
Trace reconstruction with constant deletion probability and related

results

Thomas Holenstein∗ Michael Mitzenmacher† Rina Panigrahy‡ Udi Wieder§

Abstract

We provide several new results for the trace reconstruc-
tion problem. In this setting, a binary string yields a
collection of traces, where each trace is independently
obtained by independently deleting each bit with a fixed
probability δ. Each trace therefore consists of a ran-
dom subsequence of the original sequence. Given the
traces, we wish to reconstruct the original string with
high probability. The questions are how many traces are
necessary for reconstruction, and how efficiently can the
reconstruction be performed.

Our primary result is that for some universal con-
stant γ and uniformly chosen strings of length n, for
any δ < γ reconstruction is possible with poly(n) traces
in poly(n) time with high probability. We also obtain
algorithms that require a number of traces exponential
in Õ(

√
n) for any δ < 1 even for worst case strings, and

we derive lower bound results for simpler classes of al-
gorithms based on summary statistics from the traces.

1 Introduction

In this paper, we consider the following problem: a
binary string x = x1x2 . . . xn yields a collection of
traces Y 1, Y 2, . . . , Y m, where each Y i is independently
obtained from x by passing through a deletion channel,
under which each bit is independently deleted with fixed
probability δ. Each trace therefore consists of a random
subsequence of the original sequence. Given the traces
(and the value of n and δ), we wish to reconstruct
the original string x exactly with high probability.
The question is how many traces are necessary for
reconstruction. Our primary new result is the following:
for some universal constant γ and uniformly at random
chosen x, for δ < γ, reconstruction is possible with
polynomially many traces with high probability (over
both x and the traces). The polynomial can be taken

∗Microsoft Research, Silicon Valley. thomahol@microsoft.com
†Harvard School of Engineering and Applied Sciences, Cam-

bridge, MA. Supported in part by NSF Grant CCR-0634923.

michaelm@eecs.harvard.edu
‡Microsoft Research, Silicon Valley. rina@microsoft.com
§Microsoft Research, Silicon Valley. uwieder@microsoft.com

to be independent of δ, and the reconstruction itself
also takes polynomial time. As we clarify below, this
represents a substantial advance over previous work.

We also obtain additional results for this setting.
We derive an algorithm that works with high probability
for any original string and constant δ < 1, which
requires a number of traces exponential in Õ(

√
n).

Finally, we derive lower bound results for simpler classes
of algorithms based on summary statistics from the
traces. In particular, we show that for any constant
δ > 0, for sufficiently large n there exist two distinct 0-
1 strings w1 and w2 of length n such that for any j the
probability that bit j is 1 in a trace of w1 is nearly the
same as the probability that bit j is 1 in a trace of w2;
in particular, the difference is less than any polynomial.
As we argue in Section 3, this demonstrates that natural
algorithms based on the L1 distance between observed
and expected summary statistics are doomed to fail.

1.1 Background and previous work This general
class of trace reconstruction problems arises naturally in
multiple contexts. First, it can be viewed as a purely in-
formation theoretic problem. Combinatorial variations
have been studied by Levenshtein [7, 8]; in these varia-
tions, the question is in the worst case how many dis-
tinct subsequences are required to reconstruct the ini-
tial string x. That work examines more extensive error
models, including insertions and other errors. While
Levenshtein also considers the problem of reconstruc-
tion over probabilistic channels, he does so only for
memoryless channels. The harder case with deletions
and/or insertions was not considered.

In this information theoretic context, the trace
reconstruction problem is also tangentially related to
corresponding coding problems [4, 5]. For example,
one could ask for the code capacity when sending a
message to multiple cooperating receivers, where the
transmission to each receiver behaves as though it passes
through an independent deletion channel. Notice that
in our setting, our base string x is not chosen from
an agreed codebook, but instead chosen at random;
the coding problem provides an interesting variation for
future work.

As suggested in [3, 6], trace reconstruction can
also be viewed as a restricted version of the multiple
sequence alignment problem, a fundamental problem
of computational biology. It arises, for example, when
one is given a set of related DNA sequences (the Yi),
and one wants to determine the common ancestor from
which these sequences might have arisen (x). In our
setting, the evolutionary process is taken to be random
deletion; of course, other evolutionary processes can
be considered, but the problem is already theoretically
quite challenging even when only considering deletions.
The main result of [3] focuses exactly on the scenario
we consider.

Trace reconstruction also appear naturally in the
context of sensor networks. An array of sensors could
attempt to record a sequence of events, where each
event gives a positive or negative result – that is, a 0/1
outcome. However, for various reasons, such as noise
or mechanical imperfections, not all sensors may detect
each event, giving rise to deletions in each sensor’s trace.
Reconstructing the correct sequence from a collection of
individually inaccurate sensors, specifically sensors that
independently miss each event with fixed probability,
corresponds to the trace reconstruction problem.

For the specific problems we consider, formal re-
sults were obtained by Batu, Kannan, Khanna, and
McGregor [3]. They showed that for strings of length
n chosen uniformly at random, with O(log n) traces the
original string can be reconstructed with high proba-
bility for deletion probabilities δ = O(1/ log n). They
also present further results for arbitrary inputs x, as op-
posed to randomly chosen x; their analysis shows that
with O(n log n) traces the original string can be recon-
structed with high probability for deletion probabilities
δ = O(1/

√
n). The main result of [3] is based on se-

quential majority voting, which we describe in order to
later compare with our approach. Each trace maintains
a pointer, representing the current guess as to the next
bit in the original string; initially, each pointer points to
the first bit of each trace. At each step, the traces take a
majority vote of what the next bit is, based upon their
pointers. Traces that match the majority vote incre-
ment their pointer to point to the next bit; traces that
do not match leave their pointers in the same position.

Further results appear in [6], which considers inser-
tions and errors as well as deletions. This work intro-
duces the ideas of anchors, or substrings that appear
(with possibly some small deviations) in most or all of
the traces. We adopt a similar idea in our approaches.

For deletions only, [3] contains the best previous re-
sults we are aware of. Specifically, the existence of a
reconstruction scheme for constant deletion probabili-
ties has remained open until our work.

As a further remark, we note that all our algorithms
have the property that they do not use the fact that
the string is of finite length. Thus, they also work in
a model where the string and the traces are infinite
sequences. In this case, n would just be the last bit
the algorithms reconstruct. We note that we do not
know of a trivial argument that in this setting trace
reconstruction is possible for arbitrary δ < 1, even
using arbitrarily many strings, but as mentioned before,
our analysis in Section 3 shows that indeed for any δ
reconstruction is possible.

2 A polynomial trace algorithm for random
bitstring and small deletion probabilities

2.1 Intuition Our algorithm, in contrast to that of
[3], does not use majority voting, but a different voting-
based scheme. Inherently, one limitation of majority
voting is that every trace has an equal vote, regardless
of how sure it is of its vote. A belief-based scheme (e.g.,
belief propagation) would instead utilize votes combined
with probabilistic measures of their certainty. As of
this point, we do not have the tools to analyze such
schemes. Instead, we adopt a different approach. We
only let traces vote if we think they are likely to have the
right value; we determine this inductively by checking if
the trace matches the last O(log n) bits, so that we are
confident that we have an accurate assessment of the
trace’s current position.

In non-technical terms, John F. Kennedy report-
edly said in a speech, “The ignorance of one voter in
a democracy impairs the security of all.” Similarly, ig-
norant voters impair voting-based reconstruction algo-
rithms, so we attempt to restrict the vote to appro-
priately knowledgeable traces. We suspect this general
approach may prove useful in developing and analyzing
voting-based algorithms in other contexts.

2.2 An exponential algorithm We begin with an
algorithm for reconstructing the first h bits of the
original string x of length n using eO(h) traces (and
similar time). This algorithm works for any x; we do
not assume x is random here. While such an algorithm
is obviously expensive, it allows us to recover the first
O(log n) bits of x, from which we bootstrap our main
algorithm. We improve on this algorithm in Section 3,
but the algorithm in this section is simpler. Also, we
use some results from this section in our polynomial
trace algorithm. Further, we remark that no effort has
been made to optimize the constants in the analysis that
follows.

Theorem 2.1. For any δ < 1
3 , there is an algo-

rithm that determines the first h bits of x from

O(he14hδ log(1/ε)) independent traces correctly with
probability 1− ε.

The algorithm determines the bits sequentially.
Denoting by Yj the random variable of the jth position
in a trace (where Yj ∈ {0, 1,⊥}, with ⊥ being the value
if a trace is shorter than j bits), the main observation
is that the value of xi influences Yj for j = i(1 −
3δ) more than all the subsequent bits xi+1xi+2 . . . xn
combined.1 That is, there exists a threshold S which
can be computed given x1 . . . xi−1, such that if xi = 1
then Pr[Yj = 1] > S, and if xi = 0, then Pr[Yj = 1] < S,
regardless of the values of the later bits.

Let Inf(i, j) denote the probability that xi ends up
as the jth bit in a trace, i.e., the influence of input bit i
onto bit j in a trace. We have

Inf(i, j) =
(
i− 1
j − 1

)
(1− δ)jδi−j ,(2.1)

where we keep the dependence on δ implicit throughout.
Also, Pr[Yj = 1] =

∑
i≥j Inf(i, j)xi.

The following simple lemma states two properties
which we can directly use to reconstruct x (the lemma
is slightly stronger than what we need here, since we
reuse the lemma in Section 2.3).

Lemma 2.1. Let δ < 1
3 and j ≤ (1 − 3δ)i. Then,

Inf(i, j) ≥ 2
∑
i′>i Inf(i′, j). If (1− 4δ)i ≤ j ≤ (1− 3δ)i

then Inf(i, j) ≥ e−7δi.

Proof. For the first statement it is sufficient to note that

for any i′ > i the inequality Inf(i′,j)
Inf(i′−1,j) = (i′j)

(i′−1
j)

δ =

i′

i′−j δ < 1
3 holds, since this implies that the series

is upper bounded by a geometric series with q = 1
3 .

When (1 − 4δ)i ≤ j ≤ (1 − 3δ)i, the second statement
follows from Inf(i, j) =

(
i−1
i−j
)
(1−δ)jδi−j ≥

(
i−1
i−j
)i−j(1−

δ)jδi−j ≥
(

1
4δ

)i−j (1 − δ)jδi−j ≥
(

1
4

)i−j (1 − δ)j ≥(
1
4

)4δi
e(1−3δ) ln(1−δ)·i ≥ e−7δi. �

Using this, we can prove Theorem 2.1

Proof. (of Theorem 2.1) Assume that the algorithm
has already determined x1x2 . . . xi−1. To recover xi we

1While xi has the strongest influence on Yj(1−δ), the combined
effect of the subsequent bits influences this particular output value
more. The influence breaks even at Yj(1−2δ), and any position

before that could be used to predict; we chose j(1 − 3δ) for
simplicity.

set j = (1− 3δ)i and write

Pr[Yj = 1] =
n∑
`=j

Inf(`, j)x`

=
i−1∑
`=j

Inf(`, j)x` + Inf(i, j)xi+

n∑
`=i+1

Inf(`, j)x`.

From Lemma 2.1 we get 0 ≤
∑n
`=i+1 Inf(`, j)x` ≤

1
2 Inf(i, j), and since

∑i−1
`=j Inf(`, j)x` can be computed

given x1 . . . xi−1 we see that if we know Pr[Yj = 1] up
to an additive error of Inf(i,j)

4 ≥ 1
4e
−7δi we can learn xi.

Using standard Chernoff bounds the theorem follows.�

We note that this implies that for any δ < 1
3 and

for any constant c the first c log n bits of x can be
determined from a polynomial number of traces with
high probability, where the polynomial is independent
of δ (but dependent on c).

2.3 Polynomial traces, random x We now assume
that x is random, and δ ≤ γ, where γ will be a
sufficiently small universal constant.

The essential idea of our algorithm is to designate
a substring of length w = O(log(n)) of the already
recovered input string as “anchor”. We then discard
all traces which do not contain the anchor, and use a
voting on the remaining strings to predict xi.

In order for this technique to work, we will need to
assume that x has the property that an anchor substring
is unlikely to appear from deletions in another part of
the string. This holds for w-substring unique strings,
which we define next.

Definition 2.1. A string x of length n is w-substring
unique if for all a, b for which {a, . . . , a + w} 6⊆
{b, . . . , b + 1.1w}, the substring xa . . . xa+w cannot be
obtained by deleting some symbols in xb . . . xb+1.1w.

We show later (Lemma 2.4) that most strings of
length n are O(log(n))-substring-unique, and we will
see that our algorithm recovers all substring-unique
strings correctly. We now show that in a substring-
unique string anchors help determine from where trace
bits arose, in the sense that a match implies that we
can get an approximate guess of the origin of the last
bit of the match. We remark that an exact guess is
impossible in some cases: for example, if the substring
ends with more than 1/δ2 zeros (which happens with
constant probability).

Lemma 2.2. Let δ be a small enough constant and let x
of length n be w-substring unique. Let Y be a trace
of x after application of a deletion channel with deletion
probability δ.

Condition on the event that there exists a j∗ for
which

Yj∗−w . . . Yj∗−1 = xi−w . . . xi−1(2.2)

holds, and set j∗ to an arbitrary value for which this is
true. Then, the probability that Yj∗ does not originate
from a bit in the range xi . . . xi+0.1w−1 is at most
nδ0.001w.

Proof. Let A be the event that there exists a j∗ for
which (2.2) holds, and let B the the event that Yj∗

originates from outside the given range. We have
to upper bound Pr[B|A] = Pr[A∧B]

Pr[A] ≤ Pr[B]
Pr[A] . We

first observe that Pr[A] ≥ (1 − δ)w, since with this
probability none of the symbols xi−w . . . xi−1 is deleted.

Because x is w-substring unique, Yj∗ can only come
from outside the range xi−1 . . . xi−1+0.1w if more than
0.1w symbols of xa . . . xa+1.1w are deleted for some a.
The probability that for a fixed a more than 0.1w
symbols in this sequence are deleted is at most, using
a Chernoff bound, δ(1.1w)(0.052) ≤ δ0.002w and thus the
probability that this happens at any position a is at
most Pr[B] ≤ nδ0.002w. In total we get Pr[B|A] =
Pr[A∧B]

Pr[A] ≤
Pr[B]
Pr[A] ≤

nδ0.002w

(1−δ)w ≤ nδ
0.001w. �

In the simplest approach, we would now use the
substring xi−wxi−w+1 . . . xi−1 of width w (with w ∈
O(log n)) as anchor, and only consider traces contain-
ing this substring. Then, if in a particular trace Y
there exists a j∗ such that Yj∗−wYj∗−w+1 . . . Yj∗−1 =
xi−wxi−w+1 . . . xi−1, it seems reasonable to hope that
Yj∗ would yield a good prediction for xi to use in our
voting.

However, this is not always the case: again, if the
last ≈ 1/δ2 bits xi−1/δ2 . . . xi (including xi) are all zero
(note that this happens with constant probability), then
it is likely that at least one of these zeros was deleted
in traces which match xi−wxi−w+1 . . . xi−1, and with
a bit of additional work one can obtain a counterex-
ample which contradicts the above hope. We avoid
this problem by searching for an anchor of the form
xi−w−v . . . xi−v−1 for some v ∈ O(log(n)) in the trace,
and using a position which is slightly after the match of
the anchor to predict xi (cf. Figure 1).

The algorithm used to successively find the next bit
is given in Algorithm 1. The first O(log n) bits are found
using the approach of Theorem 2.1. After that, the
algorithm first discards all strings which do not match
a certain anchor substring of the previously recovered

string, and then counts how many of the remaining
strings have a one in a certain position.

Lemma 2.3. Let δ be a small enough constant and
let x be of length n. Let w, v be as in Algorithm 1,
and assume x is w-substring unique. Let Y be a
trace of x after application of a deletion channel with
deletion probability δ. Condition on the event that Y ∈
matching, and let j∗ be the smallest position in which Y
matches.

Then, there exists a polynomial time computable
threshold T such that,

xi = 1 =⇒ Pr[Yj∗+(1−3δ)(v−0.1w) = 1] ≥ T +
1

n1100
,

xi = 0 =⇒ Pr[Yj∗+(1−3δ)(v−0.1w) = 1] ≤ T − 1
n1100

Proof. Let J∗ be the random variable corresponding
to j∗ and I∗ be the random variable which denotes the
position from which Yj∗ originates.

We get, for any j ≥ 0, and after conditioning on a
match,

Pr[Yj∗+j = 1] =
∑
i∗≥0

Pr[I∗ = i∗]
∑
`≥0

Inf(`, j)xi∗+`

(2.3)

According to Lemma 2.2, we have Pr
[
i − v ≤ I∗ ≤

i−v+0.1w−1
]
≥ 1−nδ0.001w. We can therefore restrict

the outer sum in (2.3) to this range with negligible loss.
In other words, there exists a Ai(x) ∈ [0, nδ0.0001w] ⊂
[0, n

100w] such that

Pr[Yj∗+j = 1]

= Ai(x) +
i−v+0.1w∑
i∗=i−v

Pr[I∗ = i∗]
∑
`≥0

Inf(`, j)xi∗+`,

= Ai(x) +
i−v+0.1w∑
i∗=i−v

Pr[I∗ = i∗]
n∑

`≥i∗
Inf(`− i∗, j)x`

= Ai(x) +
i−v+0.1w∑
i∗=i−v

Pr[I∗ = i∗]
(i−1∑
`=i∗

Inf(`− i∗, j)x`

+ Inf(i− i∗, j)xi

+
∑
`≥i+1

Inf(`− i∗, j)x`
)

x

Y

w︷ ︸︸ ︷ v︷ ︸︸ ︷

Yj∗
6

Yj∗+(1−3δ)(v−0.1w)

6

xi
?

xi∗

?

Figure 1: The initial string x and a trace Y which matches at position j∗. The bit xi∗ is the actual origin of Yj∗ ,
while Yj∗+(1−3δ)(v−0.1w) is used to predict xi.

1 procedure ObtainNextBit(x1 . . . xi−1, Y 1, . . . , Y poly(n))
2 w := 100 log(n)
3 v := w

δ
4 if i ≤ v + w then
5 Use Theorem 2.1 to predict xi
6 else
7 matching :=

{
Y ∈ {Y 1, . . . , Y poly(n)} | ∃j∗ : (Yj∗−v . . . Yj∗−1) = (xi−v−w . . . xi−v−1)

}
8 ones := {Y ∈ matching | Yj∗+(1−3δ)(v−0.1w) = 1} where j∗ is the smallest j∗ as in Line (7)
9 return

(| ones |
|matching | > T

)
, where T is as in Lemma 2.3

10 fi
11 od

Algorithm 1: The polynomial time algorithm which finds xi.

= Ai(x) +
i−v+0.1w∑
i∗=i−v

Pr[I∗ = i∗]
i−1∑
`=i∗

Inf(`− i∗, j)x`︸ ︷︷ ︸
=:S

+
i−v+0.1w∑
i∗=i−v

Pr[I∗ = i∗]
(

Inf(i− i∗, j)xi

+
∑
`≥i+1

Inf(`− i∗, j)x`
)(2.4)

For j = (v − 0.1w)(1 − 3δ) we see that j ≤ (i −
i∗)(1 − 3δ) for all i∗ ∈ [i − v, i − v + 0.1w], and thus
we can use the first part of Lemma 2.1 which implies
that Inf(i− i∗, j) ≥ 2

∑
`≥i+1 Inf(`− i∗, j).

Thus, in case xi = 0 equation (2.4) implies

Pr[Yj = 1] ≤ Ai(x) + S +
i−v+0.1w∑
r=i−v

Pr[I∗ = i∗]
Inf(i− r, j)

2
.

On the other hand, if xi = 1 we have

Pr[Yj = 1] ≥ Ai(x) + S +
i−v+0.1w∑
r=i−v

Pr[I∗ = i∗] Inf(i− r, j).

Now, the difference between Ai(x) when xi = 0
and Ai(x) when xi = 1 is at most n 1

100w . Furthermore,

given that x0 . . . xi−1 are known, S can be calculated
up to an accuracy of (1

100)w in polynomial time. Also,
for all i∗ ∈ [i − v, i − v + 0.1w], using Lemma 2.1:
Inf(i − i∗, j) ≥ exp(−7δ(i − i∗)) ≥ exp(−7δv) =
exp(−7w) ≥ n−1099. Finally, it is possible to compute
Pr[I∗ = i∗], and since

∑i−v+0.1w
i∗=i−v Pr[I∗ = i∗] ∈ 1− o(1),

the gap between the two cases is at least 1
n1100 . �

Theorem 2.2. Let δ be a small enough constant, and
let x be a 100 log(n)-substring unique string of length n.
There exists a polynomial time algorithm which recov-
ers x from poly(n) independent traces with probabil-
ity 1− o(1).

Proof. We will predict the bits sequentially, using the
procedure ObtainNextBit as given in Algorithm 1. For
every call to ObtainNextBit we use a fresh set of poly(n)
traces (to make sure the errors are independent). Start-
ing with a high enough polynomial, and using a Cher-
noff bound, we see that with very high probability we
have enough traces in the set matching in Line (7). Us-
ing Lemma 2.3 we see that the next bit will predicted
correctly with overwhelming probability. The theorem
follows. �

We conclude by showing that most strings are
substring-unique, which implies that our algorithm
works for most strings.

Lemma 2.4. At least a fraction 1− 1
nd

of all strings of
length n are (2d+ 4) log(n)-substring unique.

Proof. Consider two intervals xa . . . xa+w

and xb . . . xb+1.1w for which {a, . . . , a + w} 6⊆
{b, . . . , b + 1.1w}; w.l.o.g. we consider the case b > a.
Since for a fixed deletion pattern, one can choose
the string x by selecting bits in increasing order,
the probability that xa . . . xa+w can be obtained
by deleting symbols in xb . . . xb+1.1w is at most(

1.1w
0.1w

)
2−w ≤ (11e)0.1w2−w ≤ (1.415)−w. Since there

are fewer than n2 disjoint intervals, we get that the
probability that two contradicting substrings exist is at
most n2(1.415)−w ≤ n−d. �

Corollary 2.1. Let δ be a small enough constant.
There exists a polynomial time algorithm which recovers
fraction 1−n−48 of all strings x correctly with probabil-
ity 1− o(1) from poly(n) independent traces.

Proof. According to Lemma 2.4 this large fraction of
the strings of length n are 100 log(n)-substring unique,
and we apply Theorem 2.2. �

Clearly, the error probability of the algorithm can
be made arbitrarily small by running it multiple times
on independent traces.

3 Algorithms Based on the Probability Vectors

The algorithm from Theorem 2.1 reconstructs each bit
xi based on an estimate of pj := Pr[Yj = 1] for
j = (1 − 3δ)i. It seems natural to ask how much one
can generalize this approach; in particular, how good
does an approximation p̂1 . . . p̂n of p1 . . . pn need to be
such that recovering x1 . . . xn is possible.2 Approximate
values p̂j are obtained with the desired accuracy by
counting the number of of ones in position j in many
independent traces; Chernoff bounds control the quality
of the approximation.3

Without loss of generality, we assume that we try
to recover the original string bitwise, starting from the
front. Thus, we have already recovered bits x1 . . . xi−1,
and we want to recover xi. We can formulate the
following integer linear program (3.5), where the pj and
the xi′ for i′ ≥ i are variables (the pj are variables

2Recall that Yj ∈ {0, 1,⊥}, where ⊥ is the value taken if

the trace is shorter than j bits. Note that we generally do not
distinguish between the case where Yj = ⊥ and Yj = 0; however

one doesn’t lose much not distinguishing these cases; a slightly

longer string padded with zeros will behave the same way in the
relevant range.

3One can ensure independence of the noise in the estimates

by using new traces for every position j, which only increases the
number of traces by at most a factor of n.

denoting the actual probabilities Pr[Yj = 1], while the
xi′ are placeholders for the yet to be determined values
of x), the p̂j and the xi′ for i′ < i are constants (these xi′
are the already determined values of x, the p̂j are the
estimates of Pr[Yj = 1]). The objective function is not
linear, but could be easily replaced by a linear function
by introducing additional variables aj with aj ≥ pj− p̂j
and aj ≥ −(pj− p̂j), and minimizing

∑
aj , we omit this

replacement in the presentation for simplicity.

Minimize
n∑
j=1

|pj − p̂j |

(3.5)

Subject to pj =
n∑
i′=j

Inf(i′, j)xi′ (j = 1, . . . , n)

xi′ ∈ {0, 1} (i′ = i, . . . , n)

Actually, solving this ILP recovers the entire string
for i = 1 already. However, it is unclear how to solve it
efficiently, even if the estimates p̂j are exact. Thus, we
consider the following relaxation:

Minimize
n∑
j=1

|pj − p̂j |

(3.6)

Subject to pj =
n∑
i′=j

Inf(i′, j)xi′ (j = 1, . . . , n)

xi ∈ {0, 1}
xi′ ∈ [0, 1] (i′ = i+ 1, . . . , n)

Clearly, this second ILP can be solved in polynomial
time by solving the linear programs which result if xi
is fixed to either 0 or 1. The question we study in this
section is how good the approximation p̂j needs to be
in order to guarantee that solving (3.5) or (3.6) recovers
the original bit string.

We first define the linear map which maps a bit
string x to the corresponding probability vector y.

Definition 3.1. The linear map M (n) : Rn → Rn is
given by y := M (n)x such that yj :=

∑
i≥j Inf(i, j)xi.

The definition is such that, when Y is obtained by
sending x through a deletion channel, and y = M (n)x,
then Pr[Yj = 1] = yj . The definition can be extended
without problems for infinite bitstrings; we will use the
notation M∞ in this case.

It is now of relevance to ask how close the prob-
ability vectors of two bitstrings x(0) and x(1) can be,
assuming that they differ at position i.

Definition 3.2. The L1 gap at position i of M (n) is

gi,n := min
x(0),x(1)∈{0,1}n

x
(0)
i′

=x(1)
i′

=0 (i′<i)

x
(0)
i

=0,x(1)
i

=1

‖M (n)x(0) −M (n)x(1)‖1

= min
x∈{−1,0,1}n
x
i′=0 (i′<i)

xi=1

‖M (n)x‖1

The fractional L1 gap of M (n) at position i is

gfi,n := min
x(0),x(1)∈[0,1]n

x
(0)
i′

=x(1)
i′

=0 (i′<i)

x
(0)
i

=0,x(1)
i

=1

‖M (n)x(0) −M (n)x(1)‖1

= min
x∈[−1,1]n

x
i′=0 (i′<i)

xi=1

‖M (n)x‖1

Obviously we have gfi,n ≤ gi,n. We also remark that one
can formulate a linear program similar to (3.6) which
computes the value of gfi,n.

In this section, we will prove the following bounds
on the L1 gap:

Theorem 3.1. For any constant δ we have

gfi,∞ ≥ exp(−Õ(
√
i))(3.7)

gi,2i ≤ exp(−O(log2(i)/(log log(i))2)).(3.8)

Inequality (3.7) immediately gives an algorithm
which recovers the initial string with exp(Õ(

√
i)) traces:

for every position j we get an estimate p̂j ≈ pj (where
we use new traces for every j), and then we solve (3.6)
iteratively to get the next position. Note that this
algorithm works for any δ < 1, and even if the initial
bitstring is infinitely long and we want to recover it up
to position n.

Inequality (3.8) gives an upper bound on how well
natural algorithms which only consider estimates p̂j of
the probabilities pj can perform. If such an algorithm
works even if independent Gaussian noise4 is added to
each pj , (3.8) simply states that unless the noise added is
smaller than exp(−Õ(log2(i))), for worst case inputs the
two resulting distributions are information theoretically
nearly indistinguishable.

We can conclude that any reconstruction algorithm
based only on summary estimates p̂j will, in the worst
case, require superpolynomially many traces, so that
|p̂j − pj | < exp(−Õ(log2(i))) with high probability.

4Depending how one estimates the probababilities, the noise
may not be independent, in which case our lowerbound may in

principle be overcome – such an algorithm is however hard to
imagine.

3.1 Proof of (3.7) We remarked above that gfi,n
can be found by a linear program. Consequently, the
weak duality theorem of linear programming gives an
immediate way to prove (3.7): one finds an appropriate
solution of the dual linear program. Because it’s simple
to do, we state and prove the weak linearity theorem for
our particular problem.

Lemma 3.1. Let z ∈ [−1, 1]∞ be any vector which has
only finitely many non-zero entries. Let x∗ = (M∞)T z.
Then,

gfi,∞ ≥ x
∗
i −

∑
i′>i

|x∗i′ |.

Proof. For any x ∈ [−1, 1]n with xi = 1, xi′ = 0 for
i′ < i it holds that

∞∑
j=1

|M∞x|j ≥
∞∑
j=1

zj(M∞x)j = zTM∞x

= (x∗)Tx ≥ x∗i −
∑
i′>i

|x∗i′ |,

in particular for the x which minimizes ‖M (n)x‖1. �

Remark 3.1. A vector z as above (in case it is short
enough) also gives an immediate algorithm to find xi,
as long as x∗i −

∑
i′>i |x∗i′ | is positive: the linear combi-

nation of the probabilities
∑
zjpj is larger than a given

threshold in case xi = 1 and smaller otherwise.

We now construct a vector for use in Lemma 3.1.

Lemma 3.2. Fix δ and i. Then, there is a z ∈ R∞
such that zj = 0 for j > (1 − δ)(i + 8

√
δi log(δi))

and |zj | < exp(Õ(
√
δi δ

1−δ)) for all j. Furthermore, for
x∗ = (M∞)T z we have

x∗i > Ω((δi)3/2(1− δ)1/2)

x∗
i+ĩ

<

{
1 1 ≤ ĩ ≤ δi
exp(−Õ(δĩ)) ĩ > δi.

We first show how this lemma can be used to prove (3.7).

Proof. (of Theorem 2.2, (3.7)) We now get (3.7) by
combining Lemma 3.1 and Lemma 3.2, after scaling
z with a factor in exp(−Õ(

√
δi δ

1−δ)) and using the
linearity of M∞. �

Proof. (of Lemma 3.2) We set z to zero for all values
outside the range [(1 − δ)i, (1 − δ)i + 8

√
δi log(δi)].

Because of this, the value of x∗
i+ĩ

can be written as

(where we abbreviate µ = 1− δ)

x∗
i+ĩ

=
8
√
δi log(δi)∑
j̃=0

Inf(i+ ĩ, µi+ j̃)zµi+j̃

= Inf(i+ ĩ, µi)
8
√
δi log(δi)∑
j̃=0

Inf(i+ ĩ, µi+ j̃)
Inf(i+ ĩ, µi)

zµi+j̃

= Inf(i+ ĩ, µi)
8
√
δi log(δi)∑
j̃=0

(i+ĩ−1
µi+j̃−1

)(
i+ĩ−1
µi−1

) µj̃(1− µ)−j̃zµi+j̃

= Inf(i+ ĩ, µi)
8
√
δi log(δi)∑
j̃=0

(i−µi+ĩ)···(i−µi+ĩ−j̃−1)

(µi)···(µi+j̃−1)

µj̃

(1−µ)j̃
zµi+j̃

= Inf(i+ ĩ, µi)
8
√
δi log(δi)∑
j̃=0

(1 + ĩ
i−µi) · · · (1 + ĩ−j̃+1

i−µi)

(1 + 0
µi) · · · (1 + j̃−1

µi)
zµi+j̃

We abbreviate h := (1− µ)i = δi and wĩ := 1 + ĩ
h , and

get

x∗
i+ĩ

= Inf(i+ ĩ, µi)×
8
√
δi log(δi)∑
j̃=0

zµi+j̃

(1 + 0
µi) · · · (1 + j̃−1

µi)
(wĩ − 0

h) · · · (wĩ −
j̃−1
h).

︸ ︷︷ ︸
Q(wĩ)

Thus, x∗
i+ĩ

can be written as a product Inf(i+ĩ, µi)Q(1+
ĩ
δi), where Q is a polynomial of degree 8

√
δi log(δi).

Recall that our goal is to make x∗i much bigger than
the absolute value of x∗

i+ĩ
for any ĩ > 0. Once ĩ is very

large, the term Inf(i + ĩ, µi) will be very small. For
smaller ĩ, we will make sure that the polynomial Q is
small.

We use the following claim, which we prove right
after we finish the proof of this lemma.

Claim 3.1. For any h > 1 there exist coefficients z′j,
j = 0, . . . , 8

√
h log(h) with |z′j | ≤ exp(Õ(

√
h)), such that

the polynomial

Qh(w) =
8
√
h log(h)∑
j=0

z′jw
(
w − 1

h

)
· · ·
(
w − j − 1

h

)
(3.9)

satisfies |Qh(w)| ≤ 1 for 1 + 1
h ≤ w ≤ 3, Qh(w) ≤

wÕ(
√
h) for w > 3, and Qh(1) ≥ h2.

Using these coefficients z′j we set (for h = δi, jmax =
8
√
δi log(δi))

zµi+j̃ :=

{
z′
j̃
(1 + 0

µi) · · · (1 + j̃−1
µi) if j̃ ∈ {0, . . . , jmax}

0 otherwise,

in which case x∗
i+ĩ

= Inf(i + ĩ, µi)Qδi(1 + ĩ
µi) for

Qδi as in Claim 3.1. Since (1 + j̃
µi) ≤ exp(j̃µi),

the coefficients zj satisfy |zj | ≤ |z′j | exp(jmax
µi)jmax ≤

exp(Õ(
√
δi)) exp

(
δ
µ log2(δi)

)
.

Further, we get x∗i = Inf(i, µi)Qδi(1) ≥
Inf(i, µi)(δi)2 ≥ Ω((δi)3/2(1−δ)1/2). For ĩ ∈ {1, . . . , δi}
it holds that

|x∗
i+ĩ
| =

∣∣∣Inf(i+ ĩ, µi)Qδi
(
1 +

ĩ

h

)∣∣∣ ≤ ∣∣∣Qδi(1 +
ĩ

h
)
∣∣∣ ≤ 1.

Finally, for ĩ > δi we use Inf(i, µi + ĩ) < e−(ĩi)
2i < e−δĩ

(which is a Chernoff bound) and get

|x∗
i+ĩ
| = | Inf(i+ ĩ, µi)Qδi(1 +

ĩ

h
)| ≤ e−δĩ(1 +

ĩ

δi
)O(δi). �

Proof. (of Claim 3.1) The Chebyshev Polynomials of
the first kind are Td(x) = 1

2

(
(x +

√
x2 − 1)d + (x +√

x2 − 1)−d
)
. We use the following properties (see for

instance Chapter 22 in [1]).

1. In the range −1 ≤ x ≤ 1, Td(x) = cos(d arccosx),
implying |Td(x)| ≤ 1

2. For 0 ≤ ε < 1, Td(1 + ε) ≥ exp(d
√
ε/4).

3. The absolute value of the coefficients of Td(x) are
all at most 3d.

We set thus

Qh(w) = T8
√
h log(h)

(
2 +

1
h
− w

)
.

Using above properties, we see that |Qh(w)| ≤ 1 for
1 + 1

h ≤ w ≤ 3, Qh(w) ≤ wÕ(
√
h) for w > 3,

and Qh(1) ≥ h2.
To finish the proof, we need to check thatQh(w) can

be written in the form Qh(w) =
∑8
√
h log(h)

j=0 z′jw(w −
1
h) · · · (w − j

h) with |z′j | ≤ eÕ(
√
h). First, one checks

(using property 3 above) that the coefficients of the
monomials in Qh(w) are at most exp(Õ(

√
h)).

Furthermore, we can express wj as wj =∑j
i=0 aj,iw(w− 1

h) · · · (w− i−1
h), where |aj,i| ≤ (j + 1)!,

which we now show per induction on j. Abbreviate Zi =
w(w− 1

h) · · · (w− i−1
h). First, clearly w0 = 1 = Z0. Now,

by the induction hypothesis wj−1 =
∑j−1
i=0 aj−1,iZi.

It holds that wj =
∑j−1
i=0 aj−1,iwZi and observe that

Zi+1 = (w − i
h)Zi implying wZi = Zi+1 + i

hZi. This
gives wj =

∑j−1
i=0 aj−1,i(Zi+1 + i

hZi) = aj−1,j−1Zj +∑j−1
i=0 (aj−1,i

i
h + aj−1,i−1)Zi, and thus we set aj,j =

aj−1,j−1 and aj,i = i
haj−1,i + aj−1,i−1 for i < j.

Thus, we write every monomial in Qh(w) in this
form, and obtain an expression of the form (3.9)
for Qh(w), with |z′j | ≤ exp(Õ(

√
h)). �

3.2 Proof of (3.8) We will explicity construct
an x ∈ {−1, 0, 1}2i with xi = 1 such that ‖M (2i)x‖1 ≤
exp(−O(log2(i))). For this, we start with the vec-
tor v(0) := (1) of length 1, recursively define v(α) =
(v(α−1),−v(α−1)), and then set x to the vector which
contains i − 1 zeros in the beginning, and then v(k)

for (chosen with foresight) k := log(i)/(log log(i))2 and
then some more zeros (to pad the length to 2i). The
intuition of this construction is that after every itera-
tion, v(α) will mapped under M onto something which
is a bit closer to the zero vector.

For a function f and c > 0 we define ∆cf to be the
function

(∆cf)(x) := f(x+ c)− f(x).

Furthermore, we inductively define ∆c1,c2,...,ck(f) =
∆c1(∆c2,...,ckf).

Using above definition of x we get for y = M (2i)x
(where by convention ∆ operates on the first argument
of the function Inf, i.e., on i)

yj = (−1)k∆2k−1,2k−2,...,1 Inf(i, j).(3.10)

Therefore our plan will be to get a bound on
∆2k−1,2k−2,...,1 Inf(i, j). To this end we the use a gen-
eralization of the mean value theorem from calculus,
which gives a relation between ∆f and d

dxf . We omit
the proof due to space constraints.

Lemma 3.3. Let f : [0,∞) → R be C∞ and fix
c1, . . . , ck > 0. Then,

(∆c1,c2,...,ckf)(x) =
(k∏
m=1

cm

)
· d

k

dxk
f(x+ χx)

where χx ∈ [0,
∑
m cm].

With (3.10) in mind we are interested in getting
bounds on the absolute value of dk

dik
Inf(i, j) =

dk

dik

(Γ(i)
Γ(j)Γ(i−j+1) (1 − δ)jδi−j

)
, where Γ(x) :=∫∞

0
tx−1e−tdt with Γ(n) = (n − 1)! is the gamma

function. We also use the standard definitions
Ψ(0)(x) := d

dx ln(Γ(x)) and Ψ(k)(x) := dk

dxk
Ψ(0)(x). A

straightforward calculation yields

d

di
Inf(i, j) = Inf(i, j)g(i, j)(3.11)

where we define

g(i, j) := ln(δ) + Ψ(0)(i)−Ψ(0)(i− j + 1),

and we note that dk

dik
g(i, j) = Ψ(k)(i)−Ψ(k)(i− j + 1).

We have the following bounds on the absolute value
of of g and dk

dxk
g. We omit the proof, which uses a result

by Alzer [2], due to space constraints.

Lemma 3.4. Let |ε|+ 1
δi <

1
2 . For j = i(1− δ− δε) and

j ∈ N we have |g(i, j)| ≤ |2ε|+ 2
δi .

Lemma 3.5. If k ≥ 1, i > j > 1 we have∣∣∣ dk
dik

g(i, j)
∣∣∣ < 4 · k!

(i− j)k
.

From these bounds we obtain a bound
on | d

k

dik
Inf(i, j)|. For this, we first describe how

equation (3.11) implies that we can write dk

dik
Inf(i, j)

as a product of Inf(i, j) and a polynomial of bounded
size in derivatives of g(i, j). The proof of the fol-
lowing lemma is omitted in this version due to space
constraints.

Lemma 3.6. Let f(x) be C∞ with f(x) > 0, and
d
dxf(x) = f(x)g(1)(x). Then g(1) is C∞, and defining
g(k)(x) = d

dxg
(k−1)(x) we have for any k ≥ 1:

dk

dxk
f(x) = f(x)

s(k)∑
α=1

∏
β

g(pα,β)(x)(3.12)

where pα,β ∈ N>0, s(k) ≤ (k + 1)!, and
∑
β pα,β = k

for all α (i.e., for any fixed α, the pα,β form a partition
of k).

The above estimates on g, derivatives on g, and
our rewriting finally allows us to give an upper bound
on | d

k

dik
Inf(i, j)|. The proof, which we omit due to

space constraints, follows by appropriately combining
Lemma 3.4, Lemma 3.5 and Lemma 3.6.

Lemma 3.7. Let i − j = (1 + ε)δi, i ≥ 4
δ , |ε| < 1

4
and j ∈ N. Then,∣∣∣ dk

dik
Inf(i, j)

∣∣∣
≤ Inf(i, j) · 22k log(k)(1+o(1))

(
max

(
|ε|, 1√

δi

))k
We can now prove (3.8) in Theorem 2.2.

Proof. (of Theorem 2.2, (3.8)) Define recursively the
vectors v(α) of length 2α as v(0) = 1, v(α) :=
(v(α−1),−v(α−1)) and set x := (0i−1,v(k), 0m) where
m is chosen such that x is of length 2i.

Let j− := i(1 − δ) −
√
ki ln(i)/2 and j+ := i(1 −

δ) +
√
ki ln(i)/2 + 2k. Then, we have

∞∑
j=1

|(M (2i)x)j | =
∑
j<j−

|(M (2i)x)j |+
j+∑
j=j−

|(M (2i)x)j |

+
∑
j>j+

|(M (2i)x)j |.

We see that∑
j<j−

|(M (2i)x)j | ≤ 2k Pr[At least δi+
√
ki ln(i)/2

deletions occur in the first i bits],

and thus this is at most 2ke−k ln(i)/2 = 2ki−k/2 us-
ing a Chernoff bound. The same reasoning yields∑
j>j+

|(M (2i)x)j | ≤ 2ki−k/2. To get a bound

on
∑j+
j=j−

|(M (2i)x)j |, we first note that

(M (2i)x)j = (−1)k∆2k−1,2k−2,...,1(Inf(i, j)),(3.13)

which one easily shows per induction on k. From
Lemma 3.3 and Lemma 3.7 we thus get the bound (note

that in the following equations |ε| <
√

k ln(i)
2iδ2 + 2k

iδ):

j+∑
j=j−

∣∣∣(M (2i)x)j
∣∣∣

≤ 2
k(k+1)

2

j+∑
j=j−

∣∣∣ dk
dik

Inf(i+ χi, j)
∣∣∣

≤ 2
k(k+1)

2

j+∑
j=j−

Inf(i, j)2k log k
(

max
(
|ε|, 1√

δi

))k

≤ 2
k(k+1)

2 +2k log(k)(1+o(1))

j+∑
j=j−

Inf(i, j)×

(
max

(√k ln(i)
2iδ2

+
2k

δi
,

1√
δi

))k
= 2k

2
(√k ln(i)

2iδ2
+

2k

δi

)k j+∑
j=j−

Inf(i, j)

≤ 2k
2
(√k ln(i)

2iδ2
+

2k

δi

)k
For k := log(i)/(log log(i))2 we have for large enough i:

2k
2
(√k ln(i)

2iδ2
+

2k

δi

)k
≤ 2k

2
(√k ln(i)

iδ2

)k
= 2k log(i)/(log log(i))2− 1

2k log(iδ2)+ 1
2k log(k log(i))

= 2−O(k log(i)),

and this concludes the proof. �

4 Conclusion

We have provided several results enhancing our under-
standing of the trace reconstruction problem, with our
main result being that for original sequences chosen uni-
formly at random and sufficiently small constant dele-
tion probabilities, a polynomial number of samples suf-
fices. There remain many open questions to pursue.

Obviously, the constants in our original argument could
be improved. Further generalizing this result to handle
insertions, transposition errors, and/or bit flips as well
as deletions would be an important step forward. Im-
proved upper and lower bounds for many variations of
the problem appear possible.

In practice, we suspect richer algorithms based on
iteratively voting with beliefs would perform well in
terms of both accuracy and computation. In such
schemes, bits are again determined iteratively, with each
string computing its belief (a conditional probability)
that the next bit of x is a 0 or 1 based on the prior
bits, and these beliefs being combined to determine the
next bit. Refining our analysis to obtain results for such
algorithms would be an interesting challenge.

Furthermore, the question whether a polynomial
time algorithm can recover any string (not just a
random one) is still open. In particular, we do not
know of an efficient algorithm which reliably returns
the position of the first 1 in an arbitrary string using a
polynomial number of samples.

References

[1] M. Abramowitz, I. A. Stegun. Handbook of Mathe-
matical Functions with Formulas, Graphs, and Math-
ematical Tables. Dover publication, 1964.

[2] H. Alzer. Sharp inequalities for the digamma and
polygamma functions Forum Mathematicum, vol. 16,
no. 2, pp. 181–221. 2004.

[3] T. Batu, S. Kannan, S. Khannna, and A. McGregor.
Reconstructing strings from random traces. In Proceed-
ings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 910-918, 2004.

[4] R. L. Dobrushin. Shannon’s Theorems for Channels
with Synchronization Errors. Problems of Informa-
tion Transmission, 3(4):11-26, 1967. Translated from
Problemy Peredachi Informatsii, vol. 3, no. 4, pp 18-
36, 1967.

[5] E. Drinea and M. Mitzenmacher. Improved lower
bounds for the capacity of i.i.d. deletion and dupli-
cation channels. IEEE Trans. on Information Theory,
53:8, pp. 2693-2714, 2007.

[6] S. Kannan and A. McGregor. More on reconstructing
strings from random traces: insertions and deletions.
In Proc. of the Int’l. Symp. on Information Theory, pp.
297–301, 2005.

[7] V. I. Levenshtein. Efficient reconstruction of sequences.
IEEE Transactions on Information Theory, vol. 47, no.
1, pp. 2–22, 2001.

[8] V. I. Levenshtein. Efficient reconstruction of sequences
from their subsequences or supersequences. Journal of
Combinatorial Theory, Series A, vol. 93, no. 2, pp. 310–
332, 2001.

	Abstract
	Introduction
	Background and previous work

	A polynomial trace algorithm for random bitstring and small deletion probabilities
	Intuition
	An exponential algorithm
	Polynomial traces, random x

	Algorithms Based on the Probability Vectors
	Proof of (3.7)
	Proof of (3.8)

	Conclusion

