
Mult id imens iona l Ba lanced Al loca t ions

Andrei Broder* Michael Mitzenmacher t

A b s t r a c t

We consider a multidimensional variant of the balls-
and-bins problem, where balls correspond to random
D-dimensional 0-1 vectors. This variant is motivated by
a problem in load balancing documents for distributed
search engines. We demonstrate the utility of the power
of two choices in this domain.

1 I n t r o d u c t i o n

When n balls are sequentially placed uniformly at ran-
dom into n bins, the fullest bin has (1 +o(1)) In n~ In Inn
balls in it w.h.p. (with high probability). In contrast,
Azar et. al. [1] have shown that, if for each ball we
choose d bins at random and then place the ball into the
least full of them at the time of insertion, then w.h.p.
the fullest bin contains only ln lnn / lnd + O(1) balls.
This idea, referred to as "balanced allocations" or "the
power of two choices," has spawned a large literature of
both theoretical and practical interest [4].

Here we consider a multidimensional variation:
Consider throwing m balls into n bins, where each ball
is a random D-dimensional 0-1 vector of weight f ; that
is, each vector has exactly f non-zero entries chosen uni-
formly among all (y) possibilities. The average load in
each dimension for each bin is then o~ = (mf) /(nD). Let
[.(a, b) be the load in dimension a for the b-th bin. The
maximum dimensional load (as opposed to the maxi-
mum load over bins) is maxa,b f(a, b). We show that
under natural conditions placing the balls randomly or
in a round-robin fashion yields a maximum dimensional
load of f~(log(nD)/log log(riD)), while using the power
of two choices appropriately can reduce the maximum
dimensional load to O(log log(nD)).

The motivation for our problem arises from large-
scale search engines. Because the collection of pages to
be indexed is so large, it has to be split among n servers.
When a user makes a query to a front-end machine,
the query is sent to all n servers; results are returned
to the front-end machine for merging and presentation.
Hence the time to serve the query is determined by
the slowest of the servers. The time for each server
to process a one-word query is roughly proportional to
the number of documents at that server containing the

T. J. Watson Research Center, 19 Skyline Dr.,
Hawthorne, NY 10532. E-mail: abroder©us, ibm. com.

tHarvard University, Computer Science Department, 33
Oxford St., Cambridge, MA 02138. Supported by NSF
grants CCR-9983832, CCR-0118701, and CCR-0121154.
E-mail: michaelm@eec s. harvard, edu.

word of interest. Thus, to achieve bet ter efficiency, it is
necessary to split the documents among servers in such
way that the number of documents containing a given
word is roughly equal.

We are of course simplifying or ignoring many
issues, including: (a) the time to serve a one-word
query is usually proportional to the number of disk
reads needed to read its posting list, i.e. the list of its
occurrences in the corpus; (b) for multiple word queries,
one can use branch-and-bound techniques (see e.g. [2]);
(c) it is possible to simply ignore the slowest responding
servers, with a corresponding decline in answer quality
(see [3]). Nevertheless, at least for popular words, it is a
good idea to split the documents among servers in such
a way as to balance these words as much as possible.

In our setting, the n bins represent the n servers
and m represents the total number of documents in the
collection. The dimension D represents the number of
"interesting words" that should be balanced. Here D
is much smaller than the full vocabulary: most words
have posting lists that can be read in one disk read and
require no optimization, and words that appear very
seldom in queries are of no interest as well. The weight
f is the maximum number of distinct interesting words
that might appear in any document.

We present work in progress, providing some theo-
retical analysis and simulation results. We believe the
study of the power of two choices in multidimensional
settings is interesting in its own rights, and will find
further applications.

2 A L o w e r B o u n d

We first provide a lower bound that holds when the m
balls are placed at random, or when the balls are simply
split among the n bins in a round-robin fashion.

LEMMA 2.1. Conditional on the load in each bin being
mln and l i d < 112 ,

Pr(g(a,b) > k) > (2-2c~)((tlk) k.

Proof.

Pr([(a, b) > k)

(1)m,n
> (mlnk)k(f lD)k(1-- f /D)~D/ f

> (2-2c~)(a/k) k.
195

LEMMA 2.2. When a is a constant and m / n >
log(nD) / log log(nD), the maximum dimensional load is
~(log(nD)/ loglog(nD)) with high probability.

Proof. We sketch the proof. The probabili ty tha t the
max inmm dimensional load exceeds any given value x
is minimized when all bins have m/n balls. In this case,
the events g(a, b) >_ x are easily shown to be negatively
dependent, so tha t

Pr(Va, b : g(a,b) < x) < (1 - (2-2")(a/x)X) "D,

using Lemma 2.1. The right hand side can be shown to
be less than 1/n for an x = f~(log(nD)/loglog(nD)).

3 An Upper Bound
Our upper bound using the power of two choices is
limited to cases where f is polylogarithnfic in n. We
expect to have more general results in an extended
version of this paper. In our scheme, d bins bl, b2,... , bd
are chosen uniformly at random. Let S be the set of
values set to 1 in the vector being placed. Then the
values maxaes g(a, bi) are compared. The ball is put in
the bin with the smallest corresponding value, ties being
broken arbitrarily.

THEOREM 3.1. When a and d are constants, f is
O(log c n), and D is polynomial in n, then the maximum
dimensional load is log log(nD)/log d + o(log log(riD))
with high probability.

Proof. We sketch the proof, following the layered in-
duction technique introduced in [1]. Let t3i represent
an upper bound tha t holds w.h.p, on the number of
dimension-bin pairs (a, b) with load at least i. We want
a recurrence for the ~i tha t holds inductively w.h.p. We
set

= 2:,n d

\ n D] "

To see the reason for this choice, notice that if the i- th
bin is chosen,

P r (T ~ e (a , b ~) _> j) < (ffl3)/(nP),

and hence the probabili ty tha t all d choices match a
dimension with load at least j is at most ((fflj)/(nD)) d.
When this occurs, it introduces at most f dimensions
with load at least j + 1. Hence the expected number
of dimensions with load at least j + 1 is at most
fm((f f l j) / (nD)) d, and we add a factor of two so
tha t the appropriate Chernoff bound holds with high
probabiiity. We conclude tha t we may set

flj+, _ 2a (f ~j'~ d
nD \ n D] '

so tha t the fraction of dimensions with load at least j
shrinks rapidly.

1 ~Y~th this recurrence, it remains to show that:

1. There is a suitable start ing point j for the recur-
rence;

2. The recurrence has ~j shrink to a small number
when j = log log n/log d + o(log log(riD));

3. The tail of the argument (once ~j is so small
tha t the Chernoff bound does not apply) causes no
difficulties.

The tail is easily handled using s tandard means.
The s tar t of the recurrence is more challenging; due to
the extra factors of f , we must be careful to ensure
tha t /3j is initially decreasing. However, if we let
j0 = cl log log n~ log log log n for a suitable constant
cl, we can show tha t fljo <- nD/ l°g 2cn" To see this,
suppose tha t every ball is placed d times, according to
all of its d choices. Even in this case, the number of
dimensions with load at least j is essentially the same
as when chnf = danD balls are thrown into nD bins,
implying ~Jo <- nD/log 2c n.

Given the initial value 13jo, s tandard techniques
show tha t ~j falls fast enough tha t for k =
loglog(nD)/logd + j0, ~k <_ logn, at which point we
have to use a tail argument to show tha t there is no di-
mension with load more than k = loglog(nD)/logd +
jo + O(1) with high probability.

4 Simulat ion Example
As an example, we performed simulations with 10,000
bins and 10,000,000 balls, each ball corresponding to
a 1,000 dimensional 0-1 vector with 20 random entries
set to 1, so tha t a = 20. We evaluated the power of
two choices compared with a single random choice and
a round-robin division. Over 100 trials, the max imum
dimensional load using two choices was always 29 or 30;
using one choice it ranged between 46 and 52; and using
round-robin it ranged between 41 and 49. This is in line
with our theory, and suggests the type of improvement
one ,night expect with this simple approach.

References

[1] Azar, Y., Broder, A., Karlin, A., and Upfal, E.
Balanced allocations. SIAM Journal of Computing 29,
1 (2000), 180-200.

[2] Broder, A., Carmel, D., Herscovici, M., Softer, A., and
Zien, J., Efficient query evaluation using a two-level
retrieval process. In Proc. of the 12 th CIKM (2003),
pp. 426-434.

[3] Broder, A. and Mitzenmacher, M. Optimal plans
for aggregation. In Proc. of the 21 s~ PODC (2002),
pp. 144-152.

[4] Mitzemnacher, M., Richa, A., and Sitaraman, R.
The Power of Two Choices: A Survey of Techniques
and Results. In Handbook of Randomized Computing,
edited by P. Pardalos, S. Rajasekaran, J. Reif, and
J. Rotim. Kluwer Academic Publishers, Norwell, MA,
2001, pp. 255-312.

