosen 
edge is attached to a variable node with i edges of the 
opposite label attached. Then the distribution on the 
shape of Gl is as described above for a randomly chosen 
And-Or tree with the following parameters: the number 
of children of a clause node is i - 1 with probability Xi, 
foralli= l,..., L. The number of children of a variable 
node is i with probability pi, for all i = 0, . . . , R. 

Consider the following labeling process of the nodes 
in the tree Gl that starts at the leaves at level 21 and 
works up towards the root at level 0. A leaf variable 
node is labeled with a 1 if and only if it would have 
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no descendants if the tree were extended one additional 
level. An internal variable node is labeled with a 1 if 
and only if it either has no direct descendants or else 
they are all labeled with a 1. A clause node is labeled 
with a 1 if and only if at least one direct descendant is 
labeled with a 1. It can be checked that if the root node 
receives the label 1 then the pure literal rule will give 
that variable an assignment. 

Let ye be the probability that the root node of Ge 
will receive the label 1 by the above labeling process. 
Define the polynomials 

L 

X(z) = CXi . xi-’ and 
i=l 

p(z) = & .zi. 

i=o 

From Lemma 1 it follows that this can be expressed as 

Ye = p(1 - X(1 - Ye-l)) 

In order for the pure literal rule to end with a com- 
plete assignment that satisfies the formula, we want all 
variables to disappear from the formula, or equivalently, 
receive the label 1. This means that we want 

(34 PP - Xl - Y)) > Y 

for all y in the range [PO, 1) (Note that ys = ~0.) 
For a uniformly chosen k-SAT formula we have 

X(z) = P-1 and p(z) = exp(e(x - l)), where 0 = kc/2. 
For a specific k we can easily determine the threshold 
value c for which (3.5) is satisfied. In particular, for 
k = 3 we obtain the value c - 1.63. This result has 
been found previously by [5] and [14] using a different 
approach. The advantage of the tree analysis approach 
employed in this paper is that, with little additional 
difficulty, it is easily possible to analyze substantially 
different distributions for choosing the formula, merely 
by establishing the proper functions p(x) and X(z). 

It requires some additional technical work, as in 
Section 2.3, to prove that if (3.5) is satisfied then the 
pure literal rule finds a solution with high probability. 
Specifically, we need an expansion based argument like 
that given in [5, Lemma 4.41 to show that once all but 
a constant fraction of the literals are assigned values, 
the process must complete with high probability. Also, 
technically we have only proven one direction, namely 
that the pure literal rule finds a solution is (3.5) is 
satisfied. In fact we can also show that if (3.5) is not 
satisfied, that is if c is chosen larger than the threshold, 
then with high probability the pure literal rule does 

require using the differential equations based approach, 
as our tree-based approach only shows that there is 
a witness for the satisfiability of a random formula 
with high probability. (See, for example, the discussion 
in [16], or the proof of [9, Theorem 91.) Intuitively, 
however, it is clear that as long as the limiting behavior 
of ye behaves properly, this methodology finds the 
correct threshold. 

4 Greedy Matching Analysis 

In the paper [9], the analysis of a simple and fast heuris- 
tic for finding matchings was described and analyzed 
with respect to randomly chosen graphs. (This analy- 
sis has since been extended in [3].) The tree approach 
provides an analysis of what they call “Phase 1”; in 
fact, Karp and Sipser provide an argument based on a 
similar tree argument. The details are similar to, but 
somewhat different than, those presented above to an- 
alyze the loss-resilient codes. As mentioned above, the 
advantage of the tree analysis is that it can be adopted 
to analyze a variety of distributions on the graph with 
little additional effort. 

The first phase of [9] is a greedy matching algorithm 
in a random graph. The basic step of the first phase of 
their algorithm is the following. 

Greedy Matching Step: Find a node v of degree one 
in the graph; match it to its unique neighbor w; remove 
v, w, and all edges touching either v or w, from the 
graph. 

This matching step is applied iteratively until there 
are no degree one nodes in the graph. The basic 
quantity of interest is the expected number of edges 
in the matching produced by this phase in a random 
graph. 

In the work of [9], this basic quantity is analyzed 
with respect to a random graph with n nodes chosen 
as follows: each edge is chosen to exist with probability 
0/(n-1) independently of all other edges. Using the tree 
approach, we can easily generalize this to the following. 

Let (PO,PI,. . . , pi) be a probability vector. Each node 
is chosen to have degree i with probability pi. The 
distribution analyzed by [9] is the special case where 
pi = exp(-0)(0)‘/a’!. 

Once the graph is fixed, the edges in the matching 
produced by repeated application of the greedy match- 
ing step described above depend on the order in which 
the nodes are chosen. Nevertheless, it is clear that the 
size of the matching produced by repeated application 
of the greedy matching step does not depend on this or- 
dering. To be able to analyze the size of the matching, 
we now describe an order invariant labeling process on 

not find a solution. Unfortunately, doing so appears to the graph which will be used to analyze the matching 
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process. 
For each edge (v, w) in the graph, we form directed 

edge (21, w) pointing from PI to w and directed edge (w, V) 
pointing from w to v. The process labels each directed 
edge with one of the three symbols {?,O, 1). Initially, 
each directed edge is labeled with ?. The labeling 
process consists of repeated application of either one of 
the two cases in the greedy labeling step until no more 
applications are possible. 

Greedy Labeling Step: 

l Label directed edge (v, w) with a 1 if all (possibly 
zero) directed edges pointing out of w excluding 
directed edge (w, v) are labeled 0. 

l Label directed edge (v, w) with a 0 if at least one 
directed edge pointing out of w excluding directed 
edge (w, v) is labeled 1. 

The key point is that there is the following cor- 
respondence between directed edges with label 1 and 
the matching produced by any execution of the greedy 
matching process. 

l If directed edge (v, w) is labeled 1 and the reverse 
directed edge (w, v) is also labeled 1 then edge 
(v, w) is in the matching for every execution of the 
greedy matching process. 

l For all k 2 1, if there are k directed edges labeled 
1 pointing out of a node then in every execution of 
the greedy matching process exactly one of these 
k edges (considered as undirected edges) is in the 
matching. 

l For every execution of the greedy matching process, 
for each edge (v, w) in the matching produced by 
the execution, at least one the directed edges (v, w) 
and (w,~) is labeled 1. 

From this, we can calculate the size of the matching 
produced by any execution of the greedy matching 
process as follows. Let M be the set of directed edges 
labeled 1 for which the reverse directed edge is also 
labeled 1. For all k: 2 2, let Nk be the set of directed 
edges labeled 1 that are pointing out of a node w such 
that w has in total k directed edges labeled 1 pointing 
out of it. Then the size of the matching is exactly 

We first justify the Cf=, INkl/k terms in (4.6). 
Consider a node v with k 2 2 directed edges with label 
1 pointing out of it. Note that there cannot be any 

directed edges with label 1 pointing into v. Thus the 
directed edges in M and Nk for k 2 2 are disjoint. 
Furthermore, the k directed edges labeled 1 pointing out 
of v are all in Nk , and there is exactly one corresponding 
matched edge in any execution of the greedy matching 
process. These k edges contribute k/k = 1 as required 
to these terms. 

We now justify the INil - IM1/2 terms in (4.6). 
Consider a node v with exactly one directed edge (v, w) 
with label 1 pointing out of it. Then the edge (v, w) 
is in the matching produced by the greedy matching 
process, and the total contribution to the size of the 
matching should be 1. There are two cases to consider, 
depending on whether directed edge (w, v) is labeled 1 
or not. Suppose (w, v) is not labeled 1. Then neither 
(v, w) nor (w, v) is in M, and only (v, w) is in Ni. These 
two directed edges contribute 1 - O/2 = 1 to (4.6), as 
required. Suppose (w, v) is labeled 1. Then both (v, w) 
and (w, v) are in both M and Ni. These two directed 
edges contribute 2 - 2/2 = 1 to (4.6), as required. 

The strategy now is to first estimate the probability 
that a uniformly chosen directed edge is labeled 1 by the 
greedy labeling process, and then to use this probability 
to estimate the size of the matching produced by the 
greedy matching algorithm based on the observations 
just made. As in the analysis of loss-resilient codes, we 
are interested in properties of such a graph as n grows to 
infinity. Also as before, it turns out that it is easiest to 
analyze the properties by considering a randomly chosen 
edge from the graph. Fix a directed edge (v, w) in the 
graph, and let GL(v, w) be the subgraph induced by 
the edge (v, w) and all neighbors of w reachable within 
distance 2L, following the rule that if node w’ is reached 
using directed edge (v’, w’) then the reverse edge (w’, v’) 
is not used. As was true for the loss-resilient code 
analysis, the probability that GL(v, w) fails to be a 

directed tree for a uniformly chosen edge (v, w) of the 
graph is proportional to l/n, i.e., asymptotically this 
probability goes to zero as n grows to infinity for a fixed 
value of e. Furthermore, asymptotically the distribution 
on the shape of GL(v, w) for uniformly chosen (v, w) 
can be described aa follows. For all i = l,...,L, 
Xi := ipi/ xTZ1 jpj is the probability that a uniformly 
chosen edge is attached to a node of degree i. Each 
node in the tree GL(v, w) at distance less than 2e from 
the root has i - 1 children with probability Xi, for all 
i=l ,“‘> L. 

Consider the following labeling process on the di- 
rected edges of tree GL(v, w). The tree labeling process 
starts with all nodes labeled ?, and then works up from 
the leaves towards the root. Each directed edge (v’, w’) 
pointing to a leaf node WI at distance 2& from w is la- 
beled with a 1 if there is no directed edge other than 
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the reverse edge (w’,v’) pointing out of w’ in the en- 
tire graph. The labeling of the rest of the tree, and the 
directed edge (v, w), works according to the greedy la- 
beling step described previously. The difference between 
the tree labeling and the greedy labeling process is that 
the tree labeling makes a decision to label a leaf with 
a 1 only in the case when the leaf has no other edges 
attached to it, whereas in the greedy labeling process 
the leaf may also receive the label 1 when the leaf has 
degree greater than 1 in the original graph. 

It is not hard to verify that if the directed edge 
(v, w) receives the label 1 in the tree labeling of GL(v, UJ) 
then it receives the label 1 in the greedy labeling process. 
Although the reverse is not true, the claim is that as 
e grows, the probability of these two events approach 
one another. More formally, let z be the probability 
that a uniformly chosen directed edge receives the label 
1 in the greedy labeling process on a randomly chosen 
graph. Let yl be the probability that a uniformly chosen 
directed edge (v, w) receives the label 1 in the tree 
labeling of GL(v, w). It is clear that z 2 ?/L for all 1. 
We claim that yl approaches P as 1 grows; however, the 
only justificrrtion we currently know for this relies on 
the differential equation approach. (See Theorem 9 of 
[9].) We assume that this is the case hereafter. 

Let, us analyze the probability yt that a uniformly 
chosen directed edge (v, TN) is labeled with 1 in the tree 
labeling of Gl(v, w). As before, define the polynomial 

A(z) = kXi .2--l. 
i=l 

Then from Lemma 1 and the description of the process, 
yf = X(1 - X(1 - ~1-1)). Using this equation, the yl 
can be computed iteratively starting with the equation 

Yo = Xl. 

Let y be the asymptotic limit of yf as f! grows. 
We need a couple of additional observations in order 
to be able to compute the expected size of the matching 
returned by the greedy matching process as a function 
of y. The observations are that asymptotically, as n 
goes to infinity: 

l The labels received by a given set of directed edges 
pointing out of a particular node are independent 
of one another. 

l The labels of a given directed edge and its reverse 
directed edge are independent of one another. 

From these observations, we can conclude that the 
probability a randomly chosen directed edge is in Nk 

Furthermore, the probability a randomly chosen di- 
rected edge is in M is 9. Thus, the expected size of 
the matching produced by the greedy algorithm is equal 
to the expected number of directed edges in the graph 
times 

L 

c ak/k - Y2/2. 

k=l 
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