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A b s t r a c t  

We consider a multidimensional variant of the balls- 
and-bins problem, where balls correspond to random 
D-dimensional 0-1 vectors. This variant is motivated by 
a problem in load balancing documents for distributed 
search engines. We demonstrate the utility of the power 
of two choices in this domain. 

1 I n t r o d u c t i o n  

When n balls are sequentially placed uniformly at ran- 
dom into n bins, the fullest bin has (1 +o(1)) In n~ In Inn  
balls in it w.h.p. (with high probability). In contrast, 
Azar et. al. [1] have shown that,  if for each ball we 
choose d bins at random and then place the ball into the 
least full of them at the time of insertion, then w.h.p. 
the fullest bin contains only ln lnn / lnd  + O(1) balls. 
This idea, referred to as "balanced allocations" or "the 
power of two choices," has spawned a large literature of 
both theoretical and practical interest [4]. 

Here we consider a multidimensional variation: 
Consider throwing m balls into n bins, where each ball 
is a random D-dimensional 0-1 vector of weight f ;  that  
is, each vector has exactly f non-zero entries chosen uni- 
formly among all (y)  possibilities. The average load in 
each dimension for each bin is then o~ = (mf) /(nD).  Let 
[.(a, b) be the load in dimension a for the b-th bin. The 
maximum dimensional load (as opposed to the maxi- 
mum load over bins) is maxa,b f(a, b). We show that  
under natural conditions placing the balls randomly or 
in a round-robin fashion yields a maximum dimensional 
load of f~(log(nD)/log log(riD)), while using the power 
of two choices appropriately can reduce the maximum 
dimensional load to O(log log(nD)). 

The motivation for our problem arises from large- 
scale search engines. Because the collection of pages to 
be indexed is so large, it has to be split among n servers. 
When a user makes a query to a front-end machine, 
the query is sent to all n servers; results are returned 
to the front-end machine for merging and presentation. 
Hence the time to serve the query is determined by 
the slowest of the servers. The time for each server 
to process a one-word query is roughly proportional to 
the number of documents at that  server containing the 
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word of interest. Thus, to achieve bet ter  efficiency, it is 
necessary to split the documents among servers in such 
way that  the number of documents containing a given 
word is roughly equal. 

We are of course simplifying or ignoring many 
issues, including: (a) the time to serve a one-word 
query is usually proportional to the number of disk 
reads needed to read its posting list, i.e. the list of its 
occurrences in the corpus; (b) for multiple word queries, 
one can use branch-and-bound techniques (see e.g. [2]); 
(c) it is possible to simply ignore the slowest responding 
servers, with a corresponding decline in answer quality 
(see [3]). Nevertheless, at least for popular words, it is a 
good idea to split the documents among servers in such 
a way as to balance these words as much as possible. 

In our setting, the n bins represent the n servers 
and m represents the total number of documents in the 
collection. The dimension D represents the number of 
"interesting words" that  should be balanced. Here D 
is much smaller than the full vocabulary: most words 
have posting lists that  can be read in one disk read and 
require no optimization, and words that  appear very 
seldom in queries are of no interest as well. The weight 
f is the maximum number of distinct interesting words 
that  might appear in any document. 

We present work in progress, providing some theo- 
retical analysis and simulation results. We believe the 
study of the power of two choices in multidimensional 
settings is interesting in its own rights, and will find 
further applications. 

2 A L o w e r  B o u n d  

We first provide a lower bound that  holds when the m 
balls are placed at random, or when the balls are simply 
split among the n bins in a round-robin fashion. 

LEMMA 2.1. Conditional on the load in each bin being 
mln  and l i d  < 112 , 

Pr(g(a,b) > k) > (2-2c~)((tlk) k. 

Proof. 

Pr([(a,  b) > k) 

(1  )m,n 
> (mlnk)k( f lD)k(1--  f /D)~D/ f  

> (2-2c~)(a/k) k. 
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LEMMA 2.2. When a is a constant and m / n  > 
log(nD) / log log(nD),  the maximum dimensional load is 
~(log(nD)/ loglog(nD) ) with high probability. 

Proof. We sketch the proof. The probabili ty tha t  the 
max inmm dimensional load exceeds any given value x 
is minimized when all bins have m/n  balls. In this case, 
the events g(a, b) >_ x are easily shown to be negatively 
dependent,  so tha t  

Pr(Va, b : g(a,b) < x) < (1 - (2-2")(a/x)X) "D, 

using Lemma 2.1. The right hand side can be shown to 
be less than 1/n for an x = f~(log(nD)/loglog(nD)). 

3 An Upper  Bound 
Our upper  bound using the power of two choices is 
limited to cases where f is polylogarithnfic in n. We 
expect to have more general results in an extended 
version of this paper.  In our scheme, d bins bl, b2,... ,  bd 
are chosen uniformly at random. Let S be the set of 
values set to 1 in the vector being placed. Then the 
values maxaes  g(a, bi) are compared. The ball is put  in 
the bin with the smallest corresponding value, ties being 
broken arbitrarily. 

THEOREM 3.1. When a and d are constants, f is 
O(log c n), and D is polynomial in n, then the maximum 
dimensional load is log log(nD)/log d + o(log log(riD)) 
with high probability. 

Proof. We sketch the proof, following the layered in- 
duction technique introduced in [1]. Let t3i represent 
an upper  bound tha t  holds w.h.p, on the number of 
dimension-bin pairs (a, b) with load at  least i. We want 
a recurrence for the ~i tha t  holds inductively w.h.p. We 
set 

= 2:,n d 

\ n D ]  " 

To see the reason for this choice, notice that  if the i- th 
bin is chosen, 

P r ( T ~ e ( a , b ~ )  _> j ) <  (ffl3)/(nP), 

and hence the probabili ty tha t  all d choices match  a 
dimension with load at least j is at most  ((fflj)/(nD)) d. 
When this occurs, it introduces at most f dimensions 
with load at least j + 1. Hence the expected number  
of dimensions with load at least j + 1 is at most  
fm(( f f l j ) / (nD))  d, and we add a factor of two so 
tha t  the appropriate  Chernoff bound holds with high 
probabiiity. We conclude tha t  we may set 

flj+, _ 2a ( f ~j'~ d 
nD \ n D ]  ' 

so tha t  the fraction of dimensions with load at least j 
shrinks rapidly. 

1 ~Y~th this recurrence, it remains to show that:  

1. There is a suitable start ing point j for the recur- 
rence; 

2. The recurrence has ~j shrink to a small number  
when j = log log n/log d + o(log log(riD)); 

3. The tail of the argument  (once ~j is so small 
tha t  the Chernoff bound does not apply) causes no 
difficulties. 

The tail is easily handled using s tandard means. 
The s tar t  of the recurrence is more challenging; due to 
the extra  factors of f ,  we must be careful to ensure 
tha t  /3j is initially decreasing. However, if we let 
j0 = cl log log n~ log log log n for a suitable constant 
cl, we can show tha t  fljo <- nD/ l°g  2cn" To see this, 
suppose tha t  every ball is placed d times, according to 
all of its d choices. Even in this case, the number  of 
dimensions with load at least j is essentially the same 
as when chnf = danD balls are thrown into nD bins, 
implying ~Jo <- nD/log 2c n. 

Given the initial value 13jo, s tandard techniques 
show tha t  ~j falls fast enough tha t  for k = 
loglog(nD)/logd + j0, ~k <_ logn,  at  which point we 
have to use a tail argument  to show tha t  there is no di- 
mension with load more than k = loglog(nD)/logd + 
jo + O(1) with high probability. 

4 Simulat ion Example  
As an example,  we performed simulations with 10,000 
bins and 10,000,000 balls, each ball corresponding to 
a 1,000 dimensional 0-1 vector with 20 random entries 
set to 1, so tha t  a = 20. We evaluated the power of 
two choices compared with a single random choice and 
a round-robin division. Over 100 trials, the max imum 
dimensional load using two choices was always 29 or 30; 
using one choice it ranged between 46 and 52; and using 
round-robin it ranged between 41 and 49. This is in line 
with our theory, and suggests the type of improvement  
one ,night expect with this simple approach. 
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