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Unscrambling Address Lines 

-4ndrei Broder” Michael Mitzenmacher* Laurent Mall” 

Abstract 

A writer leaves a message in a write-once memory accessible 
via address lines. Before the intended recipient has a chance 
to get the message, the address lines are permuted by an 
adversary. We provide a simple, nearly optimal algorithm for 
the reader and writer to communicate over such a channel. 

This problem arose in the context of FPGA hardware 
design. Our algorithm has been implemented and is part of 
the design tool suite in use within Compaq. 

1 Introduction 

Consider the following problem regarding the transmis- 
sion of a message between a writer and a reader facing 
an adversary. The writer stores logical zeroes and ones 
in a table of size 2n stored in consecutive locations in 
a write-once memory. The memory is accessed through 
n one bit address lines. After the writing is complete, 
an adversary permutes the address lines. For example, 
for n = 4 there are sixteen memory locations: if the 
address lines are set to 0010, before the adversary acts, 
the memory returns the value stored in location 2. If 
the adversary permutes the second and third address 
line, the memory sees a request for location 0100 and 
returns the value stored in location 4. 

The reader does not know the permutation used by 
the adversary, but can read all the memory locations. 
The reader’s goal is to discover how the address lines 
were permuted, and, in addition, to obtain a message 
from the writer. Assuming the reader and writer 
establish a protocol ahead of time, how many bits can 
they communicate? More practically, what is a good 
protocol? 

This problem arose in the context of Field- 
Programmable Gate Arrays (FPGAs) hardware design. 
An FPGA is a simple reconfigurable hardware device. 
The first commercial FPGA was introduced in 1986 [l]. 
For a large part of today’s FPGAs, their basic logical 
element is equivalent to a look-up table [4]. The usual 
tools for FPGA design lay out a circuit on these logical 
elements, routing the wiring as appropriate. In par- 
ticular, one tool currently in use permutes the address 
lines as appropriate to improve the wiring layout. This 
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process is perfectly reasonable if the FPGA programmer 
want to use the design as a “black box.” However, if the 
FPGA programmer wants to patch the design, an effec- 
tive means of determining this permutation is necessary. 
The number of memory locations in the table dedicated 
to this end should be as low as possible, so that the rest 
of the table can be used for other purposes. (Because of 
the layered structure of the complex software used for 
wiring layout, keeping track of the permutation through 
the layers is not feasible.) 

We describe a brute-force approach to the problem, 
as well as a simple algorithmic solution. 

2 Brute force: table look-up 

For any specific n, the problem can be solved by brute 
force. We divide all possible settings of table-content 
bits into equivalence classes; two settings are equivalent 
if and only if the first yields the same memory output as 
the second via some address lines permutation. We then 
count the number of equivalence classes with n! distinct 
members. If C, is the number of such classes, then the 
writer can effectively transmit any value in the range 
[O . . . C, - l] in such a way that the reader can determine 
the value plus the permutation used by the adversary. 
Thii is accomplished by establishing one representative 
member from each of the C, equivalence classes, and 
sending one of these C, representatives. The value 
from [O.. .C, - l] is determined by the reader from 
the class of the read memory bits; the permutation is 
similarly determined by which of the n! permutations of 
the representative appears in the memory. Essentially, 
then, one can reduce the problem to a large table look- 
up. 

In practice, however, this approach appears infea- 
sible for all but the smallest values of n, as there are 
22” possible ways to set the memory. Using a brute 
force table-look up approach rapidly becomes infeasible 
in terms of memory utilization and preprocessing. The 
first few values of C,, are 2,4,16,1792,34339072,. . . . We 
have not determined a closed form for C,,; this remains 
an open problem. 

In a similar vein, we might ask how many values 
D, can be passed if we do not care whether the reader 
learns the adversarial permutation. In this case, all the 
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equivalence classes (and not just those with n! members) returns 1 if and only if r(j) = 1, that is, j is mapped to 
count, as each class determines a possible value from an odd-numbered line. 
[0 . . . D, - 11. The hrst few values in this case are Similarly, for round k: let the values of z range over 
2.12,80,3984,37333248,. . . . A closed form for D, also [O . . . 2k - 11. The writer sets f(z) for all z with a 1 in all 
remains an open problem. We note that neither C, or positions xi with i = z - 1 mod 2k, exactly one 1 in one 
D, appear as sequences in the famous Sloane’s list (2,3]. of the n/2” positions xi with i = z mod 2k (call this 

position j), and O’s elsewhere. Note that there are n 
3 An algorithmic solution possibilities for x corresponding to the n possible values 

We have devised a simple algorithmic solution which for j. The writer sets f(x) to 1 if (j - 2)/2” is odd and 

requires at most n log, n memory probes to determine to 0 otherwise. 

the permutation, and uses only n log, n of the 2n bits of The reader, given the information gathered in prior 

the memory. These are both within a 1 + o(1) factor of rounds, can determine the permuted position of each 

optimal: since on average (a) it takes at least logs (n!) line modulo 2k. Hence it can compute all x such that 
memory probes to &term& the permutation; and (b) *(X) has *(X)i = 1 in allPositio= with i = z-1 mod 2”: 
the writer cannot transmit more than 2n - log,(n!) bits 7i(x) has exactly one 1 in one of the n/2k positions +(x)i 

of information if the writer has to specify a permutation with i = .z mod 2k. Let j be the index of this particular 

as well. (Note that if the reader does not need to position within x. That is, the reader can determine 

determine the permutation, then our algorithm still how to set the address bits to read values g(x) = f(*(x)) 

works, but we can no longer claim that it is within an precisely for the x’s that the writer has defined for this 

1 + o(1) factor of optimal. Finding non-trivial bounds round. Again, these reads determine for each j whether 

for this case remains open.) the (k + 1)‘st bit from the right of w(j) is 0 or 1. Our 

We establish the appropriate notation. Initially, we invariant is maintained, and hence only n - r = n log2 n 

assume that the number of address lines is n = 2? values are set and read in the memory. 

for some r. We label the memory locations by n- Minor improvements can be made. For example, 

dimensional (0, 1) vectors. Originally the writer assigns the reader need not read n values each round, but only 

bit values f(z) E {O,l} to the vectors (locations) n- 1 values, since the nth value to be read is determined 

x E {O,l}“. We denote the permutation chosen by bY the other n - 1. 
the adversary as x and view it as a permutation of the When n = 2f + a, where 0 < a < 2ty we use an 

numbers 0 to n- 1. We use ?? to represent the action of 7r (T + 1)‘st round for locations which are not determined 

on vectors in the natural way: for example, if there are by the first T bits from the right. The same argument 

4 address lines, and n(O) = 0,x(l) = 2, n(2) = 1, and shows that the total number of memory locations that 

n(3) = 3, then jr(x) = ??(x~x~x~xo) = ~~XIX~XO. The need to be set and read is at most n . r + 2a = 

values returned by the memory, after the adversary’s n [log, nJ + 2a. 

evil deed, are denoted by g(z), where g(x) = f(+(x)). 
The reader learns the permutation x after T rounds. * Acknow1edgement 

For each round the reader reads the value of g(x) in n We wish to thank Mike Burrows, who computed the 
distinct locations. These locations are independent of n computable terms of the C, and D, sequences. 
and different from round to round. As we explain, be- 
fore the permutation, the writer sets only the locations 
that eventually will be read. Hence n log2 n values in 
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