
DOI: 10.1007/s002240010010

Theory Comput. Systems34, 77–98 (2001) Theory of
Computing

Systems
© 2001 Springer-Verlag

New York Inc.

Analyses of Load Stealing Models Based on Families of
Differential Equations∗

M. Mitzenmacher

Computer Science Department, Harvard University,
33 Oxford Street, Cambridge, MA 02138, USA
michaelm@eecs.harvard.edu

Abstract. In this paper we analyze the limiting behavior of several randomized
work stealing algorithms in a dynamic setting. Our models represent the limiting
behavior of systems as the number of processors grows to infinity using differential
equations. The advantages of this approach include the ability to model a large
variety of systems and to provide accurate numerical approximations of system
behavior even when the number of processors is relatively small. We show how
this approach can yield significant intuition about the behavior of work stealing
algorithms in realistic settings.

1. Introduction

Work stealingis a natural paradigm for distributing workload in a parallel system in
which underutilized processors seek out work from other processors. In contrast, in the
work sharingparadigm overloaded processors attempt to pass on some of their work
elsewhere in the system. In many cases work stealing can be a more effective means of
balancing load than work sharing, especially in terms of communication efficiency: when
all processors are busy, no attempts are made to migrate work across processors. Work
stealing has therefore been a popular strategy for multithreaded computation. Several
systems using the work stealing idea have been implemented (see p. 6 of [4]), including
the Cilk system [6], [8], [9].

In this paper we analyze several simple randomized work stealing algorithms in a
dynamic setting using simple Markovian models and thefluid limit approach that has

∗ Parts of this work were done while the author was at U.C. Berkeley and Compaq Systems Research
Center.



78 M. Mitzenmacher

similarly been used to study work sharing algorithms [32], [33], [35], [42], [43]. Primarily
we study variations of the WS (Work Stealing) algorithm described by Blumofe and
Leiserson [8], although our framework lacks their complexity as their model is for
thread-based computations. At the thread level there are dependencies related to the
order of completion that we do not consider. We instead focus on the situation where
independent tasks enter the system over time according to a Poisson arrival process
and require exponentially distributed service times. This model proves simplest for our
analysis; however, as we explain, we can also use this technique to analyze other arrival
and service distributions.

Our models capture the limiting behavior of work stealing systems as the number
of processors grows to infinity by representing their behavior by differential equations.
(This is often referred to as the fluid limit approach.) The advantages of this approach
include the ability to model a large variety of systems and to provide accurate numerical
approximations of system behavior even when the number of processors is relatively
small.

The goals of this paper are to demonstrate the effectiveness of this modeling tech-
nique for work stealing algorithms and to develop insight into work stealing algorithms
based upon these models. We therefore show how a number of variations of work stealing
algorithms and different system parameters can be analyzed and compare the results of
these models with simulation results for systems with a small number of processors.

Within this framework, we seek general rules of thumb that appear to apply to the
work stealing paradigm. For example, we find that while stealing improves performance
measures such as the expected time in the system, if we examine the fraction of processors
with load at leastj over all j , these numbers still have essentially the same behavior:
they decrease geometrically (under Poisson arrivals and exponentially distributed service
distributions). This contrasts, for example, with work sharing algorithms that make use
of small amounts of random choice. Such models have been shown to have a completely
different behavior, in that the tails of the loads fall doubly exponentially [33], [42]. We
also find in our models that the time to transfer a task can have a significant impact on
the effectiveness of load stealing; even small transfer delays can dramatically affect the
system performance.

1.1. Previous Work

Work stealing has been treated extensively in a series of papers by Blumofe, Leiserson,
and others [5]–[8], who apply work stealing in the Cilk system for parallel processing.
Their models, which include not only computation time but also memory usage and
communication costs, demonstrate work stealing algorithms that are optimal up to a
constant factor in terms of execution time and within a constant factor of known lower
bounds in terms of space and communication. Experiments on the Cilk system further
show that their algorithms work well in practice. While our models do not capture this
level of detail, we believe they provide insight into the behavior of work stealing. Other
theoretical models for stealing algorithms have also been developed and analyzed by
Rudolph et al. [39] and Karp and Zhang [18].

Work stealing has also been the subject of attention in the queueing theory literature,
most notably in the early work by Eager et al. [11] and the later work by Mirchandaney
et al. [28], [29]. Our work is similar to theirs, in that the underlying models and analysis



Analyses of Load Stealing Models Based on Families of Differential Equations 79

are based on simple Markov chains, although both our mathematical approach and our
focus are different.

The approach of using differential equations to study limiting versions of load
balancing processes has been applied previously in several cases [2], [14], [26], [33],
[42], [43]. Technically, the relationship between the limiting system consisting of a
family of differential equations and systems with a finite number of processors can be
derived using the theory of weak convergence; see, for instance, the body of work of
Kurtz [12], [21]–[24], or a more recent treatment by Shwartz and Weiss [40]. The use
of this approach in the study of algorithms dates back to work by Karp and Sipser [16],
and has since been used to analyze several other algorithms, for example in [1], [14],
[17], [25], [36], [37], and [44]. Note that here we focus on how to use the technique and
what insight it gives us, in conjunction with simulations, about work stealing algorithms,
rather than on the technical relationship between the limiting and finite systems.

The rest of the paper is organized as follows. In Section 2 we describe the basic
model used in our analysis. We then derive a vector differential equation describing the
asymptotic performance of a basic WS algorithm in this setting. We also demonstrate how
to modify our analysis for simple variations of the work stealing algorithm. In Section 3
we consider how to extend our analysis to more complex and realistic models, including
for example models where the service time is a fixed constant (instead of exponentially
distributed) and where there is a transfer time associated with moving a task from one
processor to another. Convergence issues are discussed in Section 4.

2. Simple Work Stealing Systems

In this section we consider variations of the WS algorithm described by Blumofe and
Leiserson [8] in a dynamic setting. These variations share an interesting property: asymp-
totically, as the number of processorsn goes to infinity, the fraction of processors with
load at leasti decreases geometrically for sufficiently largei .

2.1. A Dynamic Model

We describe our initial model of awork stealing system. The system hasn processors
that execute tasks dynamically generated at each processor as a Poisson process of rate
λ < 1. Tasks complete after being serviced for an amount of time that is exponentially
distributed with mean 1. All arrival and service times are independent of one another, and
the random service times required by the tasks are not known to the processors. Tasks
are served according to the First In First Out (FIFO) policy. Theload of a processor is
the number of tasks at that processor.

At certain times, a processor may attempt to steal a task from another processor.
Following the terminology of [8], we call a processor attempting to steal athief, and say
that it attempts to steal from avictimprocessor. We assume that stealing is accomplished
instantaneously, so that the stolen task joins the queue of the thief immediately. Tasks
will be stolen from the end of the victim’s queue.

We now provide a representation of the system useful for our analysis. We define
ni (t) to be the number of processors with exactlyi tasks at timet ; mi (t) to be the
number of processors with at leasti tasks at timet ; pi (t) = ni (t)/n to be the fraction of
processors of loadi ; andsi (t) =

∑∞
k=i pi (t) = mi (t)/n to be the tails of thepi (t). We



80 M. Mitzenmacher

drop the reference tot in the notation where the meaning is clear. For many systems, the
si prove more convenient to work with than thepi . Note thats0 = 1 always, and that the
si are nonincreasing assi−1 − si = pi . For the systems we consider, we also have that∑

i si <∞; this corresponds to the fact that the expected load is finite.
The state of the system at any given time can be represented by an infinite dimen-

sional vectorEs= (s0, s1, s2, . . .). Note that our state only includes information regarding
the number of processors of each load. Since steals are instantaneous, we are not con-
cerned with distance between processors. The processors appear indistinguishable except
for their load, and hence the vectors of the tails of the load is all the information we require.
Also, under the assumption that service times are exponential, arrivals are Poisson, and
all arrival and service times are independent, the entire system isMarkovian: the future of
the system depends only on its present state, and not on the past that brought it to that state.

2.2. A Simple WS Algorithm

We initially study a variation of the WS algorithm described by Blumofe and Leiserson
[8]. When a processor finds itself empty, it attempts to steal a task from a processor
chosen uniformly at random. If a task is available—that is, the victim processor has
more than one task—a task is stolen. For anyn, it is easy to show that a system using
this algorithm in our model isstable, in that its expected queue length is bounded as the
time t → ∞, since every queue behaves like an M/M/1 queue except when empty or
when a task is stolen. Stability can be proven for instance by a coupling or stochastic
domination argument.

We examine the limiting system corresponding to the behavior as the number of
processors grows to infinity. In the interest of readability, we provide a more intuitive
explication, and first consider a system without load stealing. Letδmi represent the
expected change inmi over a small interval of timeδt . We first consider arrivals; an
arrival increasesmi if it occurs at a processor with loadi − 1. Since we have a Poisson
arrival process of rateλ at each processor, the probability of an arrival at a processor
with i tasks isλ δt +o(δt). Note that the probability of two or more arrivals at a queue is
o(δt). Hence the expected change inmi due to arrivals is justλ(mi−1−mi ) δt +o(n δt).
Similarly, the expected change inmi due to departures is(mi−mi+1) δt+o(n δt). Hence,
the expected behavior of the system over short intervals is given by

δmi = λ(mi−1−mi ) δt − (mi −mi+1) δt + o(n δt).

We cancel the factor ofn permeating the equations and letδt go to zero, in which case
δmi /δt → dmi /dt. This yields the equation

dsi

dt
= λ(si−1− si )− (si − si+1). (1)

The equations (1) are easily derived more informally by assuming that over a short
perioddt that two events do not occur at a processor. Then by considering the rates at
whichmi increases and decreases directly we have

dmi = λ(mi−1−mi )dt − (mi −mi+1)dt,

from which (1) follows.



Analyses of Load Stealing Models Based on Families of Differential Equations 81

Considerations similar in spirit to the law of large numbers suggest that asn goes
to infinity, the behavior of thesi become deterministic and are governed by the system
of differential equations (1). Note that these equations depend only thedensitiesof
processors with a certain load.

Somewhat more formally, for each value ofn, the behavior of the system is a
Markov process, determined by the countable state spaceEs= (s0, s1, s2, . . .). Each such
Markov process has a corresponding generating operator, which roughly corresponds
to the transition matrix on this state space. The sequence of generating operators may
converge to a limit, which (under suitable technical conditions) corresponds to the limit of
the appropriate sequence of Markov processes. Here, we are concerned with the limiting
behavior as the number of processorsn grows to infinity. The system of differential
equations (1) is a convenient representation of the limit generating operator.

There exists a general theory regarding the convergence of the generating operator
and the sequence of Markov processes in the setting we are concerned with here. When
a family of Markov processes has transition rates independent ofn, the system size, and
dependent only on the densities, it is called adensity dependent jump Markov process.
Kurtz’s work demonstrates that, asn→∞, the sequence of Markov process converges
to the deterministic process given by the corresponding differential equations (subject
to certain conditions). Given our intuitive derivation of the differential equations, this
correspondence is hardly surprising; indeed, it is a functional law of large numbers for
density dependent Markov processes. As the focus of this paper is not the mathematical
theory behind this convergence, but rather how this methodology can be useful in studying
the behavior of load stealing algorithms, we do not focus further on the technical details.
The reader interested in the details of the theory behind this convergence is referred to
other sources, including especially the work of Kurtz [12], [21]–[24] and more recent
related treatments [42]–[44].

We now consider how to modify the above equations in the case of load stealing.
Processors that complete their final task attempt to find a victim, thereby reducing the
rate at which they actually empty. The probability of success is justs2, the probability
of choosing a victim processor that contains at least two tasks. Hence to the processors
it appears as though they lose their final task at the rate 1− s2, instead of at the rate 1.
The corresponding modified equation is given by

ds1

dt
= λ(s0− s1)− (s1− s2)(1− s2). (2)

For i > 1, si decreases whenever a processor with loadi completes a task, or when a
task is stolen. The rate at which thieves steal tasks is just(s1 − s2), the rate at which
processors complete their final task, yielding

dsi

dt
= λ(si−1− si )− (si − si+1)− (si − si+1)(s1− s2), i ≥ 2. (3)

Of course for finiten the system again has the property that the transitions depend
only on the density of processors with each load, so we have an appropriate set of
differential equations that describe the limiting system. To understand the long term
behavior of the system, we find afixed pointfor the system of equations given by (2) and
(3). A fixed point is a state at whichdsi /dt = 0 for all i ; if the system reaches its fixed



82 M. Mitzenmacher

point, it remains there. Many processes are well behaved, in that they follow trajectories
that converge to their fixed points. We emphasize, however, that not all systems have fixed
points, not all systems that have fixed points converge to their fixed points, and systems
can have multiple fixed points. Indeed, even systems that one might intuitively expect
to be well behaved might have multiple fixed points, and correspondingly surprising
behavior; see, for example, [13]. In the cases we study here, we can often prove the
system has a unique fixed point and test for convergence experimentally, as we will show.

To determine a fixed point, we note the following facts:

• s0 = 1 for all time.
• The rate at which tasks complete iss1n, the number of busy processors.
• The rate at which tasks are introduced isλn.
• At a fixed point, the rate at which tasks complete and the rate at which they are

introduced must be equal.

We denote a fixed point by the vector(π0, π1, . . .). Then the above facts tell us that
for any fixed pointπ0 = 1 andπ1 = λ. From (2), and using the fact thatds1/dt = 0 at
the fixed point, we can solve forπ2; specifically,π2 satisfies

λ(1− λ)− (λ− π2)(1− π2) = 0.

This is a quadratic inπ2 with two real roots, however, only one of these roots satisfies
the constraint thatπ2 ≤ 1, namely

π2 = 1+ λ−√1+ 2λ− 3λ2

2
.

Using induction, (3), and the fact thatdsi /dt = 0 at the fixed point, we find that for
i > 2,

πi = π2

(
λ

1+ λ− π2

)i−2

.

Note that in this case the fixed point is clearly unique.
For i ≥ 2, theπi decrease geometrically. We contrast this result with the case of no

stealing, where the fixed point isπi = λi , as can be verified by (1). In both cases, the
fraction of processors with load at leasti decreases geometrically, but with load stealing
the tails decrease faster. It is as though the service rate has increased due to stealing.

There is a useful interpretation for this phenomenon. Standard queueing theory
yields that in a system with no stealing, arrival rateλ, and service rateµ, the tails of the
loads decrease geometrically with ratioλ/µ between successive terms. (Recall that we
have scaled so thatµ = 1 for (1), and thus the tails of the loads decrease geometrically as
πi = λi .) From the point of view of a processor with at least two tasks in a work stealing
system, theapparentservice rateµ′ is the processor’s own service rate 1 plus the rate at
which a task is stolen from the processor, which isπ1− π2 = λ− π2. Hence we expect
the tails at the fixed point to decrease geometrically at rateλ/µ′ = λ/(1+ λ− π2), and
this intuition is verified by the derivation of the fixed point.

We have not shown that the trajectory of the system of differential equations always
converges to its fixed point, and indeed we do not have a proof of convergence. (We prove



Analyses of Load Stealing Models Based on Families of Differential Equations 83

Table 1. Simulations versus estimates for the average time in the system in the simplest WS
model. The relative error is between the simulations with 128 processors and the estimate based

on the fixed point calculation.

λ Sim(16) Sim(32) Sim(64) Sim(128) Estimate Rel. Error (%)

0.50 1.631 1.626 1.622 1.620 1.618 0.15
0.70 2.153 2.133 2.119 2.114 2.107 0.30
0.80 2.678 2.617 2.586 2.576 2.562 0.56
0.90 3.905 3.711 3.624 3.586 3.541 1.24
0.95 5.936 5.368 5.138 5.000 4.887 2.25
0.99 17.863 14.368 12.183 11.306 10.462 7.46

something weaker in Section 4, where we discuss convergence issues further.) However,
empirical testing by evaluating the differential equations numerically at different starting
points suggests that the system is indeed well behaved in this regard. Even though
the differential equations describe the limiting behavior asn goes to infinity, since the
equations describe the expected behavior of the system for finiten, we would hope that
the fixed point would provide accurate estimates for the behavior of finite systems.

We briefly demonstrate the accuracy of this approach comparing the predicted results
for the expected time each task spends in the system based on the fixed point with
simulations for this simple work stealing model in Table 1. All simulation results are
based on the average of 10 simulations of 100,000 seconds each, with the first 10,000
seconds thrown out to mitigate the impact of starting with an empty system. The table
demonstrates several important features:

• The prediction improves with the number of processors.
• The prediction improves as the arrival rate decreases.
• Even at only 128 processors, the predictions are extremely accurate, particularly

at smaller arrival rates.

We now demonstrate the ease with which one can construct systems of differential
equations describing variations of the basic model we have considered above.

2.3. Threshold Stealing

It is perhaps more realistic to suppose that thieves will steal only from processors whose
load is at least some thresholdT , in order to improve the chances that the cost of
transferring the job is worthwhile. In this case, the probability that a steal fails to occur
when a processor finishes all pending tasks is 1− sT , and hence the limiting system
behavior is described by the following set of differential equations:

ds1

dt
= λ(s0− s1)− (s1− s2)(1− sT ), (4)

dsi

dt
= λ(si−1− si )− (si − si+1), 2≤ i ≤ T − 1, (5)

dsi

dt
= λ(si−1− si )− (si − si+1)− (si − si+1)(s1− s2), i ≥ T. (6)



84 M. Mitzenmacher

Again, we seek a fixed point, beginning withπ0 = 1 andπ1 = λ. From (4) we obtain

π2 = λ2− λπT

1− πT
.

To find the value ofπT , we use a recurrence obtained from (5):

πi+1 = πi − λ(πi−1− πi ).

A simple induction establishes that

πi = λi − λπT

1− πT
.

From

πT = λT − λπT

1− πT
,

we have a quadratic equation

π2
T − (1+ λ)πT + λT = 0

that we may solve forπT :

πT = 1+ λ±
√
(1+ λ)2− 4λT

2
.

Note that only one of these roots satisfies the constraint thatπT ≤ 1, namely

πT = 1+ λ−
√
(1+ λ)2− 4λT

2
.

Alternatively, one could see that there is only one rootπT between 0 and 1 by noting
the quadratic equation above takes on a positive value when we plug inπT = 0 and a
negative value when we plug inπT = 1.

By (6) and the fact that thedsi /dt are zero at the fixed point, we have fori ≥ T that

πi+1 = πi − λ(πi−1− πi )

1+ π1− π2
. (7)

We will show thatπT = λπT−1/(1+ π1− π2); then a simple induction using (7) yields

πi = πT

(
λ

1+ λ− π2

)i−T

.

Hence fori > T theπi again decrease geometrically at a faster rate than in a system
without load stealing. This equation also matches the intuition developed in Section 2.2;
for queues with load at leastT , the apparent service rateµ′ is again the service rate 1
plus the rate at a queue at which a task is stolen, which isπ1− π2 = λ− π2.

To showπT = λπT−1/(1+ π1− π2) we use the fact that
∑T−1

i=1 (dsi /dt) = 0 at
the fixed point. Most of the terms in this summation cancel (that is, we have telescoping
sums), yielding

λ(π0− πT−1)− (π1− πT )+ πT (π1− π2) = 0.

Usingπ0 = 1 andπ1 = λ, the relation forπT easily follows.



Analyses of Load Stealing Models Based on Families of Differential Equations 85

2.4. Repeated Steal Attempts

In the version of the WS algorithm as described in [8], if the thief fails to find a suitable
victim on the first attempt, further attempts are made to find one. We can model this
behavior by allowing empty processors to repeatedly make steal attempts at a certain
rate, sayr per unit time. To fit with our standard model, we assume that the time between
steal attempts is exponentially distributed. This modification simply addsr (s0 − s1) to
the overall rate of steals. Hence, if there is a thresholdT so that a victim must have at
leastT tasks, the equations describing the limiting system become

ds1

dt
= λ(s0− s1)+ r (s0− s1)sT − (s1− s2)(1− sT ),

dsi

dt
= λ(si−1− si )− (si − si+1), 2≤ i ≤ T − 1,

dsi

dt
= λ(si−1− si )− (si − si+1)− (s1− s2)(si − si+1)

− r (s0− s1)(si − si+1), i ≥ T.

This system has a unique fixed point, as can be shown by following the same approach
as for the case of threshold stealing in Section 2.3. One must derive a recurrence that
yields a quadratic equation forπT , and checking this equation at the points 0 and 1 yields
that there in only one possible value ofπT in the range [0,1].

In this system at the fixed pointEπ theπi decrease geometrically fori > T , according
to the formula

πi = πT

(
λ

1+ r (1− λ)+ λ− π2

)i−T

.

This formula can be derived using the intuition of Section 2.2, or by an inductive argument
from the equivalent of (7) for this model.

Note that, in the limit asr goes to infinity,πT goes to 0. This stands to reason, since
in the limiting system a processor withT tasks will have a task stolen immediately.

2.5. Preemptive Stealing

Instead of waiting until the task queue is empty, a thief processor may wish to begin
attempting to steal work when the number of tasks it has left is sufficiently small. In such
a system, a processor makes a steal attempt whenever it completes a task and is left with
at mostB tasks. It seems reasonable not to steal from a processor that would be left with
only B or fewer tasks in such a model. Hence if there is a thresholdT ≥ B+ 2 so that a
victim must have at leastT tasks, the equations describing the limiting system become

dsi

dt
= λ(si−1− si )− (si − si+1)(1− sT ), 1≤ i ≤ B+ 1, (8)

dsi

dt
= λ(si−1− si )− (si − si+1), B+ 2≤ i ≤ T − 1, (9)

dsi

dt
= λ(si−1− si )− (si − si+1)(1− sB+2), i ≥ T. (10)



86 M. Mitzenmacher

Note that the second set of equations above may not hold for any value ofi , if T =
B+ 2.

Demonstrating that the fixed point is unique for this system is more complex. We
note that we may derive the following recurrences for a fixed point from (8) and (9)
above:

πi+1 = πi − λ(πi−1− πi )

1− πT
, 1≤ i ≤ B+ 1,

πi+1 = πi − λ(πi−1− πi ), B+ 2≤ i ≤ T − 1.

We begin withπ0 = 1 andπ1 = λ. Using the proper recurrence, we obtain

π2 = λ2− λπT

1− πT
.

Note that we have expressedπ2 as a function ofπT that is nonincreasing on the interval
[0,1]. Similarly, using the recurrences above we obtain equations of the formπ3 =
f3(πT ), π4 = f4(πT ), and so on. We may inductively show that on the interval [0,1]

d fi
dπT
≥ d fi+1

dπT
,

and hence the right-hand sides of all such derived equations are nonincreasing inπT .
However, applying these recurrences eventually yieldsπT = fT (πT ) for some nonin-
creasing functionπT . As the left-hand side of the equation is increasing on [0,1] and the
right-hand side is nonincreasing, there can be only one root in this interval, and hence
only one valid fixed point.

At the fixed point, fori > T , the tails decrease geometrically according to

πi = πT

(
λ

1+ λ− πB+2

)i−(B+T)

.

Again, this formula can be derived using the intuition of Section 2.2, or by an inductive
argument.

3. More Complex Variations

In this section we examine more complex extensions to the basic models we have de-
scribed. In particular, many of our extensions are motivated by the goal of making the
models more realistic. For convenience, we consider each modification separately, al-
though it should be clear from the presentation that the extensions can be combined
as desired, albeit by making the corresponding systems of differential equations more
complicated and hence more difficult to solve.

In this section, unless otherwise noted, we have not attempted to prove the uniqueness
of the fixed point, because the complexity of the variety of the system make such proofs
algebraically unpleasant. Our experience suggests that the fixed points for these systems
are unique, and we have proceeded under that assumption. Note that a practical approach
for determining a fixed point numerically is simply to simulate the behavior of the family



Analyses of Load Stealing Models Based on Families of Differential Equations 87

of differential equations, starting from an empty system wheresi = 0 for i ≥ 1. For
the systems we study, we have found that convergence to a fixed point occurs rapidly
enough that this technique suffices. Also, since the family is infinite, we track valuessi

only for i ≤ `, wherè is a large enough value that the fraction of bins with load at least
` appears small enough to discount.

3.1. Varying Service and Arrival Distributions

In the framework we have established, we require exponential service times and Pois-
son arrivals, in order for the state to be properly represented by the simple stateEs =
(s0, s1, s2, . . .). If instead, for example, the service time was not exponential, the state
would need to encode the remaining service time at each server in some fashion. The
memorylessness of the exponential distribution has therefore been imperative.

The need for exponential service times and Poisson arrivals appears to limit the
usefulness of this approach. However, one can approximate other service times and
arrival distributions using mixtures of these simple distributions. The approach, generally
known asErlang’s method of stages, is explained more fully in Sections 4.2 and 4.3 of
[20]. (For examples of this approach in similar load sharing models, see [33], [35], and
[43].)

We demonstrate the method here by considering the case of constant service times.
We replace the constant service time with a sequence ofcstages of services; each stage of
service is independent and exponentially distributed with mean 1/c. A random variable
that is a sum of independent exponential random variables of the same mean has agamma
distribution. As c goes to infinity, the expected time spent in thesec stages of service
remains 1 and the variance approaches 0; that is, the service time converges to a random
variable that takes on the constant value 1 with probability 1. In practice, computing the
fixed point requires limitingc to a reasonably small finite number, since the number of
terms in the fixed point grows proportionally withc. Our simulations suggest that even
for reasonably smallc, however, the predictions become very accurate.

The state will again be represented by a vectorEs = (s0, s1, s2, . . .), but heresi

represents the fraction of processorswith at least i stages left to complete. Note that,
when a steal occurs, the values froms1 up tosc all change; similarly, if a steal occurs at
a processor withi stages left to complete, then the values fromsi−c+1 to si all change.
Further, stages complete at a rate ofc per unit time. Hence for the case whereT = 2,
that is, if we steal whenever possible, the resulting equations are

ds1

dt
= λ(s0− s1)− c(s1− s2)(1− sc+1),

dsi

dt
= λ(s0− si )+ c(s1− s2)si+c − c(si − si+1), 2≤ i ≤ c,

dsi

dt
= λ(si−c − si )− c(si − si+1)− c(si − si+c)(s1− s2), i ≥ c+ 1.

We do not currently know of any way to calculate the fixed point directly for this
model. Suppose that we wish to simulate the behavior of the system of differential
equations, in order to calculate the fixed point. In this case, the number of differential
equations required to calculate loads up to some fixed` is actually` · c. The state



88 M. Mitzenmacher

Table 2. Simulations versus estimates for the average time in the system in the constant
time model (T = 2): simulations for 16, 32, 64, and 128 processors are compared with

the estimates using 10 and 20 stage approximations of constant time.

λ Sim(16) Sim(32) Sim(64) Sim(128) c = 10 c = 20

0.50 1.382 1.380 1.378 1.378 1.405 1.391
0.70 1.724 1.713 1.709 1.706 1.749 1.727
0.80 2.050 2.030 2.017 2.013 2.070 2.039
0.90 2.811 2.729 2.696 2.677 2.759 2.709
0.95 3.978 3.774 3.655 3.594 3.701 3.625
0.99 11.010 8.992 7.934 7.542 7.581 7.399

space is essentiallyc times larger. For straightforward implementations of simulating
the differential equations, the complexity in terms of the number of operations required
is proportional to the number of equations. Hence smaller values ofc are easier to work
with, although they give less accurate predictions.

In principle, this approach could be used to develop deterministic differential equa-
tions that approximate the limiting behavior of any service time distribution or arrival dis-
tribution to any desired accuracy. This is because the distribution function of any positive
random variable can be approximated arbitrarily closely by a mixture of countably many
gamma distributions. That is, we may approximate a random variable by choosing ran-
domly with the appropriate distribution from a collection of gamma distributed random
variables (see, for example, Lemma 3.9 of [19]). We can thus develop a suitable state space
for a Markov process that approximates the underlying non-Markovian process. There
is a tradeoff, however, in that the better the approximation we obtain, the larger the state
space, and hence the more calculation required to evaluate the fixed point numerically.

The simulations presented in Table 2 demonstrate that for constant service times,
takingc = 20 provides good approximations for actual systems. These results also show
that systems with constant service times perform significantly better than systems with
exponentially distributed service times, in terms of the average time spent in the system.
This result is not surprising, given the fact that reducing variance in the service time
improves the expected time in the system for single queues. We do not have a proof that
constant service times yield smaller expected waiting times than exponential service
times in this model; it would be interesting to prove such a result either using the fixed
point (see Section 4.3 of [33]) or other techniques (see, for example, [15], [30], [31],
[38], and [41]).

3.2. Transfer Delay

Up to this point we have assumed that a job can be transferred instantaneously to another
processor. More realistically, moving a task from the victim to the thief will require
some time for transfer. This clearly can have an effect on the efficacy of stealing; indeed,
similar analysis of load stealing shown the importance of delay [10], [34], [28]. For
convenience, here we model the transfer delay as an exponentially distributed variable
with mean 1/r (that is, transfers occur at rater ), although it can also be modeled as a
fixed constant, or some other distribution, using the technique of Section 3.1.



Analyses of Load Stealing Models Based on Families of Differential Equations 89

In this model we allow a thief processor to only steal one task at a time; that is, as
long as there is a task on the way from another processor, it will not attempt to steal again.
We expand our state space to distinguish explicitly thief processors who are awaiting
a stolen task from other processors. Our state space will hence consist of two infinite
dimensional vectors:(s0, s1, . . .) and(w0, w1, . . .). Heresi refers to the fraction of all
processors not awaiting a stolen task with at leasti tasks, andwi refers to the fraction of
all processors awaiting a stolen task with at leasti tasks.

This change in state space calls for changes in the fixed point conditions. For ex-
ample, we now have thats0+w0 = 1 for all time. Also,s1+w1 = λ at the fixed point,
as the rate at which tasks are served must equal the rate at which tasks enter the system.
Finally, the expected number of tasks per queue in the system is∑

i≥1

i (si − si+1)+
∑
i≥1

i (wi − wi+1)+ w0 =
∑
i≥1

si +
∑
i≥0

wi .

Thew0 term accounts for the extra tasks in transit between processors.
The equations below describe this process under the conditions that a steal is at-

tempted only when a processor empties and a steal occurs only if the victim processor has
at leastT tasks. Note the relationship between thewi and thesi . For example, whenever
a steal occurs, some processor contributing to thes vector changes to contributing to
thew vector; similarly, when a stolen task arrives, some processor contributing to thew

vector instead contributes to thes vector.

ds0

dt
= rw0− (s1− s2)(sT + wT ),

ds1

dt
= λ(s0− s1)+ rw0− (s1− s2),

dsi

dt
= λ(si−1− si )+ rwi−1− (si − si+1), 2≤ i ≤ T − 1,

dsi

dt
= λ(si−1− si )+ rwi−1− (si − si+1)

− (si − si+1)(s1− s2), i ≥ T,
dw0

dt
= −rw0+ (s1− s2)(sT + wT ),

dwi

dt
= λ(wi−1− wi )− rwi − (wi − wi+1), 1≤ i ≤ T − 1,

dwi

dt
= λ(wi−1− wi )− rwi − (wi − wi+1)

− (wi − wi+1)(s1− s2), i ≥ T.

Note that we allow tasks to be stolen from a processor that is waiting for a task. We
might expect that a thief should not attempt to steal a task unless in so doing it reduces
the expected time that task will remain in the system. If the stolen task is put at the end
of the queue it arrives at, such a rule would suggest that the best thresholdT must satisfy
T ≈ (1/r ) + (λ/r ); the termλ/r accounts for arrivals during transfer. To minimize
the expected time for all tasks, however, this simple rule is only a rough approximation.
As seen in the example forr = 0.25 presented in Table 3, the fixed point solutions to



90 M. Mitzenmacher

Table 3. The expected time in the system with transfer delays, wherer = 0.25, according to
simulations and estimates from the fixed point of the differential equations. The best threshold

is T = 4= 1/r for small arrival rates, but is larger at higher arrival rates.

T = 3 T = 4 T = 5 T = 6

λ Sim(128) Est. Sim(128) Est. Sim(128) Est. Sim(128) Est.

0.50 1.986 1.985 1.950 1.950 1.955 1.954 1.967 1.967
0.70 2.973 2.971 2.939 2.938 2.963 2.961 3.011 3.008
0.80 4.038 4.030 4.003 3.996 4.025 4.020 4.082 4.079
0.90 7.099 7.076 7.056 7.015 7.025 7.001 7.045 7.026
0.95 13.162 13.106 13.089 13.016 13.048 12.956 13.067 12.925

the differential equations can be used to determine correctly the best threshold value for
various arrival rates.

Given the numerical accuracy of this approach, we examine more closely the effect
of transfer delay on the expected time a task spends in the system. We focus on the
specific case ofλ = 0.9 andλ = 0.95. Although these are reasonably high loads, in
systems with low load the overall effect of stealing is much less substantial, and hence
the case of high load is more interesting. Figure 1 shows the effect of various transfer
delays as calculated by numerically determining the fixed point from the differential
equations with delays 1/r = 0.1,0.5,1,2,4,5,10, and 20. In each case, the result
from the best choice of the thresholdT is used, although, as we have seen in Table 3,
there is little deviation between the best and near-best thresholds. While delay naturally
increases the expected time spent in the system, it is surprising how large an effect even
a small delay can have on this measure of performance. (This behavior is easily verified
by simulations.)

Fig. 1. The effects of transfer delay.



Analyses of Load Stealing Models Based on Families of Differential Equations 91

A possible explanation is, under these high arrival rates, an empty processor is
unlikely to stay empty for long. Hence, in many cases, a system where there is stealing
and delay must make many mistakes, stealing a task when it would have been better to
leave it. Interestingly, this effect is significant even under apparently small delays.

3.3. Multiple Choices

In load sharing algorithms, systems that have some choice of where to place new jobs
have proven to have different performance characteristics than systems where jobs are
placed randomly [3], [33], [42]. For example, suppose that, upon entry, a task chooses
two servers uniformly at random, and queues at the one with the smaller load. There
is an exponential improvement in average time spent in the system as a function of
the arrival rate over a system where each task queues at a random server. Specifically,
with n queues, a Poisson arrival process ofλn customers per unit time, and exponentially
distributed service times of mean 1, the average time spent in the system when customers
are assigned randomly is 1/(1− λ). In the limit asλ → 1, the expected time when a
task chooses the best of two servers is log2(1/(1− λ)).

This motivates examining the following work stealing strategy: a thief choosesd
random potential victims simultaneously, and then (if possible) steals load from the most
heavily loaded victim. If the victim must have load at leastT , the probability that a steal
fails to occur equals the probability that alld victims have load less thanT ; this happens
with probability (1− sT )

d. Similarly, the probability that a victim processor with load
i is found is(1− si+1)

d − (1− si )
d. Hence, if we constraind to be a fixed constant,

independent of the number of processorsn, then we can write a corresponding limiting
system with the following form:

ds1

dt
= λ(s0− s1)− (s1− s2)(1− sT )

d,

dsi

dt
= λ(si−1− si )− (si − si+1), 2≤ i ≤ T − 1,

dsi

dt
= λ(si−1− si )− (si − si+1)

− ((1− si+1)
d − (1− si )

d)(s1− s2), i ≥ T.

We note that for this system, it is easy to show using previously discussed techniques
that the fixed point is in fact unique.

Table 4 compares a system where two potential victims are chosen to a system where
just one choice is made. Choosing more victims does improve performance, especially
at higher arrival rates, but just choosing a single victim generally yields most of the
gain possible. The intuition of Section 2 that suggests why tails fall geometrically offers
helpful insight: usingd choices makes steals occur at mostd times the usual rate for
even the most heavily loaded queues, and hence the best we could hope is that the tails
fall geometrically at rateλ/(1+ d(λ− π2)). Since systems where multiple choices are
made would require additional complexity, it is by no means clear that the gain would
be worthwhile in a real system.

Table 4 also shows again that the estimate derived from the fixed point yields accurate



92 M. Mitzenmacher

Table 4. Simulation results comparing the average
time in the system with one choice and two (withT = 2,
128 processors) and the corresponding estimate from

the fixed point.

Sim(128) Estimate

λ 1 choice 2 choices 2 choices

0.50 1.620 1.436 1.433
0.70 2.114 1.680 1.673
0.80 2.576 1.879 1.864
0.90 3.586 2.260 2.220
0.95 5.000 2.742 2.640
0.99 11.306 4.597 4.011

predictions for actual systems of 128 processors at reasonable arrival rates. The error is
less than 1% forλ ≤ 0.8 and only about 5% atλ = 0.95.

3.4. Multiple Steals

In certain situations, stealing more than one task may be appropriate. For example, if the
thresholdT for stealing is high, then stealing more than one process should improve the
expected time a task spends in the system. We consider the WS algorithm where when a
steal is madek ≤ T/2 tasks are taken. Note that when a steal occurs, not onlys1 increases,
but s2, s3, . . . , sk do as well. Similarly, when a steal occurs, manysi values decrease.
Taking this into consideration yields the following family of differential equations:

ds1

dt
= λ(s0− s1)− (s1− s2)(1− sT ),

dsi

dt
= λ(si−1− si )− (si − si+1)+ (s1− s2)sT , 2≤ i ≤ k,

dsi

dt
= λ(si−1− si )− (si − si+1), k+ 1≤ i ≤ T − k,

dsi

dt
= λ(si−1− si )− (si − si+1)− (s1− s2)(sT − si+k),

T − k+ 1≤ i ≤ T,
dsi

dt
= λ(si−1− si )− (si − si+1)− (s1− s2)(si − si+k),

T + 1≤ i .

Other variations for stealing multiple jobs in the WS algorithm can be modeled similarly.
As one might expect, in this model (where the time for a transfer is zero) increasing the
number of jobs stolen so as to equalize the processor loads improves performance.

More complicated algorithms that steal multiple items at a time are also possible. For
example, we consider a variation of a load balancing algorithm suggested by Rudolph
et al. [39], in which a processor at certain randomly determined steps chooses another
processor uniformly at random and the two machines balance the load between them.
Here, we can model a rebalancing event at a processor as a process that occurs at an



Analyses of Load Stealing Models Based on Families of Differential Equations 93

exponential rater (i ), perhaps depending on the number of itemsi at the processor.
When a rebalancing event occurs, the tasks are balanced between this processor and
another processor chosen uniformly at random. At the end, the two processors will
either have the same number of tasks or the number of tasks will differ by at most one.
For convenience, we assume in the second case that the processor with the larger initial
load will also have the larger final load. Surprisingly, this system can be represented
in a quite straightforward manner. It suffices to note that a rebalancing will increasesi

whenever one processor has loadk with k < i and the other processor has load at least
2i −k. Similarly, a re-balancing will decreasesi whenever one processor has loadj with
i ≤ j ≤ 2i − 2 and the other processor has load at most 2i − j − 2. Hence, fori ≥ 1,

dsi

dt
= λ(si−1− si )− (si − si+1)

−
2i−2∑
j=i

2i−2− j∑
k=0

(r ( j )+ r (k))(sk − sk+1)(sj − sj+1)

+
i−1∑
k=0

∞∑
j=2i−k

(r ( j )+ r (k))(sk − sk+1)(sj − sj+1).

3.5. Varying Processor Speeds, Varying Arrival Rates, and Static Systems

Thus far the systems studied have been homogeneous, in that all processors run at the
same rate and tasks arrive at the system at the same rate. We note that this is not necessary;
we can model different processor types by keeping a separate state vector for each type
of processor. For example, if there are two types of processors, fast and slow, then we
can represent slow processors by a vectorEs = (s0, s1, s2, . . .) and fast processors by a
vector Ew = (w0, w1, w2, . . .). Heresi would be the fraction of all processors that are fast
and have load at leasti , and similarly for thewi . In our limiting model, each processor
type must correspond to a fixed fraction of the total number of processors.

We can also enhance the model by introducing the concept of internal and external
arrival rates. That is, we can replace the arrival rateλbyλext+λint, whereλext corresponds
to the rate of new tasks arriving into the system andλint corresponds to the rate of new
tasks being spawned by tasks already at the processor.

Noteλint can be made to depend on the number of tasks at the processor if desired.
In particular, by settingλext = 0 andλint = 0 when there are no tasks in the queue, we
can model a static system that starts in some initial state and runs until all queues are
empty. For sufficiently large systems, this approach can give a good approximation for
the amount of time until all jobs complete.

4. Convergence and Stability

Thus far, when considering families of differential equations, we have focused on finding
a fixed point and when possible proving it is the only fixed point, with the intuition
that the system converges to that fixed point. Our experience with simulations indeed
suggests that this is the case. To justify this intuition formally one would hope to prove



94 M. Mitzenmacher

that, regardless of the starting point, the trajectory given by the solution of differential
equations does in fact approach the fixed point quickly over time under some metric
regardless of the initial starting point. That is, we would like to showconvergenceof
the system to its fixed point. Such convergence results have been shown previously for
similar systems in [33], [42], and [43].

In some cases where we cannot prove convergence, we can prove a weaker result,
namely thestability of the fixed point. Techniques for proving stability similar to those
used here are also described in Section 4.6 of [33]. For our purposes, we say that a fixed
point is stable if theL1 distance to the fixed point is nonincreasing over time. That is, given
any initial starting pointsi (0) for our family of differential equations and a corresponding
fixed pointπi , we say the fixed point is stable if the distanceD(t) = |si (t) − πi | is
nonincreasing. This is stronger than the standard definition.1 Although stability only
shows that the trajectory does not ever head away from the fixed point, it provides some
reason to believe that the trajectory given by the differential equations converges rapidly
to its fixed point from any suitable starting point (namely where the expected load is
finite, or

∑
i si < ∞)) under theL1 metric. In the work stealing setting, both stability

and convergence results prove difficult. Even for the simple system given by (2) and (3),
we can currently only prove the stability of the fixed point for sufficiently small arrival
ratesλ, as shown in the theorem below.

We emphasize that, in practice, one can check for convergence to the fixed point
numerically using various starting points to convince oneself that the system is well
behaved. Devising proofs for the convergence or better proofs for the stability of the
work stealing systems described here, however, remain important open questions.

Theorem 1. The system given by(2) and(3) is stable forλ such thatπ2 ≤ 1
2.

Proof. Defineεi (t) = si (t) − πi . (Noteε0(t) is identically 0.) We drop the explicit
dependence ont when the meaning is clear. TheL1 distanceD(t) is then

∑
i≥1 |εi (t)|.

As D(t) =∑∞i=1 |εi (t)|, the derivative ofD with respect tot , ord D/dt, is not well
defined ifεi (t) = 0 for somei . We explain how to cope with this problem at the end of
the proof, and we suggest the reader proceed by temporarily assumingεi (t) 6= 0.

As dεi /dt = dsi /dt, we may obtain equations fordεi /dt using (2). It is convenient
to write the derivativesdεi /dt in the following form:

dε1

dt
= −λε1− (ε1− ε2)(1− s2)+ ε2(π1− π2), (11)

dεi

dt
= λ(εi−1− εi )− (εi − εi+1)(1+ π1− π2) (12)

− (ε1− ε2)(si − si+1), i > 1.

1 There are many variations of the basic notion of stability, including asymptotic stability, uniformly
asymptotic stability, etc. Definitions are covered in many texts on the subject, and there are more specialized
treatises, such as [45]. We note also that here we consider theL1 metric. We point out that as far as we know
it is certainly possible that one could prove convergence or stability for larger ranges using this or another
metric, such as for example the supremum metric.



Analyses of Load Stealing Models Based on Families of Differential Equations 95

Note that

d D

dt
=
∞∑

i=1

d|εi |
dt

.

Using the above, we examine the sum of terms containingεi in d D/dt, and show that
the resulting expression is nonpositive for eachi .

We first consider the case wherei ≥ 3, as the casesi = 1,2 are more difficult. There
are several subcases, depending on whetherεi−1, εi , andεi+1 are positive or negative.
We first consider the case where they are all positive. Then the sum of terms containing
εi in d D/dt are

εi [(−λ− 1− π1+ π2)+ λ+ (1+ π1− π2)] = 0.

More generally, let sgn(x) be the sign ofx; that is, sgn(x) is 1 if x is positive,−1 is x
is negative, and 0 ifx is positive. Under the assumption thatεi (t) 6= 0 for all i , we have
that the sum of terms containingεi in d D/dt for i ≥ 3 are

εi [(−λ− 1− π1+ π2) sgn(εi )+ λ sgn(εi+1)+ (1+ π1− π2) sgn(εi+1)].

It is easily checked that this sum is always nonpositive, by noting that, regardless of the
sign ofεi , the first term in the brackets dominates the others, and its sign is the same as
that ofεi .

For the casei = 2, there areε2 terms in all otherd|εj |/dt terms. However, the terms
fromd|ε2|/dt dominate all others. For example, ifε2 is positive, the corresponding terms
in d|ε2|/dt are

(−λ− (1− s2)− (π1− π2)− s3)ε2.

Even if all otherεj are set so that the coefficients ofε2 in d|εj |/dt are positive, the sum
of the otherε2 terms is just

(λ+ (1− s2)+ (π1− π2)+ s3)ε2,

and hence the sum of terms containingε2 in d D/dt is always nonpositive.
The only difficulty lies in the case wherei = 1. In this case, if (for example)ε1

andε2 are both positive, then the sum of terms containingε1 from d|ε1|/dt andd|ε2|/dt
is −(1− s3)ε1. If εj < 0 for j ≥ 3, however, then the sum ofε1 terms from all other
d|εj |/dt is s3ε1. Hence the total sum of all terms could be as much as−(1− 2s3)ε1,
which is positive whens3 >

1
2. This case, however, requires thats3 ≤ π3, sinceε3 < 0.

Hence ifπ3 ≤ 1
2, the coefficient ofε1 is negative as desired.

Explicitly checking the remaining cases reveals that the worst case in this instance
is whenε1 andε2 are both negative andεj > 0 for j ≥ 3. Then the corresponding sum
of terms is(1− 2s3)ε1, with the limitation thats3 ≤ s2 ≤ π2. Hence, if we restrictλ so
thatπ2 <

1
2, then theε1 terms are always nonpositive, so we have stability.



96 M. Mitzenmacher

We now consider the technical problem of definingd D/dt whenεi (t) = 0 for some
i . Since we are interested in the forward progress of the system, it is sufficient to consider
the upper right-hand derivatives ofεi . (See, for instance, p. 16 of [27].) That is, we may
define

d|εi |
dt

∣∣∣∣
t=t0

≡ lim
t→t+0

|εi (t)|
t − t0

,

and similarly ford8/dt. Note that this choice has the following property: ifεi (t) = 0,
then (d|εi |/dt)|t=t0 ≥ 0, as it intuitively should be. The above proof applies unchanged
with this definition ofd D/dt, with the understanding that the caseεi > 0 includes the
case whereεi = 0 anddεi /dt > 0, and similarly for the caseεi < 0.

In the case of threshold stealing, we have essentially the same result.

Theorem 2. The system developing according to(4), (5), and(6) is stable forλ such
thatπ2 ≤ 1

2.

Proof. The proof follows the same case by case analysis pattern as Theorem 1, where
the only problem is in bounding the coefficient ofε1.

5. Conclusions

We have suggested an approach for analyzing load stealing systems based on limiting
models of such systems that can be represented by families of differential equations. The
advantages of this modeling technique include simplicity, generality, and the ability to
predict performance accurately. Our limiting models yield results that provide insight
into why simple, decentralized work stealing schemes prove effective in practice. In
particular, in an idealized dynamic setting where steals occur instantaneously, the tails
of the task queues at the processors decrease geometrically at a faster rate than without
load stealing. We have also examined more complex models, such as a model where
there is a delay associated with the time to transfer a task. We have seen that even a small
amount of delay can impact performance, a point which we believe merits further study
in actual systems.

At a more theoretical level, it would be useful to develop a more general framework
for handling the convergence issues for the families of differential equations that arise
from stealing systems. Although the work of [33] and [43] suggests a framework that
can be used to prove convergence for several load sharing systems, it does not appear
that they are sufficient to handle the complexity of many stealing problems.

Acknowledgments

The author thanks the anonymous reviewers for several helpful comments regarding the structure and content
of the paper.



Analyses of Load Stealing Models Based on Families of Differential Equations 97

References

[1] D. Achlioptas and M. Molloy. The analysis of a list-coloring algorithm on a random graph. InProceed-
ings of the38th IEEE Symposium on Foundations of Computer Science, pages 204–212, 1997.

[2] M. Alanyali and B. Hajek. Analysis of simple algorithms for dynamic load balancing. InINFOCOM
95, vol. 1, pages 230–238, 1995.

[3] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. InProceedings of the26th ACM
Symposium on the Theory of Computing, pages 593–602, 1994.

[4] R. Blumofe. Executing Multithreaded Program Efficiently. Ph.D. thesis, Massachusetts Institute of
Technology, September 1995.

[5] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. An analysis of dag-consistent distributed
shared-memory algorithms. InProceedings of the8th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 297–308, 1996.

[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: an efficient multi-
threaded runtime system.Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.

[7] R. Blumofe and C. Leiserson. Space-efficient scheduling of multithreaded computations. InProceedings
of the25th Annual ACM Symposium on Theory of Computing, pages 362–371, 1993.

[8] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work stealing. InProceedings
of the35th Annual IEEE Conference on Foundations of Computer Science, pages 356–368, 1994.

[9] The Cilk Project. Available athttp://theory.lcs.mit.edu/ ∼cilk/home/intro.html .
[10] M. Dahlin. Interpreting stale load information. InProceedings of the19th IEEE International Conference

on Distributed Computing Systems(ICDCS), pages 285–296, May 1999. Also available as TR98-20,
Department of Computer Sciences, University of Texas at Austin.

[11] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated and sender-initiated
adaptive load sharing.Performance Evaluation Review, 16:53–68, March 1986.

[12] S. N. Ethier and T. G. Kurtz.Markov Processes: Characterization and Convergence. Wiley, New York
1986.

[13] R. J. Gibbens, P. J. Hunt, and F. P. Kelly. Bistability in communication networks. InDisorder in Physical
Systems(G. R. Grimmett and D. J. A. Welsh, eds.), pages 113–128. Oxford University Press, Oxford,
1990.

[14] B. Hajek. Asymptotic analysis of an assignment problem arising in a distributed communications
protocol. InProceedings of the27th Conference on Decision and Control, pages 1455–1459, 1988.

[15] M. Harchol-Balter and D. Wolfe. Bounding delays in packet-routing networks. InProceedings of the
Twenty-Seventh Annual ACM Symposium on the Theory of Computing, pages 248–257, 1995.

[16] R. M. Karp and M. Sipser. Maximum matchings in sparse random graphs. InProceedings of the22nd
IEEE Symposium on Foundations of Computer Science, pages 364–375, 1981.

[17] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching. In
Proceedings of the22nd ACM Symposium on the Theory of Computing, pages 352–358, 1990.

[18] R. M. Karp and Y. Zhang. A randomized parallel branch-and-bound procedure. InProceedings of the
20th ACM Symposium on the Theory of Computing, pages 290–300, 1988.

[19] F. P. Kelly.Reversibility and Stochastic Networks. Wiley, New York, 1979.
[20] L. Kleinrock.Queueing Systems, Volume I. Wiley, New York, 1976.
[21] T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 7:49–58, 1970.
[22] T. G. Kurtz. Limit theorems for sequences of jump Markov processes approximating ordinary differential

processes.Journal of Applied Probability, 8:344–356, 1971.
[23] T. G. Kurtz. Strong approximation theorems for density dependent Markov chains.Stochastic Processes

and Applications, 6:223–240, 1978.
[24] T. G. Kurtz.Approximation of Population Processes. CBMS–NSF Regional Conference Series in Ap-

plied Mathematics SIAM, Philadelphia, PA, 1981.
[25] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient

codes. InProceedings of the29th ACM Symposium on the Theory of Computing, pages 150–159, 1997.
[26] J. Martin and Y. M. Suhov. Fast Jackson networks.Annals of Applied Probability, 9(3):854–870, 1999.
[27] A. N. Michel and R. K. Miller.Qualitative Analysis of Large Scale Dynamical Systems. Academic

Press, New York, 1977.



98 M. Mitzenmacher

[28] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Analysis of the effects of delays on load sharing.
IEEE Transactions on Computing, 38:1513–1525, 1989.

[29] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive load sharing in heterogeneous systems.
Journal of Parallel and Distributed Systems, 9:331–346, 1990.

[30] M. Mitzenmacher. Bounds on the greedy routing algorithm for array networks. InProceedings of the
Sixth Annual ACM Symposium on Parallel Algorithms and Architectures, pages 248–259, 1994. To
appear in theJournal of Computer Systems and Science.

[31] M. Mitzenmacher. Constant time per edge is optimal on rooted tree networks. InProceedings of the
Eighth Annual ACM Symposium on Parallel Algorithms and Architectures, pages 162–169, 1996.

[32] M. Mitzenmacher. Load balancing and density dependent jump Markov processes. InProceedings of
the37th IEEE Symposium on Foundations of Computer Science, pages 213–222, 1996.

[33] M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing. Ph.D. thesis, University
of California at Berkeley, September 1996.

[34] M. Mitzenmacher. How useful is old information? InProceedings of the16th ACM Symposium on
Principles of Distributed Computing, 1997, pages 83–91. Journal version to appear inIEEE Transactions
on Parallel and Distributed Systems.

[35] M. Mitzenmacher. On the analysis of randomized load balancing schemes. InProceedings of the9th
ACM Symposium on Parallel Algorithms and Architectures, pages 292–301, 1997. Journal version in
Theory of Computing Systems, 32:361–386, 1999.

[36] M. Mitzenmacher. Tight Thresholds for the Pure Literal Rule. Technical Note 1997-011, Digital Systems
Research Center, Palo Alto, CA, June 1997.

[37] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giantk-core in a random graph.Journal
of Combinatorial Theory, Series B, 67:111–151, 1996.

[38] R. Righter and J. Shanthikumar. Extremal properties of the FIFO discipline in queueing networks.
Journal of Applied Probability, 29:967–978, November 1992.

[39] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme for task allocation
in parallel machines. InProceedings of the3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 237–245, 1991.

[40] A. Shwartz and A. Weiss.Large Deviations for Performance Analysis. Chapman & Hall, London, 1995.
[41] G. D. Stamoulis and J. N. Tsitsiklis. The efficiency of greedy routing in hypercubes and butterflies.IEEE

Transactions on Communications, 42(11):3051–3061, November 1994. An early version appeared in
the Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 248–259, 1991.

[42] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queueing system with selection of the
shortest of two queues: an asymptotic approach.Problems of Information Transmission, 32:15–27,
1996.

[43] N. D. Vvedenskaya and Y. M. Suhov. Dobrushin’s mean-field approximation for a queue with dynamic
routing.Markov Processes and Related Fields, 3(4):493–527, 1997. Also available as Technical Report
3328, INRIA, December 1997.

[44] N. C. Wormald. Differential equations for random processes and random graphs.Annals of Applied
Probability, 5:1217–1235, 1995.

[45] T. Yoskizawa.Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions.
Springer-Verlag, New York, 1975.

Received August20, 1999,and in revised form March15, 2000,and in final form July17, 2000.
Online publication October25, 2000.


