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Improved Low-Density Parity-Check Codes Using
Irregular Graphs

Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman

Abstract—We construct new families of error-correcting codes
based on Gallager’s low-density parity-check codes. We improve
on Gallager’s results by introducing irregular parity-check ma-
trices and a new rigorous analysis of hard-decision decoding of
these codes. We also provide efficient methods for finding good
irregular structures for such decoding algorithms. Our rigorous
analysis based on martingales, our methodology for constructing
good irregular codes, and the demonstration that irregular struc-
ture improves performance constitute key points of our contribu-
tion.

We also consider irregular codes under belief propagation. We
report the results of experiments testing the efficacy of irregular
codes on both binary-symmetric and Gaussian channels. For
example, using belief propagation, for rate1 4 codes on 16 000
bits over a binary-symmetric channel, previous low-density
parity-check codes can correct up to approximately 16% errors,
while our codes correct over 17%. In some cases our results come
very close to reported results for turbo codes, suggesting that
variations of irregular low density parity-check codes may be able
to match or beat turbo code performance.

Index Terms—Belief propagation, concentration theorem, Gal-
lager codes, irregular codes, low-density parity-check codes.

I. INTRODUCTION

L OW-density parity-check codes, introduced by Gallager
in 1962 [7], have been the subject of much recent exper-

imentation and analysis (e.g., [3], [4], [16], [17], [20], [21],
[24]). The interest in these codes stems from their near Shannon
limit performance, their simple descriptions and implemen-
tations, and their amenability to rigorous theoretical analysis
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[7], [10]–[13], [16], [20], [21], [24], [25], [27]. Moreover,
there are connections between these codes and turbo codes,
introduced by Berrou, Glavieux, and Thitimajshima [1], as
the latter can be described in the framework of low-density
parity-check codes (see, e.g., [14]). Moreover, the turbo de-
coding algorithm can be understood as a belief propagation
based algorithm [15], [9], and hence any understanding of
belief propagation on low-density parity-check codes may be
applicable to turbo codes as well.

We find it helpful to describe low-density parity-check codes
in terms of bipartite graphs. In the following, we refer to the
nodes on the left and the right of a bipartite graph as itsmessage
nodes andchecknodes, respectively. A bipartite graph with
nodes on the left and nodes on the right gives rise to a linear
code of dimension and block length in the following
way. The bits of a codeword are indexed by the message nodes.
A binary vector is a codeword if and only if

, where is the incidence matrix of the graph
whose rows are indexed by the check nodes and whose columns
are indexed by the message nodes. In other words,
is a codeword if and only if for each check node the exclusive-or
of its incident message nodes is zero. (We note that our method-
ology can also be used to construct codes that can be encoded
in linear time with similar rate and error-correction threshold
by using a cascading series of bipartite graphs, as described in
[10], [27]. For convenience, we will not address this issue here.)
More specific details are given in Section II-A.

Most previously studied low-density parity-check codes have
been constructed using sparse regular, or nearly regular, random
bipartite graphs [3], [7], [16], [17]. That is, the degrees of all
message nodes are equal, and the degrees of all check nodes are
equal. This means that the parity-check matrix of the code de-
scribed above contains the same number of ones in each row
and the same number of ones in each column. We call these
codesregular codes. Our improved performance comes from
using codes based onirregular graphs. That is, the degrees of
the nodes on each side of the graph can vary widely. In terms
of the parity-check matrix , the weight per row and column
is not uniform, but instead governed by an appropriately chosen
distribution of weights. By carefully choosing the distributions,
we achieve improved performance. In fact, the codes we de-
scribe use a number of largely disparate weights, suggesting that
often the best distributions are far from those that produce reg-
ular codes.

That irregular structure improves performance is not sur-
prising in light of recent work rigorously proving the power
of irregular graphs in designing erasure correcting codes [10],
[11], [27]. Irregular graphs appear to have been rarely studied
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in the setting of error-correcting codes because of the difficulty
in determining what irregular structures might perform well.
The techniques for finding good erasure correcting codes
determined in [10], [11], [27] provide the basis for some of the
codes and the techniques we develop here.

In the following, we would like to offer some intuition as to
why irregular graphs should improve performance. Consider
trying to build a regular low-density parity-check code that
transmits at a fixed rate. It is convenient to think of the process
as a game, with the message nodes and the check nodes as the
players, and each player trying to choose the right number of
edges. A constraint on the game is that the message nodes and
the check nodes must agree on the total number of edges. From
the point of view of a message node, it is best to have high
degree, since the more information it gets from its check nodes
the more accurately it can judge what its correct value should
be. In contrast, from the point of view of a check node, it is
best to have low degree, since the lower the degree of a check
node, the more valuable the information it can transmit back
to its neighbors.

These two competing requirements must be appropriately
balanced. Previous work has shown that for regular graphs,
low-degree graphs yield the best performance [16], [17]. If one
allows irregular graphs, however, there is significantly more
flexibility in balancing these competing requirements. There
is reason to believe that a wide spread of degrees, at least for
message nodes, could be useful. Message nodes with high
degree tend to correct their value quickly. These nodes then
provide good information to the check nodes, which subse-
quently provide better information to lower degree message
nodes. Irregular graph constructions thus have the potential to
lead to a wave effect, where high degree message nodes tend
to get corrected first, and then message nodes with slightly
smaller degree, and so on down the line.

This intuition (which we observe in our experiments) unfortu-
nately does not provide clues as to how to construct appropriate
irregular graphs. We meet this challenge in two ways. First, we
design a rigorous analysis for both regular and irregular graphs
for a hard-decision decoding algorithm also suggested by Gal-
lager. Even though these decoders do not perform as well as be-
lief propagation, as one might expect, such schemes may still
be useful in practice, since they are simpler and require less
memory. Our main motivation for studying this model, how-
ever, is that we can makeprovableasymptotic statements about
the performance of hard-decision decoding of irregular graphs.
Using ideas from [11] for studying random processes, we show
in Section II-A that with high probability, hard-decision de-
coding successfully corrects all but an arbitrarily small constant
fraction of the message bits. Once the number of erroneous bits
is reduced to this level, we switch from Gallager’s algorithm
to one used by Spielman and Sipser in [22], and prove in Sec-
tion II-B that this new hybrid method successfully finishes the
decoding with high probability. This analysis easily extends to
the irregular codes that we introduce in Section III. Addition-
ally, the bound on the probability of error we derive using this
methodology improves upon the bound derived by Gallager for
the regular graphs he explicitly constructed. We emphasize that
our approach differs strongly from Gallager’s original approach,

since we do not assume our graphs lack small cycles. Instead,
our analysis applies to randomly chosen graphs.

From our analysis, we develop in Section III-B methods
based on linear programming to find good irregular graph
structures using the hard-decision decoding algorithm. The cor-
responding degree distributions have been tested extensively,
and we report on some of these tests in Section IV.

The second way in which we meet the challenge of designing
irregular graphs is to test the belief propagation algorithm on
graphs that have been proven to be effective for erasure-cor-
recting codes [10], [11], [27]. Intuitively, graphs that work well
for erasure-correcting codes should also work well for error-cor-
rection codes, since the two are closely related.

As an example of our improved performance, we have
found a rate irregular code that, on 16 000 message bits,
corrects over 17% random errors with high probability in our
experiments. On 64 000 message bits, a similar code corrects
up to 18% random errors on our experiments. In contrast, the
best regular code corrects up to approximately 16.0% random
errors with 16 000 message bits and approximately 16.2% on
64 000 message bits. (The Shannon bound for ratecodes is
21.45%.) We report on our experiments and simulations with
the belief propagation algorithm in Section V-A.

We note that since this work originally appeared in [12]
and [13], a great deal of progress has been made in this area.
In particular, the work of Davey and MacKay demonstrates
another approach to improving low-density parity-check
performance by treating small numbers of bits as elements of
an appropriate finite field [4]. By using irregular graphs and
this technique, they have in some cases matched turbo code
performance. More recent work by Richardson and Urbanke
[21] and Richardson, Shokrollahi, and Urbanke [20] extends
our analysis in Section II-A to message-passing systems where
a message can take on one of a finite number of values. Using
their extensions, they have obtained nearly tight provable
bounds on regular and irregular codes using belief propagation
and have developed techniques for designing irregular graphs
that perform well under belief propagation.

II. A NALYZING MESSAGEPASSAGEDECODING

In this section, we consider a message-passing algorithm
where in each round one bit is passed in each direction along
each edge. This message-passing scheme was analyzed for
specific regular codes by Gallager. Our new analysis extends
to random regular and irregular graphs. We demonstrate that
using irregular graphs can greatly improve performance of this
decoding scheme. To ease the presentation, we first detail our
arguments for regular graphs.

A. Regular Graphs

As described in Section I, a bipartite graph withmessage
nodes on the left and check nodes on the right gives rise to
a linear code of dimension and block length in
the following way: the bits of a codeword are indexed by the
message nodes. A binary vector is a code-
word if and only if , where is the incidence
matrix of the graph whose rows are indexed by the check nodes
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and whose columns are indexed by the message nodes. In other
words, is a codeword if and only if for each check
node the exclusive-or of its incident message nodes is zero. To
allow encoding in linear time, one could allow the nodes on the
right to represent bits rather than restrictions, and then use a
cascading series of bipartite graphs, as described for example
in [10], [27]. In this situation, we know inductively the correct
value of the check nodes in each layer when we correct the mes-
sage nodes, and the check nodes are the exclusive-or of their
incident message nodes. The resulting code has the same rate
and error-correction threshold as the corresponding low-density
parity-check code, although its likelihood of decoding error in-
creases.

In what follows, we again focus on one bipartite graph only,
and assume that only the message nodes are in error. The anal-
ysis that we provide in this case works for either of the two ap-
proaches given above, as we may inductively focus on just one
layer in the context of cascading series of graphs [10], [27].

We now review the hard-decision decoding approach taken
by Gallager in his original analysis [7].

Consider a regular random graph with the message nodes
having degree and the check nodes having degree. With
probability a message node receives the wrong bit. The de-
coding process proceeds inrounds, where in each round first
the message nodes send each incident check node a single bit
and then the check nodes send each incident message node a
single bit. The bit sent from a message nodeto a check node

at the th step of the decoding is denoted , while the mes-
sage sent from the check nodeto the message nodeat round

is denoted . The bit is a guess of the correct bit of
message bit at round . Similarly, is a guess, from the
point of view of the check node, of what the correct value of

should be. The messages passed contain onlyextrinsic infor-
mation, that is, the value of depends only on the values

for all check nodes incident to other than . (Simi-
larly, for .) Each message noderemembers the received
bit that is purported to be the correct message bit. (Thus,
is not the correct message bit with probability.) We assume
that in the zeroth round of the process messages are sent from
message nodes to check nodes. Each subsequent round consists

Fig. 1. Representing the code as a tree.

of passing messages from check nodes to message nodes and
back. In full detail, each round consists of an execution of the
script at the bottom of this page.

Of course the parallel work can easily be simulated sequen-
tially. Moreover, the work per round can easily be coded so that
it is linear in the number of edges.

The process can run for a preset number of rounds, after
which each message node can determine its most likely value
based on its neighbors. If the check nodes are satisfied, then a
codeword has been found; otherwise, the decoding has failed.
Alternatively, after each round, each message node can deter-
mine its most likely value and a check can be performed to see
if a codeword has been found. If not, the process continues until
the decoder decides to stop with a failure.

To analyze the decoding process, consider an individual edge
between a message nodeand a check node, and

an associated tree describing a neighborhood of. This tree
is rooted at , and the tree branches out from the check nodes
of excluding , as shown in Fig. 1. For now let us assume
that the neighborhood of is accurately described by a tree for
some fixed number of rounds.

Let be the probability that sends an incorrect value
in round . Initially . Following the work of Gal-

lager, we determine a recursive equation describing the evolu-
tion of over a constant number of rounds.

Consider the end of theth round, and consider a check node
of other than . The node sends its correct value as

long as there are an even number (including possibly) message

For all edges do the following in parallel:

Update for

If this is the zeroth round, then set
If this is the th round with then is computed as follows:
if equals for all adjacent check nodes of other than then set
else set

Update for

For all edges set as the exclusive-or of the values
where ranges over all adjacent message nodes ofother than
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nodes other than sending the wrong bit. As each bit was
correctly sent to with probability , it is easy to check
that the probability that receives an even number of errors is

(1)

Hence, the probability that was received in error and sent
correctly in round is

and, similarly, the probability that was received correctly but
sent incorrectly in round is given by

This yields an equation for in terms of

(2)

Gallager’s idea is then to find the supremumof all values
of for which the sequence is monotonically decreasing and
hence converges to. Note, however, that even if converges
to , this does not directly imply that the process necessarily
corrects all message nodes, even with high probability. This is
because our assumption that the neighborhood of is ac-
curately represented by a tree for arbitrarily many rounds is not
true. In fact, even for any constant number of rounds it is true
only with high probability.

Gallager proves that, as the block length of the code and girth
of the graph grow large, this decoding algorithm works for all

. Since random graphs do not have large girth, Gal-
lager introduced explicit constructions of regular sparse graphs
that do have sufficiently large girth for his analysis to hold. We
shortly provide an analysis that shows that Gallager’s decoding
algorithm successfully corrects a large fraction of errors for a
randomly chosen regular graph with high probability. Then, in
Section II-B, we show how to ensure the decoding terminates
successfully with high probability using a slightly different de-
coding rule.

Gallager notes that the decoding rule can be improved in the
following manner: at each round, there is a universal threshold
value (to be determined below) that depends on the round
number. For each message nodeand neighboring check node
, if at least neighbors of excluding sent the same bit

to in the previous round, then sends this bit to in this
round; otherwise, sends to its initial bit . The rest of the

decoding algorithm is the same.1 Using the same analysis as for
(2), we may find a recursive description of the

(3)

We choose so as to minimize . To do this we com-
pare the odds of being right initially to the odds of being right
using the check nodes and the threshold. As determined by
Gallager, the correct choice of is the smallest integer that sat-
isfies

(4)

Note that is an increasing function of ; this is intuitive,
since as decreases, smaller majorities are needed to get an
accurate assessment of’s correct value. Also, note that while
the algorithm functions by passing values along the edges, it
can also keep a running guess for the value of each message
node based on the passed values. The algorithm continues until
the proposed values for the message nodes satisfy all the check
nodes, at which point the algorithm terminates with the belief
that it has successfully decoded the message, or it can fail after
a preset number of rounds.

It follows simply from a similar argument in [11] that the re-
cursive description given by (3) is correct with high probability
over any constant number of rounds. (We note also that a similar
extension of this proof based on the original paper [13] has also
appeared in the subsequent work of Richardson and Urbanke
[21].)

Theorem 1: Let be an integer constant and letbe the
random variable describing the fraction of edges set to pass in-
correct messages afterrounds of the above algorithm. Further,
let be as given in the recursion (3). Then there is a constant

(depending on the maximum degree ) such that
for any and sufficiently large we have

Proof: Let be the number of edges in the graph. We
show the equivalent assertion

1The first algorithm, where all of the other neighbors of a message node must
disagree with the received bit for it to change its message, is nowadays referred
to as Gallager’s Algorithm A. The improvement is often referred to as Gallager’s
Algorithm B. Our experiments and analysis apply to Gallager’s Algorithm B
in the most general sense; that is, for any predetermined valuesb . Of course
Gallager’s Algorithm A is then just a special case.
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There are two considerations requiring care. First, the neighbor-
hood around a message bitmay not take the form of a tree.
We show that this does not happen too often with an edge expo-
sure martingale argument. Second, even assuming the number
of nontrees is small, we still need to prove tight concentration of

around the expectation given that message bits may be wrong
initially with probability . This follows from a separate mar-
tingale argument, exposing the initial values at each node one
by one.

First, we consider the number of edges such that if
we expand the neighborhood belowfor levels, we do not
obtain a tree. For such edges we cannot say anything about their
behavior, so we must show that there are few of them. Note that
as the number of nodes in a tree oflevels is exponential in
, this necessarily implies that the number of nodesin the

graph must be exponential in. Recall that in the statement of
the theorem, however,is a fixed constant and is taken to be
sufficiently large.

It is easily seen that there is a constantdepending on and
the maximum degree of the graph such that the probability that
the neighborhood of depth stemming from an edge is not a
tree is . To see this, consider the neighborhood stemming
from an edge by expanding outward level by level, one edge
at a time. As there are fewer than total nodes in the
tree, the probability at any step that an edge in the neighbor-
hood hits a vertex already in the neighborhood is bounded above
by . From a union bound, the total
probability that the neighborhood fails to be a tree is therefore
bounded above by

for a suitable constant. Hence the expected number of edges
that might fail because their neighborhood structure is not a tree
is only a constant. More concretely, for sufficiently largethe
value is less than . Hence, if we let be the number
of edges for which the neighborhood of up to levels
is a proper tree, we obtain

We now obtain a concentration result for , by exposing the
edges of the graph one by one using an edge exposure martingale
and applying Azuma’s inequality [18, Sec. 4.4]. In particular,
we think in terms of exposing the permutationthat defines
our bipartite graph one entry at a time, in order. We may then
define to be the expected value for , given the results
of the first exposures. In particular, ,

, and the sequence forms a standard Doob’s martingale,
with Moreover, consecutive values of
differ only by a constant, as we show in the following lemma.
Hence, using Azuma’s inequality

(5)

Lemma 1: is bounded by a constant.
Proof: Consider all possible results from exposing the

st edge. The value of is bounded by
the maximum difference in the expectation of from any

two such results. This, in turn, is bounded by the maximum
difference in the value of between any two permutations
that differ in the placement of two edges. That is, consider two
possible results: and . There is a
one-to-one correspondence between the remaining possibilities
for and , such that for some , the correspondence
has , , and and agree at all other
places. Hence, the expectation over the two possibilities given
by and differs at most by the maximum difference in the
value of between any two permutations that differ in the
placement of two edges.

Now consider any pair of graphs given by permutationsand
, where and differ only on the placement of two edges. In

this case, the difference in for and is bounded by a
constant, since the placement of these edges can only affect a
constant number of trees (this constant depending onand the
maximum degree). Hence the lemma is proved.

Now let be the number of edges from the edges with
valid tree neighborhoods for levels below set to pass incorrect
messages after rounds. Clearly, . We again
obtain a high probability result using a martingale argument.
We may reveal the initial value received at each node, one at
a time. Again we may define to be the expected value for

, given the results of the first exposures, in which case
the form a standard Doob’s martingale. Here, it is easy to
see that consecutive values of differ only by a constant, as
each revealed node can only affect the edges where in lies in the
corresponding tree. Hence

(6)

The assertion follows from the two inequalities (5) and (6), as

and hence

for some constant.

Corollary 1: Given a random regular code withas defined
by (3), if the sequence converges to , then for any
there is a sufficiently large message sizesuch that Gallager’s
hard-decision decoding correctly decodes all but at mostbits
in some constant number of rounds with high probability.

B. Completing the Work: Expander-Based Arguments

In the previous section we have shown that the hard-decision
decoding corrects all but an arbitrarily small constant fraction of
the message nodes for regular codes with sufficiently large block
lengths. The analysis, however, is not sufficient to show that
the decoding process completes successfully. In this section, we
show how to finish the decoding process with high probability
once the number of errors is sufficiently small using slightly dif-
ferent algorithms. Our work utilizes the expander-based argu-
ments in [22] and [23]. Alternatively, one should be able to con-
struct a similar argument using the approach of [26] and [8]. We
note that the recent work of Burshtein and Miller [2] shows that
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the hard-decision decoding algorithm is guaranteed to correct
all message nodes once it has corrected a sufficiently large frac-
tion of the message nodes, provided that the underlying graph
is a sufficiently good expander. Thus, the change of decoding
algorithm suggested in this section is technically unnecessary;
we include it for completeness.

We first define what we require in terms of the bipartite graph
represented by the code being a good expander.

Definition 1: A bipartite graph has expansion if for all
subsets of size at most of the vertices on the left, the size
of the neighborhood of on the right satisfies

, where is the set of edges attached to vertices in.

Following the notation of [22], we call a message node cor-
rupt if it differs from its correct value, and we call a check node
satisfied (respectively, unsatisfied) if its value is (is not) the sum
of the values of its adjacent message nodes. The work of [22]
shows that if the underlying bipartite graph of a code has suffi-
cient expansion for sets of size up to , then both of the fol-
lowing algorithms can correct any set of errors

Sequential decoding if there is a message node that
has more satisfied than unsatisfied neighbors, flip the
value of that message node. Repeat until no such
message node remains.

Parallel decoding for each message node, count the
number of unsatisfied check nodes among its
neighbors. Flip in parallel each message node
with a majority of unsatisfied neighbors.

Note that the above algorithms are very similar to Gallager’s
hard-decision decoding algorithm, except that here we need not
hold values for each (message node,check node) pair. We call
upon the results of [22] to show that once we use hard-decision
decoding to correct all but some arbitrarily small fraction of
the message nodes, we can finish the process. The next lemma
follows from [22, Theorems 10 and 11].

Lemma 2: Let and for some fixed .
Let be an expander. Then the sequential and parallel
decoding algorithms correct up to errors. The sequential
decoding algorithm does so in linear time and the parallel de-
coding algorithm does so in rounds, with each round
requiring a linear amount of work.

We use the following standard lemma to claim that the graph
we choose is an appropriate expander, and hence we can finish
off the analysis of the decoding process using the previous
lemma.

Lemma 3: Let be a bipartite graph, with nodes divided into
left and right sides. Suppose that a degree is assigned to each
node so that all left nodes have degree at least five, and all right
nodes have degree at mostfor some constant . Suppose that
a random permutation is chosen and used to match each edge
out of a left node with an edge into a right node. Then, with
probability , for some fixed , , and

, is an expander.

Fig. 2. If the two left nodes are supposed to be0, and all other nodes are
correct, then the majority tells the left nodes not to change.

We note that the restriction in Lemma 3 that the left degrees
are at least five appears necessary. For example, it is entirely
possible for random graphs with degree three on the left to fail to
complete using the proposed sequential and parallel algorithms
even after almost all nodes have been corrected. A problem oc-
curs when the graph has a small even cycle. In this case, if all
the nodes in the cycle are received incorrectly, the algorithm
may fail to terminate correctly (see Fig. 2). Even cycles of any
constant length occur with constant probability, so errors remain
with constant probability.

To circumvent this problem Gallager designs specific regular
graphs with no small cycles [7]. To circumvent this problem
in random graphs, we make a small change in the structure of
the graph, similar to that in [10], [27]. Suppose that we use
the previous analysis to correct all but at mostmessage bits
with high probability. We add an additional check nodes,
where is a constant that depends on, and construct a regular
random graph with degreeon the left between all the mes-
sage nodes and the check nodes. The decoding proceeds as
before on the original random graph, correcting all but at most

message bits. We then use the check nodes previously
held in reserve to correct the remaining message bits using the
Sipser–Spielman algorithm. That this procedure works follows
directly from Lemmas 2 and 3. Moreover, as bothand can
be made arbitrarily small by Corollary 1, the change in the rate
of the code due to this additional structure is negligible, and is
ignored in the sequel.

C. Theoretically Achievable Error Correction

For every rate, and for every possible left degree and corre-
sponding right degree, the value of can be computed by the
above analysis. A natural question to ask is which regular code
can achieve the largest value of. Among rate regular
codes, it turns out that the largest is achieved when all left
nodes have degreeand all right nodes have degree, in which
case . Thus, combining Corollary 1, Lemma 2, and
Lemma 3, we have shown that when the corresponding bipartite
graph is chosen randomly, this code can correct all errors with
high probability when the initial fraction of errors approaches

. All of these regular codes run in linear time if we use
the sequential decoding algorithm in the final stage. This fol-
lows from the fact that we need to run the hard-decision de-
coding only for a constant number of rounds (at linear time per
round), and then the sequential decoding algorithm can fix the
remaining errors in linear time.
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III. I RREGULAR CODES

A. Analyzing Irregular Codes

We now describe a decoding algorithm for codes based on ir-
regular graphs, which we callirregular codes. We first describe
the construction of such codes. Message nodes are located on
the left and the check nodes on the right. Each message node has
a certain number of edges which connect to check nodes; simi-
larly, each check node has a certain number of edges connecting
to message nodes. The total number of edges in the graph is.
A random permutation of is chosen, and then, for
all the edge with index out of the left side is
identified with the edge with index out of the right side.
Note that this may potentially lead to nodes with several edges
between them, ormultiedges; often in practice multiedges and
small cycles can be removed to improve performance [16].

Following the notation used in [10] and [27], for an irreg-
ular bipartite graph we say that an edge has degreeon the
left (right) if its left (right) hand neighbor has degree. Let us
suppose we have an irregular bipartite graph with some max-
imum left degree and some maximum right degree. We
specify our irregular graph by sequences and

, where is the fraction of edges with
left (right) degree. Further, we define .

Our decoding algorithm in the case of irregular graphs is sim-
ilar to Gallager’s hard-decision decoding as described in Sec-
tion II-A, but generalized to take into account the varying de-
grees of the nodes. Again we look at the process from the point
of view of an edge . Consider the end of theth round, and
consider a check nodeof other than . The node sends
its correct value as long as there are an even number (including
possibly ) of other message nodes sendingthe wrong bit.
As each bit was correctly sent to with probability , it
is simple to check that the probability thatreceives an even
number of errors is

(7)

Expression (7) is the generalization of (1), taking into account
the probability distribution on the degree of.

Also similarly to Section II-A, after round a message node
of degree passes its initial value along to check node

unless at least of the check nodes adjacent to other
than send the same value. Note that now the threshold value
for a node depends on its degree. Also, the value ofchanges
according to the round.

To analyze the decoding process, consider a random edge
. The left degree of is with probability . It

thus follows from the same argument as in Section II-A that the
recursive description for is

(8)

We need to determine so as to minimize the value of .
As in (4), the best value of is given by the smallest integer
that satisfies

(9)

This equation has an interesting interpretation. Note that
is a constant fixed by the above equation. The

value

can be interpreted as the difference between the number of check
nodes that agree in the majority and the number that agree in
the minority. We call this difference thediscrepancyof a node.
Equation (9) tells us that we need only check that the discrep-
ancy is above a certain threshold to decide which value to send,
regardless of the degree of the node.

B. Designing Irregular Graphs

We now describe techniques for designing codes based on
irregular graphs that can handle larger probabilities of error at
potentially some expense in encoding and decoding time. Given
our analysis of irregular codes, our goal is to find sequences

and that yield
the largest possible value of such that the sequence ofde-
creases to for a given rate. We frame this problem in terms
of linear programs. Our approach cannot actually determine the
best sequencesand . Instead, our technique allows us to de-
termine a good vector given a vector and the desired rate of
the code. This proves sufficient for finding codes that perform
significantly better than regular codes. (Similarly, we may also
apply this technique to determine a good vectorgiven a vector

and the desired rate; as we explain below, however, this does
not prove useful in this setting.)

Let be fixed. For a given degree sequence

let the real valued function be defined by
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where now

and the are variables to be determined. Observe that con-
dition (8) now reads as . For a given and
right-hand degree sequence, we are interested in finding a de-
gree sequence such that the corresponding func-
tion satisfies on the open interval . We
begin by choosing a set of positive integers which constitute
the range of possible degrees on the left-hand side. To find ap-
propriate , , we use the condition above to
generate linear constraints that themust satisfy by consid-
ering different values of . For example, by examining the con-
dition at , we obtain the constraint ,
which is linear in the .

We generate constraints of the form for values of
that are multiples of for some integer . We also include
the constraints for all , as well as the constraint

(10)

where is the rate of the code. This condition expresses the
fact that the number of edges incident to the left nodes equals
the number of edges incident to the right nodes. We then use
linear programming to determine if suitableexist that satisfy
our derived constraints. The choice for the objective function is
arbitrary as we are only interested in the existence of feasible
solutions.

Given the solution from the linear programming problem,
we can check whether the computed satisfy the condition

on . The best value for is found by binary
search. Due to our discretization, there are usually someconflict
intervals in which the solution does not satisfy this inequality.
Choosing large values for the tradeoff parameterresults in
smaller conflict intervals, although it requires more time to solve
the linear program. For this reason, we use small values of
during the binary search phase. Once a value foris found,
we use larger values of for that specific to obtain small
conflict intervals. In the last step, we get rid of the conflict in-
tervals by slightly decreasing the value of.

This linear programming tool allows for efficient search for
good codes. That is, given a vectorwe can find a good partner
vector . In a similar fashion, we can also find a good partner
vector from a given . However, our experiments reveal that
the best vector for this decoding algorithm is always the one
where the nodes on the right have the same degree (or all nodes
have as close to the same degree as possible).

There is a natural intuition explaining this phenomenon. From
the point of view of a message node, it appears best if the
expected number of other neighbors a neighboring check node

has is as small as possible. This can be seen as follows. At the
end of the th round, the probability thatsends the correct vote
to is

For small values, this is approximately

To maximize this probability, we seek to minimize

which is exactly the expected number of other neighbors
has. This quantity is minimized (subject to the constraints

and (10)) when all check nodes have equal
degree, or as nearly equal as possible.

Using the linear programming technique, we have considered
graphs where the nodes on the left side may have varying de-
grees and the nodes on the right side all have the same degree.
In other words, we have found good codes by consideringvec-
tors with just one nonzero entry. As we shall see in Section IV,
this suffices to find codes with significantly better performance
than that given by codes determined by regular graphs.

It remains to show that the codes we derive in this manner in
fact function as we expect. That is, given a vector ,
the right degree , and the initial error probability , if the se-
quence given by (8) is monotonically decreasing and hence
converges to , then the code obtained from the corresponding
irregular random graph corrects a-fraction of errors, with
high probability. We first note that Theorem 1 holds for irreg-
ular graphs as well as for regular graphs, by an entirely similar
proof (modified to take into account the different degrees). That
is, we can use the hard-decision decoding algorithm to decrease
the number of erroneous bits down to any constant fraction.

To finish the decoding, we use the sequential algorithm from
Section II-B. The overall decoding time is linear. (We again
note that Burshtein and Miller [2] have recently shown that the
hard-decision decoding algorithm could be used to finish the
decoding, although this would result in an time al-
gorithm.)

Lemma 4: Let and for some fixed .
Suppose that is an irregular bipartite expander, and
that is the maximum degree on a left node of. Then the
sequential decoding algorithm corrects up to errors in
linear time.

Proof: We follow [22, Theorem 10]. We show that the
number of unsatisfied check nodes decreases after each step in
the sequential algorithm. Let be the set of corrupt message
nodes, with and . Suppose there areun-
satisfied check nodes and letbe the number of satisfied neigh-
bors of the corrupt variables. By the expansion of, we have

As each satisfied neighbor of shares at least two edges with
, and each unsatisfied neighbor shares at least one, we have

It follows that

and hence there is some message node with more thanof
its incident check nodes unsatisfied. Hence at each step the se-
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quential algorithm may flip a message node and decrease the
number of unsatisfied check nodes.

Therefore, the only way the algorithm can fail is if the number
of corrupt message nodes increases so that during the
algorithm. But if , then However, initially

is at most , and decreases throughout the course
of the algorithm, so this cannot happen.

It follows that the irregular codes we derive function as we
expect as long as our random graphs have sufficient expan-
sion. This expansion property holds with high probability if we
choose the minimum degree to be at least five. However, as
stated previously, graphs with message nodes of smaller degree
may be handled with a small additional structure in the graph.

C. Theoretically Achievable Error Correction

We have designed some irregular degree sequences using the
linear programming methodology described in Section III-B.
The codes we describe all have rate . These codes perform
well in practice as well as according to our theoretical model.
However, it is likely that one could find codes that perform
slightly better than codes using our techniques. It is worth noting
that the Shannon upper bound (or entropy bound) forfor
codes of rate is 11.1%. Although the irregular codes we
have designed to date are far from this limit, they are still much
better than regular codes.

Code and Code , described fully in Table I, are two
irregular codes that we designed. For Code, all nodes on the
right have degree , and for Code all nodes on the right
have degree .2 In both these codes, the minimum degree on
the left-hand side is five. This ensures that the graphs have good
expansion as needed in Lemma 3, and thus there is no need for
the additional structure discussed in Section II-B.

We can achieve even better performance by considering
graphs with smaller degrees on the left. While such graphs do

2Actually, to balance the number of edges, we do allow one node on the right
to have a different degree.

not have sufficient expansion for Lemma 3 to hold, we can use
the additional structure discussed in Section II-B to finish the
decoding. For Code all nodes on the right have degree,
and for Code all nodes on the right have degree. Recall
that is the best value of that is possible using regular
graphs for rate codes.

IV. EXPERIMENTAL RESULTS FORGALLAGER’S ALGORITHM

We include preliminary experimental results for new codes
we have found using the linear programming approach. Our ex-
perimental design is similar to that of [22], whose results can
be compared with ours. We describe a few important details of
our experiments and implementations. We model a binary-sym-
metric channel. To more accurately compare code quality, in-
stead of introducing errors with probability, we introduced the
same number of errors at each trial (corresponding to a fraction

of the block length). This procedure allows for easier compar-
ison with other codes and minimizes the variance in the experi-
ments that might arise from the variance in the number of errors.

Rather than encoding a message for each trial, we use an ini-
tial message consisting entirely of zeros. Since the code is linear
and the decoding algorithm respects its linearity, no generality
is lost.

A different random graph was constructed for each trial. No
effort was made to test graphs and weed out potentially bad
ones, and hence we expect that our results would be slightly
better if several random graphs were tested and the best ones
chosen. Also, following the ideas of [16] and [22], when neces-
sary we remove multiedges from our graphs.

In our implementation, we simply run Gallager’s improved
decoding algorithm (with thresholds) until it finishes, or
until a prespecified number of rounds pass without success.
Our implementation therefore takes as input aschedulethat
determines the discrepancy value at each round.
This schedule can be calculated according to (9). In practice,
however, the schedule determined by (9) must be slightly
modified. If the discrepancy threshold is changed prematurely,
before enough edges transfer the correct value, the decoding al-
gorithm is significantly more likely to fail. Hence changing the
threshold according to the round as given by (9) often fails to
work well when the block size is small, since the variance in the
number of edges sending the correct value can be significant.
We find that stretching out the schedule somewhat, so that the
discrepancy threshold is changed after a few more rounds than
the equations suggest, prevents this problem, at the expense of
increasing the running time of the decoding algorithm.

In our experiments it turns out that it is unnecessary to switch
to the modified decoding algorithm of Section II-B or use the
additional structure described in Section II-B, as in our experi-
ence the hard-decision decoding algorithm of Gallager finishes
successfully once the number of errors becomes small.

It is worthwhile to note that even when the decoding algo-
rithm fails to decode successfully because too many rounds have
passed, it can report that failure back. We have yet to see the
decoding algorithm produce a codeword that satisfied all con-
straints but was not the original message, although as far as we
know such an event is possible.
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Fig. 3. Percentage of successes based on 2000 trials.

A. Experiments with Hard-Decision Decoding

We first describe experiments on codes of rate with
16 000 message bits and 8000 check bits. In Fig. 3, we describe
the performance of Code and Code that we introduced in
Section III-C. Each data point represents the results from 2000
trials. Recall that the appropriate value of is approximately

for Code and for Code . Recall that
represents the error rate we would expect to be able to handle
for arbitrarily long block lengths, and that we only expect to
approach asymptotically in practice as the number of nodes
grows.

Our results show that for block lengths of length 16 000 the
codes appear to perform extremely well when a random frac-
tion (or 720) of the original message bits are in error.
For the 2000 trials, Code never failed, and Code failed
just once. (In fact in 10 000 trials with this number of errors,
Code proved successful every time.) The probability that the
code succeeds falls slowly as the error probability approaches

. Further experiments with larger block lengths demonstrate
that performance improves with the number of bits in the mes-
sage, as one would expect. These codes therefore perform better
than similar regular codes, while still having linear running time.
For instance, as mentioned before, the best regular code of rate

is obtained from random regular bipartite graphs with de-
gree on the left and degreeon the right. The performance of
this code is also shown in Fig. 3. Although thevalue for this
regular code is approximately , in practice, with 16 000
message bits this regular code failed 23 times in 2000 trials with
a fraction of errors.

We now consider Code and Code introduced in Sec-
tion III-C (see Fig. 4). The experiments were run on 16 000
message bits and 8000 check bits for 2000 trials. In our ex-
periments, we remove both multiedges and some small cycles,
as suggested in [16]. Recall that the appropriate value ofis
approximately for Code and for Code .
These codes again perform near what our analysis suggests, and

they significantly outperform previous similar codes with sim-
ilar decoding schemes, including regular codes.

In summary, irregular codes Codeand Code appear su-
perior to any regular code in practice, and irregular codes Code

and Code are far superior to any regular code. We have
similarly found irregular codes that perform well at other rates.

V. LOW-DENSITY PARITY-CHECK CODES AND BELIEF

PROPAGATION

In this section, we review belief propagation for the low-den-
sity parity-check codes developed by Gallager using the frame-
work of MacKay and Neal [7], [16].

Similar to the hard-decision decoding algorithm of Sec-
tion II-A, only extrinsic information is passed from the message
bits to check bits and back. As explained in [16], the algorithm
runs two alternating phases, in which for each nonzero entry
in with row and column (or, in other terms, for each
edge of the associated bipartite graph) two valuesand

are iteratively updated. The quantity approximates
the probability that the th bit of the codeword is , given
the information obtained from all checks ofother than .
Similarly, the quantity approximates the probability that the
th check node is satisfied when theth bit of the codeword

is and all other message bitsassociated with checkhave
a separable distribution given by the appropriate. That is,
we assume that the other message bitsare independently

with probability , and use this to calculate . Over a
binary-symmetric channel with crossover probability, all
have initially the value . In the first phase of a round,
all the values are updated in parallel; then, in the second
phase, all the values are updated in parallel. (These parallel
updates can also be simulated sequentially in a straightforward
manner.) The total amount of work performed in each round is
linear in the number of edges of the graph. If the bipartite graph
defined by contains no cycles of length up to, then after
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Fig. 4. Percentage of successes based on 2000 trials.

rounds of updates the algorithm produces the exact posterior
probabilities that each message bit is in error based on the
neighborhood within a diameter of of the message node.
The presence of cycles in the graph skews the probabilities,
but in practice the effect on the algorithm appears to be small.
More details can be found in [6], [7], [16], and [24].

A. Simulation of Irregular Graph Performance Under Belief
Propagation

We describe a few important details of our experiments and
implementations. We performed simulations using two types of
channels for several rates and block lengths. The first channel
we model is a binary-symmetric channel. We use a message
consisting entirely of zeros, introduce a fixed number of errors
corresponding to a fractionof the block length, create a new
random graph for each trial, and remove multiedges as neces-
sary. The second channel type we model is a white Gaussian
channel with binary input and an additive noise of vari-
ance . We report results for the Gaussian channel of rate

and additive noise in terms of the signal-to-noise ratio
expressed as decibels .

Here represents the average energy per bit and
represents the noise spectral density .

In our experiments, we allowed the belief propagation algo-
rithm to run for up to 200 rounds. If the algorithm failed to con-
verge on a codeword within 200 rounds, a failure was reported.
Again, this was in fact the only failure we saw in our experi-
ments; that is, the algorithm never returned a codeword that dif-
fered from the initial message.

We describe the irregular graphs used in Table II, which are
derived from irregular graphs for erasure codes [27]. Note that
given a vector and one can construct a graph with (approx-
imately) the correct edge fractions for any number of nodes,
using the construction method described in Section III. (Some
care must be taken because of rounding and the necessity to have
the number of edges on the left equal the number of edges on
the right; however, this is easily handled.)

TABLE II
PARAMETERS OFOUR CODES

B. Binary-Symmetric Channel

Table III compares the performance of regular and irregular
codes of rates and . Our results for regular codes (based
on graphs in which all nodes on the left have degree) are
slightly better than (but consistent with) previous results re-
ported in [16]. (The differences may be due to our fixing the
number of errors, while the results of [16] use a genuine bi-
nary-symmetric channel. Of course, there may also be other
minor differences in the graph construction.) In the table,rep-
resents the block length, represents the rate,represents the
fraction of errors introduced, and represents the capacity of
the binary-symmetric channel with crossover probability. The
results are reported in terms of the number of trials, or blocks
decoded, and the number of errors, or the number of blocks for
which the decoding algorithm failed to find a solution within
200 rounds.

At rate , our irregular codes perform only slightly better
than the regular codes at block lengths of 16 000 bits. They do
fail notably less often at higher error rates, however. At 64 000
bits, our code can handle over a half a percent more errors. While
it has been previously noted that low-density parity-check codes
perform better as the block length increases [16], we believe that
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Fig. 5. Irregular codes versus regular codes and turbo codes: rate1=2.

TABLE III
COMPARING REGULAR AND IRREGULAR GRAPHS

this effect is magnified for our irregular codes, because the de-
grees of the nodes can be quite high. For example, our irregular
rate codes have nodes on the left of degreeand nodes on
the right of degree .

At rate , we have different irregular codes with lower de-
grees. This code greatly outperforms the regular codes, even at
block lengths of 16 000, where they correct approximately 1%
more errors. At block lengths of 64 000 bits, the effect is even
more dramatic, and the irregular codes appear to correct more
than 1% more errors. We note that initial experiments at other
rates further validate our contention that irregular codes can out-
perform regular codes in terms of the number of errors that can
be corrected.

When decoding both regular and irregular codes, the number
of operations required is proportional to the product of the
number of edges in the corresponding graph and the number of
rounds until the process terminates. The irregular graphs have
approximately 2.5 times as many edges as the regular graphs,
and at higher error rates they can take approximately 1.5 times
as many iterations to complete. Hence it takes approximately
four times as many operations to decode at higher rates. In
software implementations, performance can actually be worse
than this, however, since the larger graph size for the irregular
codes may require more accesses to slower levels of the
memory hierarchy. However, we believe the slower running
time is not dramatic in light of the improved performance.

C. Gaussian Channel

Figs. 5 and 6 compare the performance (in terms of the
bit-error rate (BER)) of irregular codes of rate and
with reported results for turbo codes [5] and regular codes
[17] at these rates. Again, our experiments were with block
lengths of 16 000 bits, and for this block length each data point
is the result of 10 000 trials. (We compare with results using
comparable block lengths. The results from [5] are available
at http://www331.jpl.nasa.gov/public/TurboPerf.html.) For our
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Fig. 6. Irregular codes versus regular codes and turbo codes: rate1=4.

irregular codes, the belief propagation algorithm terminated
after 200 rounds if the solution was not found.

For rate codes, our irregular codes perform notably better
than regular codes, greatly reducing the gap between the perfor-
mance of low-density parity-check codes and turbo codes. This
gap is further reduced when we move to larger block sizes, as
our codes prove to perform better for larger block lengths in this
setting as well. At block lengths of 64 000 bits, our code never
failed in 1000 trials at both 0.95 and 1.00 dB. Our estimates for
the BER from 1000 trials at 0.9 dB is and at 0.85 dB
is . Again, this is much better than the performance
of regular codes at a comparable block length presented in [17].

Our results for irregular codes at rate (Fig. 6) similarly
show significant improvement over regular codes. At this lower
rate and block length, however, turbo codes appear to have a
significant edge. The edge has subsequently been reduced with
further exploration and experimentation [20], [21].

Our irregular codes at this rate again perform significantly
better with larger block lengths. At block lengths of 64 000 bits,
our code never failed in 1000 trials at both 0.70 and 0.60 dB. Our
estimates for the BER from 1000 trials at 0.50 dB is
and at 0.40 dB is .

VI. CONCLUSION AND FURTHER DEVELOPEMENT

This paper offers two important contributions. First, we
demonstrate that low-density parity-check codes based on
irregular graphs can substantially outperform similar codes
based on regular graphs. We show this both through asymptotic
analysis for a hard-decision decoding algorithm and experi-
mentally for belief propagation. Second, we introduce new
methods for analyzing low-density parity-check codes using
concentration bounds based on martingales.

These contributions have been built upon in subsequent
work. Our main “concentration theorem” based on martingales
has since been extended to a large class of channel models by
Richardson and Urbanke [21]. Based on this approach, they

also developed the “density evolution” algorithm, a numerical
procedure to approximate the threshold of noise below which
the belief propagation algorithm is asymptotically successful.
Indeed, sequences of codes have since been constructed for
which the belief propagation algorithm had a performance
extremely close to the Shannon capacity, beating the best
performing turbo codes known at the time [20].

There remains, however, much more to be done. We suggest
one problem in particular. The concentration bounds we use
apply to the asymptotic behavior of low-density parity-check
codes, but they do not adequately explain the behavior of small
codes, say with only thousands of bits. For such small codes,
the corresponding bipartite graphs necessarily have small cy-
cles, which is a complication our asymptotic analysis cannot
adequately handle. More understanding of small codes could be
extremely useful for designing low-density parity-check codes
and making them the code of choice in practice.
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