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s t rength  of this feedback is governed by the exponent  p. 
We focus our  analysis on the  case of  two bins. This 

is most interest ing in practice; generally two companies 
are fighting to a t t rac t  users for their  compet ing  systems 
[12]. Moreover,  a simple union bound  a rgument  in 
Section 4 demonst ra tes  tha t  the problem of two bins 
encapsulates  the significant behaviors. 

It is well known in the case of p = 1 tha t  if we 
s tar t  with two bins, each with one ball, the  resulting 
distr ibution when there are n balls in the  system is 
uniform; the probabil i ty of ending wi th  k balls in the 
first bin is 1 / ( n - 1 ) .  More generally, it is clear t ha t  if one 
bin has a fract ion q of the balls, it tends  to  maintain a 
fraction q of the balls in the future [7]. Posi t ive feedback 
occurs when the  exponent  p is greater  t h a n  1. To see 
the difference in behavior when p > 1, no te  tha t  if we 
s tar t  with one ball in each bin, the  probabi l i ty  t h a t  a 
specific bin obtains  all the  balls is 

1  -xv ' 

which for p > 1 is a constant  depending on p. We 
demons t ra te  tha t  for any constant  exponent  p > 1, any 
constant  e > 0, and a sufficiently large number  n of balls 
thrown,  the  probabil i ty tha t  neither of the  bins obtains 
a 1 - e fract ion of the balls is inversely polynomial  
in n. T h e  exact  polynomial  depends on e and p. 
An in terpre ta t ion  of this s ta tement  is t h a t  monopoly  
occurs quickly with high probability. Similarly, negative 
feedback occurs  when the exponent  p is less t han  1. 
For any constant  p < 1, any constant  e > 0, and 
a sufficiently large number of balls th rown n, the 
probabi l i ty  a bin obtains more t han  a 1 /2  + ~ fraction 
of the  balls is inversely polynomial  in n. This result 
emphasizes the  phase transi t ion in this model  at  p = 1. 

Our belief is tha t  these non-linear balls and bins 
models, which natural ly  arise in economic, chemical, 
and biological systems, may also be useful for describing 
phenomena  in computer  science. As an  example,  we 
suggest how we may generalize r andom Web graph 
models using similar non-linear models. We also provide 
heuristics and calculation methods  t ha t  may  prove 
useful for analyzing such systems. 

We wish to  note tha t  after submit t ing  this paper ,  
we learned of o ther  work being done on this problem 
by Spencer  and Wormald.  They  provide an elegant 
f ramework for the  problem tha t  gives many  addit ional  
insights into the  behavior of these types of systems, 
par t icular ly  in the case of many bins [13]. 

2 T h e  c a s e p > l  

We begin with some useful definitions. 

DEFINITION 2.1. I f  there are n balls divided among m 
bins, we say that one bin has an e-advantage i f  it has at 
least a 1 / m  + ~ fraction of  the balls. Similarly, a bin is 
all-but-e-dominant i f  it has at least a 1 - e fraction of  
the balls. 

Consider a fixed p > 1. In this section we cover 
the case of two bins. We will prove tha t  when a ball 
lands in a bin with x balls with probabi l i ty  propor t ional  
to  x v, and we s ta r t  with one ball in each bin, one bin 
becomes al l-but-5-dominant  with probabi l i ty  q af ter  n 
balls, where n is polynomial  in q and 1/5. We note  
tha t  the s tar t ing point  is chosen for convenience, and 
in Section 4 we use a simple union bound  a rgument  to  
extend the  result to  m > 2 bins. 

Our proof follows a sequence of steps. We first 
show tha t  one bin obtains an Co-advantage for some 
e0. F rom here, we show tha t  the separat ion grows. 
Roughly, if we double the number  of balls in the  
system, we increase the advantage  by a constant  factor 
(with high probabili ty).  We then  show tha t  if one 
bin becomes al l -but-el -dominant  for a sufficiently small 
el, the  dominance improves ( tha t  is el shrinks) by a 
constant  factor when we double the number  of balls in 
the system. Pu t t ing  it all together  gives our result. We 
note  tha t  in what  follows, we make no efforts to  opt imize 
the various constants  used in the  theorems.  

2.1 Initial separation 

We first show tha t  if p > 1, the probabi l i ty  tha t  nei ther  
of the  bins gains an  e0-advantage is inversely polynomial  
in the number  of balls th rown for some constant  e0. 
While this can be proven regardless of  the  initial s tate,  
for convenience we s tar t  with one ball in each bin. 

THEOREM 2.1. Consider a system with exponent p and 
two bins Bo and B1 that begin with one ball each. Then 
there exist constants eo > 0 and 7 > 0 such that after n 
steps, the probability that the two bins fail to co-separate 
is at most  O ( n - ~ ) .  

Proof. See the Appendix.  

2.2 I n c r e a s i n g  a d v a n t a g e  

Assume tha t  B0 (w.t.o.g.) has a constant  e-advantage 
over B1 after n balls have been thrown into the  system. 
Let x( t )  and y(t)  be the loads of B0 and B1 respectively 
when there  are t balls in the  system. We would like to 
say tha t  as we continue throwing balls into the system, 
the probabil i ty of a ball going into B0 is 

x(n)p 
x(n)  + 

and use this to  show tha t  the  advantage grows. This  
is not  quite the case, however, since a new ball may  go 
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into B1, in which case the probability the next ball falls 
into B0 sinks below ~(")P ~(-)p+~(.)p • 

To circumvent this issue, we consider throwing balls 
in waves of en/k,  for some k >_ 1. If we throw in en/k  
balls k/e  times, then the number of balls in the system 
doubles. Consider the first wave. Let X be the number 
of new balls tha t  land in B0 and Y the number of new 
balls than land in B~. We underestimate the probability 
that  a new ball lands in B0 by assuming that  all previous 
balls in the wave have landed in Bt.  Even in this worst 
case situation, 

( )P ~(t) ½+E 
yCt---~ > ~ ~ - ~  2 k E 

for all t in [n,n + en/k]. Hence, by use of Chernoff 
bounds, we find tha t  
probability, 

with all but exponentially small 

Y ~  ½ + e  P 

for some constant d.  For n sufficiently large, we may 
take k large enough and d small enough so tha t  the 

difference between -~ and----(~_~)n is an arbitrarily small 

constant. Note tha t  this implies that  B0 will continue 
to  have an e advantage over the next wave. 

Suppose we show tha t  ( 1/2+~P ~ for \1/2-~)  > some I / 2 - ~ e  ' 

> I. Then 

= - 1 _  I+P E" ~(2~) > ( ½ : 7 ) ~ +  ( ½ - ~ e ) ~  

(Note tha t  the arbitrarily small constant between x 

and will get absorbed.) Hence our E-advantage 

increases to 1+--~2 e once we double the number of balls, 
with high probability. 

THEOREM 2.2. Suppose that Bo has an e ~_ eo advan- 
tage over B1 when n balls are in the system. I f  we throw 
n more balls into the system then with high probability 

(p-1)(1-2~) Bo's advantage increases by a factor of i + ~÷2e(~-1) " 

Proof 

( 1-~- -  = 1 +  

where 

~ =  (1 

ae ~ 4pc 1 / 2  + 
1 - 2 e l  > 1 + 1 -- 2-----~ = 1/2---------~ 

( p  - 1 ) ( 1  - 2e)~ + 
l + 2 e ( p  1) )e" 

So if for example, e ~ 0.4, the advantage, with high 
probability, increases by a factor of at least 1 + ~ .  

2.3 To C o m p l e t e  D o m i n a n c e  

By Theorem 2.2, the advantage increases until one bin is 
all-but-0.1-dominant. At this point, a similar argument 
shows the dominance improves (that is, the initial 0.1 
shrinks) geometrically. 

THEOREM 2.3. I f  BO is all-but-et-dominant for el <_ 
0.2, then when we double the number of balls in the 
system, Bo becomes all-but- 2+~'2~pl el-dominant with high 
probability. 

Proof. As before, by breaking the next group of balls 
into suitable blocks, we obtain tha t  -~ can be made 

arbitrarily close to ( I - - ' ~  p with high probability. Now 

if (l~__~)p _ 1 _ ~  > 0, then with high probability 
z i P  

x(2n) (1 El) n + (1 El/p) n 1 -- E 1 p+l - -  - -  2p 

y ( 2 n )  e l ~  Jl- E l n / p  e l  2P~p 1 

proving the lemma. 
Let g(e, p) = ( L ~ ) n  _ ~ To show g(e,p) > 0 

Zl  p • 

for p > 1 and 0 < e <: 0.2, we consider the function 

E(1 - E)p 
¢,(E) = (p_  E)EP" 

We need to show tha t  Cp(e) > 1 for e < 0.2. Now 

4 p 
~bp(0.2) ---- 5 p -  1 > 1 

and taking logarithms and differentiating gives 

~b~(e) p - - 1  p + 1 < 0 .  
~p(E) E 1 - E  p - e  

Hence ¢n(e) > 1 for 0 < e _< 0.2. 

2.4 W r a p p i n g  up  

The following lemma estimates the number of balls in 
the system when B0's advantage is arbitrarily close to 
1, or in other words, when B0 is all-but-&dominant for 
an arbitrarily small constant 5. Suppose we start  with 
B0 having an co-advantage and no balls in the system, 
as given in Theorem 2.1. 

THEOREM 2.4. Assume that we throw balls into the 
system until Bo is all-but-5-dominant for some 5 > O. 
Then, i f  p > 1, with probability 1 - e  n(n°), Bo is all-but- 
5-dominant when the system has 2 ~+z . no balls, where 

= i o g , + ~  ~ and z = l o g ~  ~ 
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Proof. Recall that  in each doubling stage, we succeed 
with all but exponentially small probability in the 
number of balls in the system, which is greater than 
no. Each time we double the number of balls in the 
system, the initial advantage •0 increases by a factor of 
at least 1 + ~ until it becomes 0.4; this requires 

0.a¢_.~ doubling stages. From then on, B0 x = lOgl+ ~ - - ,  

goes from all-but-0.1-dominant to all-but-g-dominant, 
shrinking the fraction of bails not in B0 by a factor 
of ~ with each doubling stage. Hence, we need 2p 

z = log_~, r ~ doubling stages until Be is all-but-g- 
dominant. 

Essentially, our argument shows that  once we 
achieve a little separation, the separation continues to 
grow with very high probability. In fact, the only reason 
our probability bounds are polynomial in the number of 
balls is because of the need to establish an initial gap in 
Theorem 2.1. 

3 T h e c a s e p <  1 

In the case where p < 1, we have similar results, except 
that  in this case the system tends to converge toward 
an equal number of balls in each bin. That  is, we have 
negative feedback. For convenience, we consider only 
the case where0  < p < 1. (The case wherep_< 0 is 
trivial.) 

Consider a fixed exponent p < 1 in a system with 
two bins, B0 and B1. Suppose that  n balls are in the 
system and Bo (w.l.o.g.) has an co-advantage. We show 
that  the advantage shrinks. We first show that  if •0 
is at least 1 / ~ 2 ( p  + 1)(/9+ 2), the corresponding all- 
but-5-dominance for/30 increases. Once its advantage 
becomes sufficiently small, it decreases by a constant 
factor by throwing n more balls in the system. 

THEOREM 3.1. Suppose that Bo has an •-advantage. 
IS we throw n more bails in the system and • <_ 
1/'V/2(p + 1)(p + 2), Bo's advantage decreases by a fac- 
tor of (3 + p)/4 with high probability. Otherwise, sup- 
pose Bo is an all-but-e-dominant, where 0 < e < ½ - 

1 

~ .  IS we throw n more balls in the system 

then Bo becomes aU-but- 2+P-~ e-dominant with high prob- 
ability. 

Proof. The proof is similar to Theorem 2.2. We first 
consider when the advantage shrinks by the constant 
factor (3 + p)/4. Using the idea of throwing balls 
in waves and Chernoff bounds as in Theorem 2.2, we 
see that  the argument boils down to showing that  the 

t' 1222_~ p probability a ball lands in the most full bin, or \ 1/2-~] , 
1124-(1+p)e12 is bounded above by 1/2-(l+p)e/2" Therefore it suffices 

to determine where q(e,p) ----- ~ [1/2+'~ p l+(l+p)~ " \112-¢] < 1. 
Note q(O,p) = 1. 

We first show qp(e) is decreasing in •. It is eas- 
ier to look at logqv(e), which decreases when qp(•) 
does. The derivative of logqv(e ) with respect to e is 

- 20+P) It is straightforward to check that  1 - ( l + p ) ~  2" 

qp(e) is decreasing for • < l /v /2(p  + 1)(p + 2) and in- 
creasing past that  point. Hence qp(e) < 1 in the range 
(0, 1/~/2(p + 1)(p + 2)], and the advantage shrinks by a 
constant factor when we double the number of balls in 
the system for e < 1/y/2(p q- 1)(p + 2). 

Now suppose Bo ia all-but-e-dominant. Here we 
follow Theorem 2.3. Let g(e,p) = (l~___~)p_ 1-~/p We ~/p - 

1 ± ] study g(e,p) for 0 < p < 1 and e E (0, 2 v~2(p+l)(p+2) - 

It is easy to check that  g(e,p) is increasing in • and (by 
use of Maple) that  9(~ - 1 x/9_(p+l)(p+2).,p ) < 0, for all 

0 < p < 1, so the lemma is proved. 

Theorem 3.1 can be used to show that  from any 
non-trivial starting state, even if one bin has a large 
advantage, when p < 1 the system will quickly return 
to a near-equal state. 

4 F r o m  Two  to  M a n y  

We use the results for the case of two bins to obtain 
similar results for the case of many bins using standard 
union bounds. A key point is that  if we look at a pair 
of bins from a system with many bins, the evolution of 
this pair of bins is just that  of a system with exponent p. 
That is because when we condition on a ball landing in 
the pair of bins, the probability that  it falls into a bin 
with x balls is still proportional to x p. The following 
simple proof avoids any conditioning issues, and applies 
when p > 1. 

LEMMA 4.1. Suppose that when n balls are thrown into 
a pair of bins, the probability that neither is all-but-e- 
dominant is upper bounded by p(n, e). Here we assume 
p(n, e) is non-increasing in n. Then when 1 + ran~2 
balls are thrown into m bins, the probability that none 

aU-but-~-dominant is at most (~)p(n,e) for 7 = 
• / ( e  + (1  - - 1 ) ) .  

Proof. Consider the two bins with the most balls, /70 
and B1, with B0 having more balls. The two bins 
together have at least n balls since 1 + m n l 2  total balls 
are thrown. If B0 is not all-but-7-dominant over all the 
bins, then it has less than a 1 - 7 fraction of the balls 
and B1 has at least a ~//(m - 1) fraction of the balls. 
For the value of -y stated, 

1 - ' r  1 - e  

- 1 )  e 
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Hence in this case B0 is not all-but-e-dominant when 
considering the pair of bins B0 and B1. But the 
probability tha t  there is a pair of bins where neither 
is all-but-e-dominant is bounded above by ( '~)p(n,  e). 

Essentially this lemma says that  going from two 
bins to m bins increases the number of balls thrown by 
a factor and the probability that  all-but-e-dominance 
does not occur by polynomial factors in ra. Hence 
the probability one bin fails to all-but-e-dominate is 
inversely proportional to a polynomial in the number 
of balls thrown, the number of bins, and 1/e. 

A similar lemma applies for the case p < 1. 

LEMMA 4.2. Suppose that when n balls are thrown into 
a pair o f  bins, the probability that one obtains an e- 
advantage is upper bounded by p(n ,  e). Here we assume 
p(n ,  e) is non-increasing in n.  Then when 1 T inn  
balls are thrown into m bins, the probability that o n e  

bin has a ~f-advantage is at mos t  (~ )p (n ,  e) .for ~/ = 
4e(m - 1 ) l ( m ( m  - 2(rn -- 2)e)). 

Proof. Consider the bin with the most balls, B0, and 
the bin with the fewest balls, B1. The bin B0 has at 
least n balls since 1 + ran total  balls are thrown. If/70 
has ~/-advantage, then it has at  least a I / m + ' 7  fraction 
of the balls, and B1 has at most a 1 / m  - "7/(m - 1) 
fraction of the bails. For the value of ~/stated, 

1/m+7 1/2+e 
l i ra -- "yl(m -- 1) 1/2 -- e" 

Hence in this case B0 has an e-advantage when consider- 
ing the pair of bins Be and B1. But the probability tha t  
there is a pair of bins where one bin has an e-advantage 
over the other is bounded above by ( ~ ) p ( n ,  e). 

5 R e l a t i o n  t o  W e b  m o d e l s  

Our original mot iwt ion  for studying this problem arose 
when we considered related dynamic Web graph models. 
Several recently proposed dynamic Web models are 
similar to balls and bins models, with the pages being 
bins and the links being balls. The difference for Web 
graph models is that  new pages and links both enter the 
system; hence, new bins arise as new balls are thrown. 
Proposed Web models have all been linear; for example, 
in most models the probability a new page links to an 
extant page is proportional to its indegree [3, 5, 10, 11]. 

Recent Web models, while capturing certain prop- 
erties of the Web graph, do not appear completely ac- 
curate. For example, recent studies suggest that  the 
Web has many long, stringy pieces [4]. Also, certain 
Web sites contain central pages, that  everything links 
to. Let us consider a dynamic Web graph model where 

a new page with one outedge links to an extant page 
with probability proportional to the indegree to the pth 
power. The limiting cases for this model are interest- 
ing: when p -~ co, essentially all edges point to a single 
node, and when p --, - c o ,  the graph is essentially a sin- 
gle path. It is possible tha t  some areas of the Web may 
be similar to this more general model with properly cho- 
sen parameters. Further discussion of this issue is given 
in [6, 9]; however, it suggests that  non-linear systems 
provide interesting variations of Web graph models. 

6 A Usefu l  H e u r i s t i c  

In this section, we consider a heuristic that  may prove 
useful in applications. Suppose we have two bins, whose 
load we denote by x(t) and y( t ) ,  where the time t 
denotes the number of balls in the system. As before 
the probability tha t  the new ball thrown at time t falls 

(~(t))P Then the in the bins with x( t )  balls is (z(t))~+(~(t))~" 
expected change in x(t), or A~(t), satisfies 

A Ct) = E[ (t + 1) - = (xCt))p + (u(t))P' 

and similarly for y( t ) .  Using the heuristic approxima- 
tion 

Au(t) dy 
Ax(t) dx 

and dropping the t from the notation where the meaning 
is clear, we obtain the following approximation for the 
expected behavior of the system: 

dy yP 
dx xP 

This heuristic demonstrates the different types of be- 
havior to be expected when p < 1, p --- 1, and p > 1. 
When p = 1, the solution has the form y = c~. Other- 
wise, the solution has the form y l -p  __ xl-p  + c. When 
p < 1, regardless of the initial values of x and y the 
limiting ratio of y / x  goes to 1; in the long run, the two 
bins each contain roughly half of the balls. When p > 1, 
the limiting ratio of y / x  goes to 0 or infinity. 

This heuristic is appeMing in that  it allows us to 
approximate the behavior when p > 1 of the bins tha t  
are dominated. Specifically, let us consider more closely 
the case where the initial loads of the bins are x( to)  
and y(to) (with y( te)  > x( to) )  and p > 1. Then the 
solution has the form y l - n  ~_ x l - p  + y ( t o ) l - p _  x ( t o ) l - p .  
As y --* co, our heuristic suggests that  x approaches 

(x(t0)l-p - y ( to ) l -P )  1/(1-p). For example, consider the 
case where x(300) = 100, y(300) -- 200, and p ---- 2. 
The heuristic suggests that  even as the number of balls 
thrown grows to infinity, the expected value of x( t )  will 
only grow to about  200. 
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We point out that  this heuristic is (at this point) 
just a heuristic. While in some cases differential equa- 
tions can properly be used to determine the behavior of 
a system, the utility in this case is less clear. For ex- 
ample, from any starting point, there is some constant 
(though perhaps small) probability that  the smaller bin 
will overtake the larger. From smaller starting points 
(say x(3) = 1 and y(3) = 2) there is more variation. 
Hence this heuristic is really valuable for determining 
the limiting behavior only when one bin dominates an- 
other sufficiently so that  the probability that  it is over- 
taken can essentially be dismissed. 

We consider the performance of the heuristic with 
some examples. When x(300) = 100, y(300) = 200, and 
p = 2, the solution of the resulting differential equation 
is 

1 1 1 
y x 200" 

When there are 10,000 balls in the system, the differen- 
tial equations predict x(10,000) = 196. Exact calcula- 
tions show that the mean value of x(10,000) is actually 
just above 197, although the mode is 190. More visu- 
ally, Figure 1 shows the distribution for x(10,000) is very 
concentrated; it looks close to a normal distribution, al- 
though it is asymmetric with a small probability of large 
values. Larger numbers of balls show similar behavior; 
for x(100,000) and x(1,000,000), which have essentially 
the same distribution, the mean is 201 though the dis- 
tribution peaks at 195. 

Figure 1 displays similar results for p = 1.5. The 
differential equations predict x(10,000) should be about 
637, which also is very acccurate. They also predict 
that  as the number of balls grows to infinity, x(t) 
should converge to approximately 1,165, which is close 
to x(1,000,000). 

Note this heuristic approach can easily be extended 
to the case of more than two bins. It would be 
interesting to develop a more formal statement in terms 
of probabilistic bounds based on this heuristic. 

? E x a m p l e s  o f  R e a c h i n g  M o n o p o l y  

We present some examples in order to demonstrate 
typical behavior for the p > 1 case, giving exact results 
determined by extensive numerical calculations with the 
appropriate recurrence. Specifically, if w(x ,  y) is the 
probability of having x balls in B0 and y balls in B1 
when there are x + y balls in the system, then 
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Figure 1: Density functions, starting with 100 balls in 
one bin and 200 in the other, p = 2.0 and p = 1.5. 

p. This provides some evidence that  the character of 
our result, namely that  monopoly fails to happen with 
probability inversely polynomial in the number of balls 
in the system (and moreover with a small exponent), is 
correct. We point out that  we do not currently have any 
bound that  demonstrates that  this probability could not 
fall exponentially with the number of balls; this remains 
an open question. 

In Figure 2, we present the cumulative distribution 
for the number of balls in a bin when we begin with one 
ball in each bin, and place balls until 1,000,000 balls are 
in the system, using p -- 1.1. While there is significant 
bias towards the periphery, there is still a reasonable 
probability that  one bin will not completely overwhelm 
the other. For example, the probability that  one bin 
contains over 80% of the balls is less than 80%. 

1" (Y-1)P In contrast, consider the case of just 1,000 balls 
(x -1)p  t - w ( x , y -  )XP " " l 'p "when p = 2 in Figure 3. Here almost all the weight u)= y) (x-  1)p + up 

-~ ( Y - )  lies in the area where one bin has almost all of the 
The reason for showing these examples is to suggest that  balls. The probability that  one bin contains five or fewer 
the number of balls necessary to converge to monopoly balls is 0.864. This concentration, however, is a function 
can be extremely large, especially for smaller values of of the dramatic effect of inequality at the beginning of 
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Figure 2: Cumulative distribution function, starting 
with 1 ball in each bin, p = 1.1 and 1,000,000 total  
balls. 
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Figure 3" Cumulative distribution function, starting 
with 1 ball in each bin, p = 2.0 and 1,000 total  balls. 

Figure 4: Cumulative distribution function, start ing 
with 1,000 balls in each bin, p = 2.0 and 1,000,000 total  
balls. 

tial separation stage and a t ighter argument  for more 
than  two bins might be helpful. Second, the impact of 
the initial conditions should be clarified. When  two bins 
begin with nearly the same number of balls, how does 
the difference affect the probabili ty tha t  each will end 
up dominating the system? Wha t  is the distr ibution of 
the final state of the other bin? While we have heuristic 
approaches to this problem, rigorous bounds would be 
useful. Third, consideration of other  natural  families of 
functions besides x p may be useful for real systems. In a 
similar vein, understanding systems where the function 
determining the probability tha t  a ball goes in a bin may 
vary according to t ime may allow more realistic models. 

R e f e r e n c e s  

the process; leading two or three balls to one is a huge 
advantage. If we begin with 1,000 balls in each bin, and 
place balls until there are 1,000,000 in the system, we 
see that  while there is clear tendency toward monopoly, 
it appears more similar to the p = 1.1 case. 

8 C o n c l u s i o n  

We have analyzed simple non-linear balls and bins mod- 
els, where the probability of a new ball going to a bin 
with ~ balls is proport ional  to x p. We have demon- 
s trated a phase transition at  p = 1; fast convergence 
to  monopoly for p > 1; and fast convergence toward 
equality when p < 1. 

We suggest a few problems worthy of future s tudy 
that  this framework introduces. First, it seems likely 
tha t  our current arguments can be improved and sim- 
plified. In particular, a be t te r  understanding of the ini- 
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A p p e n d i x  

T h e o r e m  1 Consider a sys tem with exponent  p and 
two bins B0 and B1 tha t  begin wi th  one ball each. Then  
there exist constants e0 > 0 and  7 > 0 such tha t  after 
n steps, the probabil i ty  t ha t  the  two bins fail to ¢0- 
separate  is at  most  O(n-~). 

in the bin with more balls is at  least 

Z 

+ ,d p 

- + nVs)  " + ( ' n ,  + = ) "  

For no sufficiently large, the  nl/s t e rm above does 
not affect tha t  we expect  the  advantage  to  grow by a 
constant  factor over the next  n l  balls, as in T h e o r e m  2.2. 

Moreover, by Chernoff 's  bounds,  induct ively over 
5 / 8  

each block of size n 1 , if X is the  number  of  balls t ha t  
go into the bin with more balls, 

P r [X  _< znl I s -  n~/2] < exp(-~2(na/S)) .  

The  nil 12 te rm does not affect t ha t  the  advantage  grows 
by a constant  factor with high probabi l i ty  for sui tably 
large no, and hence the theorem holds. 

Proof. We sketch the proof, which follows the same 
outline as Theorems 2.2 and 2.4. First,  recall tha t  
when p = 1 and we begin with one ball in each bin, 
the resulting dis tr ibut ion af ter  n balls are thrown is 
uniform. A simple coupling a rgument  shows tha t  when 
p > 1 the  distr ibution of the  number  of balls in a bin 
has more weight at  the extremes.  Hence for any no the 
probabil i ty tha t  af ter  no balls are thrown neither bin 
has at  least 1 /2  + re 3/4 balls is O(nol/4). 

We build on this small advantage using a repeated 
doubling argument .  Suppose t ha t  when we have nl  _> 
no balls in the system and we throw nl  more balls, the 
advantage grows by a constant  factor  wi th  probabili ty 
e - ~  for some constant  a > 0. Then  choose any 
suitable constant  e0, say e0 = 1/100p. Then  after 
O( logn0)  doublings, we obta in  a constant  e0 advantage 

with probabil i ty  O(nol/4), and we have a polynomial 
in no number  of bails in. the  system. 

We must  take a bit more  care in the Chernoff 
bounds to  obtain the  high probabi l i ty  result  in the 
doubling stages. However, if we s ta r t  a doubling phase 
with n l  balls in the  system and one bin having ~nl + x 

a/4 
balls, where x ~ n 1 , it suffices to  throw the next  nl  

balls in blocks of size nl Is. The  probabi l i ty  a ball lands 


