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Improved Low-Density Parity-Check Codes Using
Irreqular Graphs

Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman

Abstract—We construct new families of error-correcting codes  [7], [10]-{13], [16], [20], [21], [24], [25], [27]. Moreover,
based on Gallager’s low-density parity-check codes. We improve there are connections between these codes and turbo codes,
on Gallager’s results by introducing irregular parity-check ma- i +roduced by Berrou, Glavieux, and Thitimajshima [1], as

trices and a new rigorous analysis of hard-decision decoding of . . .
these codes. We also provide efficient methods for finding good the latter can be described in the framework of low-density

irregular structures for such decoding algorithms. Our rigorous ~ Parity-check codes (see, e.g., [14]). Moreover, the turbo de-
analysis based on martingales, our methodology for constructing coding algorithm can be understood as a belief propagation
good irregular codes, and the demonstration that irregular struc-  pased algorithm [15], [9], and hence any understanding of
ture improves performance constitute key points of our contribu- belief propagation on low-density parity-check codes may be

tion. .
We also consider irregular codes under belief propagation. We applicable to turbo codes as well.

report the results of experiments testing the efficacy of irregular ~ We find it helpful to describe low-density parity-check codes
codes on both binary-symmetric and Gaussian channels. For in terms of bipartite graphs. In the following, we refer to the
example, using belief propagation, for ratel/4 codes on 16000 nodes on the left and the right of a bipartite graph asitssage
bits over a binary-symmetric channel, previous low-density nodes ancthecknodes, respectively. A bipartite graph with

parity-check codes can correct up to approximately 16% errors, d the left and nod the riaht qi ise t i
while our codes correct over 17%. In some cases our results come10C€S 0N the et andnodes on he right gives rise 1o a linear

very close to reported results for turbo codes, suggesting that code of dimensio > n—r and block lengtt in the following
variations of irregular low density parity-check codes may be able way. The bits of a codeword are indexed by the message nodes.

to match or beat turbo code performance. A binary vectorz = (z1, ..., 1,,) is a codeword if and only if
Index Terms—Belief propagation, concentration theorem, Gal- HZ = 0, whereH is ther x n incidence matrix of the graph
lager codes, irregular codes, low-density parity-check codes. whose rows are indexed by the check nodes and whose columns

are indexed by the message nodes. In other wéuds, . ., x,,)
is a codeword if and only if for each check node the exclusive-or
of its incident message nodes is zero. (We note that our method-
OW-density parity-check codes, introduced by Gallag@logy can also be used to construct codes that can be encoded
in 1962 [7], have been the subject of much recent expérr linear time with similar rate and error-correction threshold
imentation and analysis (e.g., [3], [4], [16], [17], [20], [21] by using a cascading series of bipartite graphs, as described in
[24]). The interest in these codes stems from their near Shanijo0], [27]. For convenience, we will not address this issue here.)
limit performance, their simple descriptions and implememore specific details are given in Section II-A.
tations, and their amenability to rigorous theoretical analysis Most previously studied low-density parity-check codes have
been constructed using sparse regular, or nearly regular, random
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in the setting of error-correcting codes because of the difficulgince we do not assume our graphs lack small cycles. Instead,
in determining what irregular structures might perform welbur analysis applies to randomly chosen graphs.
The techniques for finding good erasure correcting codesFrom our analysis, we develop in Section IlI-B methods
determined in [10], [11], [27] provide the basis for some of theased on linear programming to find good irregular graph
codes and the techniques we develop here. structures using the hard-decision decoding algorithm. The cor-
In the following, we would like to offer some intuition as toresponding degree distributions have been tested extensively,
why irregular graphs should improve performance. Considand we report on some of these tests in Section IV.
trying to build a regular low-density parity-check code that The second way in which we meet the challenge of designing
transmits at a fixed rate. It is convenient to think of the procegsegular graphs is to test the belief propagation algorithm on
as a game, with the message nodes and the check nodes agriyghs that have been proven to be effective for erasure-cor-
players, and each player trying to choose the right numberrefcting codes [10], [11], [27]. Intuitively, graphs that work well
edges. A constraint on the game is that the message nodesfandrasure-correcting codes should also work well for error-cor-
the check nodes must agree on the total number of edges. Fregtion codes, since the two are closely related.
the point of view of a message node, it is best to have highAs an example of our improved performance, we have
degree, since the more information it gets from its check nodesind a ratel/4 irregular code that, on 16 000 message bits,
the more accurately it can judge what its correct value shoutdrrects over 17% random errors with high probability in our
be. In contrast, from the point of view of a check node, it iexperiments. On 64 000 message bits, a similar code corrects
best to have low degree, since the lower the degree of a chegkto 18% random errors on our experiments. In contrast, the
node, the more valuable the information it can transmit badlest regular code corrects up to approximately 16.0% random
to its neighbors. errors with 16 000 message bits and approximately 16.2% on
These two competing requirements must be appropriatéi§ 000 message bits. (The Shannon bound forlratecodes is
balanced. Previous work has shown that for regular grapid,.45%.) We report on our experiments and simulations with
low-degree graphs yield the best performance [16], [17]. If oriBe belief propagation algorithm in Section V-A.
allows irregular graphs, however, there is significantly more We note that since this work originally appeared in [12]
flexibility in balancing these competing requirements. The@nd [13], a great deal of progress has been made in this area.
is reason to believe that a wide spread of degrees, at leastlfoparticular, the work of Davey and MacKay demonstrates
message nodes, could be useful. Message nodes with Higiether approach to improving low-density parity-check
degree tend to correct their value quickly. These nodes theerformance by treating small numbers of bits as elements of
provide good information to the check nodes, which subsan appropriate finite field [4]. By using irregular graphs and
quently provide better information to lower degree messayfds technique, they have in some cases matched turbo code
nodes. Irregular graph constructions thus have the potentiapgrformance. More recent work by Richardson and Urbanke
lead to a wave effect, where high degree message nodes i and Richardson, Shokrollahi, and Urbanke [20] extends
to get corrected first, and then message nodes with sligh@yr analysis in Section Il-A to message-passing systems where
smaller degree, and so on down the line. a message can take on one of a finite number of values. Using
This intuition (which we observe in our experiments) unfortitheir extensions, they have obtained nearly tight provable
nately does not provide clues as to how to construct approprifunds on regular and irregular codes using belief propagation
irregular graphs. We meet this challenge in two ways. First, va@d have developed techniques for designing irregular graphs
design a rigorous analysis for both regular and irregular grapi&t perform well under belief propagation.
for a hard-decision decoding algorithm also suggested by Gal-
lager. Even though these decoders do not perform as wellasbe-  |I. ANALYZING MESSAGEPASSAGE DECODING

lief propagation, as one might expect, such schemes may St"\n this section, we consider a message-passing algorithm
be useful in practice, since they are simpler and require les ’ ge-p 9 aig

memory. Our main motivation for studying this model, how\é\'f;:ee'g iac$h22ur?]1§§; 2'_t Ie?sg%ssesdcrgr?]zd\;vglsreaczzr i?jn?or
ever, is that we can mak@ovableasymptotic statements about ge. 9e-p 9 y

Aaic . : ecific regular codes by Gallager. Our new analysis extends
the performance of hard-decision decoding of irregular grap%g' random regular and irregular graphs. We demonstrate that

Using ideas from [11] for studying random processes, we show. ~". : .
in Section II-A that with high probability, hard-decision deSId irégular graphs can greatly improve performance of this
coding successfully corrects all but an arbitrarily small constaﬁ?mdmg scheme. To ease the presentation, we first detail our
fraction of the message bits. Once the number of erroneous Sﬁguments for regular graphs.

is reduced to this level, we switch from Gallager’s algorithm

to one used by Spielman and Sipser in [22], and prove in Sét- Regular Graphs

tion 11-B that this new hybrid method successfully finishes the As described in Section I, a bipartite graph wittmessage
decoding with high probability. This analysis easily extends twodes on the left and check nodes on the right gives rise to
the irregular codes that we introduce in Section Ill. Additiona linear code of dimensioh > n — » and block lengthn in

ally, the bound on the probability of error we derive using thithe following way: the bits of a codeword are indexed by the
methodology improves upon the bound derived by Gallager foressage nodes. A binary vector= (x4, ..., z,,) is a code-

the regular graphs he explicitly constructed. We emphasize thnaird if and only if Hz = 0, whereH is ther x n incidence

our approach differs strongly from Gallager’s original approacmatrix of the graph whose rows are indexed by the check nodes
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and whose columns are indexed by the message nodes. In other check node 4 Cp
words,(z1, ..., x,)is acodeword if and only if for each check |
node the exclusive-or of its incident message nodes is zero. To '
allow encoding in linear time, one could allow the nodes on the
right to represent bits rather than restrictions, and then use a
cascading series of bipartite graphs, as described for example ~check nodes

in [10], [27]. In this situation, we know inductively the correct

value of the check nodes in each layer when we correctthe mes-  message nodes

sage nodes, and the check nodes are the exclusive-or of their

incident message nodes. The resulting code has the same ¢gte  representing the code as a tree.
and error-correction threshold as the corresponding low-density

parity-check code, although its likelihood of decoding error in- .
creases. of passing messages from check nodes to message nodes and

In what follows, we again focus on one bipartite graph onl@,a‘?k- In full detail, each .round consists of an execution of the
and assume that only the message nodes are in error. The atfdjPt at the bottom of this page.
ysis that we provide in this case works for either of the two ap- Of course the parallel work can easily be simulated sequen-
proaches given above, as we may inductively focus on just oiilly- Moreover, the work per round can easily be coded so that
layer in the context of cascading series of graphs [10], [27]. itis linear in the number of edges.

We now review the hard-decision decoding approach takenThe process can run for a preset number of rounds, after
by Gallager in his original analysis [7]. which each message node can determine its most likely value

Consider a regular random graph with the message nodk@sed on its neighbors. If the check nodes are satisfied, then a
having degreel, and the check nodes having degrbe With ~ codeword has been found; otherwise, the decoding has failed.
probability p a message node receives the wrong bit. The dalternatively, after each round, each message node can deter-
coding process proceeds iounds where in each round first mine its most likely value and a check can be performed to see
the message nodes send each incident check node a singlé i¢odeword has been found. If not, the process continues until
and then the check nodes send each incident message notiee glecoder decides to stop with a failure.
single bit. The bit sent from a message nedéo a check node  To analyze the decoding process, consider an individual edge
c at theith step of the decoding is denotgl ., while the mes- (m, ¢) between a message nodeand a check node, and
sage sent from the check nodt the message node at round an associated tree describing a neighborhooghofThis tree
i is denotedy’ ,,,. The bitg’, . is a guess of the correct bit ofis rooted atn, and the tree branches out from the check nodes
message bitr at roundi. Similarly, gi . is a guess, from the of m excludingc, as shown in Fig. 1. For now let us assume
point of view of the check node, of what the correct value of that the neighborhood ef. is accurately described by a tree for
m should be. The messages passed containexttinsic infor- some fixed number of rounds.
mation that is, the value otf;f,,,yc depends only on the values Let p; be the probability thatn sendsc an incorrect value
g, .. for all check nodeg’ incident tom other thanc. (Simi- g, . in roundz. Initially py = p. Following the work of Gal-
Iariy, for ¢, ..) Each message node remembers the receivedlager, we determine a recursive equation describing the evolu-
bit r,,, that is purported to be the correct message bit. (Thys, tion of p; over a constant number of rounds.
is not the correct message bit with probability We assume  Consider the end of theh round, and consider a check node
that in the zeroth round of the process messages are sent fedmf m other thanc. The node:’ sendsm its correct value as
message nodes to check nodes. Each subsequent round corsiggsas there are an even number (including possipiyessage

messsage node m

oFor all edgegm, ¢) do the following in parallel:

Update forg, ..

—If this is the zeroth round, then sgf, . := 7.

—If this is theith round withi > 0, thengi,,,}c is computed as follows:

x if gg,ym equalsb for all adjacent check nodes of m other tharc, then setgjn?c = b.
x else set?, _ = rp,.

m,c

Update forg’. ,,,

—For all edgegm, c) setg.. ,,, as the exclusive-or of the value§, .
wherem’ ranges over all adjacent message nodesather thanmn.
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nodes other tham sendingc the wrong bit. As each bit was decoding algorithm is the samidJsing the same analysis as for
correctly sent ta’ with probability 1 — p, it is easy to check (2), we may find a recursive description of the

that the probability that’ receives an even number of errors is
o A1\ [ A= 2p)
Pi+1 =Po — Po Eb. ¢ B

14 (1—2p)d—1

2 @ | [1 - zp»dTTf“
2
Hence, the probability that: was received in error and sent
correctly in round; + 1 is L rd -1\ [1- (1 - 2p)®1T
1 _ T
sa-m Y () U
t=b;
de—1—t
14+ (1 2p) 1% NERa kY 3)
Po 2 2 )

We chooséy; so as to minimizep;,;. To do this we com-
pare the odds of being right initially to the odds of being right
using the check nodes and the thresHgldAs determined by
Gallager, the correct choice bf is the smallest integer that sat-
isfies

and, similarly, the probability that: was received correctly but
sent incorrectly in round + 1 is given by

(1~ po) [1 —(1- 2pi)dT_l:|d[_l
bo 2 ' 1—py _ [1+(1 -2t 4™

po ~ L1—(1—2p;)d—t

(4)
This yields an equation fag#;; in terms ofp;
Note thatb; is an increasing function af;; this is intuitive,
since ag; decreases, smaller majorities are needed to get an
14 (1—2p)+—1%" accurate assessmentrafs correct value. Also, note that while
Pi+t1 =Po— Po [ 2 } the algorithm functions by passing values along the edges, it
can also keep a running guess for the value of each message
(2) node based on the passed values. The algorithm continues until
the proposed values for the message nodes satisfy all the check
nodes, at which point the algorithm terminates with the belief
that it has successfully decoded the message, or it can fail after
a preset number of rounds.
It follows simply from a similar argument in [11] that the re-
rsive description given by (3) is correct with high probability
er any constant number of rounds. (We note also that a similar

1—(1—2p)®& 174"
5 .

+(1 = po) [

Gallager’s idea is then to find the suprempinof all values
of po for which the sequengg is monotonically decreasing and
hence converges t Note, however, that even i converges
to 0, this does not directly imply that the process necessari@(|
corrects all message nodes, even with high probability. Thisd

because our assumption that the neighborhodgarofc) is ac- extension of this proof based on the original paper [13] has also

curately represented by a tree for arbitrarily many rounds is peared in the subsequent work of Richardson and Urbanke
true. In fact, even for any constant number of rounds it is tl’L[ 1)

only with high probability.

Gallager proves that, as the block length of the code and girthTheorem 1:Let: > 0 be an integer constant and Etbe the
of the graph grow large, this decoding algorithm works for afendom variable describing the fraction of edges set to pass in-
po < p*. Since random graphs do not have large girth, Gagorrect messages afterounds of the above algorithm. Further,
lager introduced explicit constructions of regular sparse grapgtp; be as given in the recursion (3). Then there is a constant
that do have sufficiently large girth for his analysis to hold. We (depending on the maximum degreex{d,, d..}) such that
shortly provide an analysis that shows that Gallager’s decodif@j anye > 0 and sufficiently large: we have
algorithm successfully corrects a large fraction of errors for a
randomly chosen regular graph with high probability. Then, in Pr(|Z; — pi| > €) < exp(—ce®n).
Section 1I-B, we show how to ensure the decoding terminates
successfully with high probability using a slightly different de- ~ Proof: Let M be the number of edges in the graph. We

coding rule. show the equivalent assertion
Gallager notes that the decoding rule can be improved in the )
following manner: at each round, there is a universal threshold Pr(|MZ; — Mp;| > Me) < exp(—ce"M).

value b; (tO be determined bEIOW) that depends on the rOunleheﬁrst algorithm, where all of the other neighbors of a message node must
number. For each message nad@nd neighboring check nodedisagree with the received bit for it to change its message, is nowadays referred
¢, if at leastd; neighbors ofm excludingc sent the same bit to as Gallager's Algorithm A. The improvement is often referred to as Gallager's

. . . . . . Algorithm B. Our experiments and analysis apply to Gallager's Algorithm B
to m in the previous round, them sends this bit ta in this in the most general sense; that is, for any predetermined vaJu€f course

round; otherwisem sends ta: its initial bit r,,,. The rest of the Gallager's Algorithm A is then just a special case.
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There are two considerations requiring care. First, the neighbtwo such results. This, in turn, is bounded by the maximum

hood around a message bit may not take the form of a tree. difference in the value ofi/* between any two permutations

We show that this does not happen too often with an edge extieat differ in the placement of two edges. That is, consider two

sure martingale argument. Second, even assuming the nungmssible resultst;(k + 1) = z andma(k + 1) = y. Thereis a

of nontrees is small, we still need to prove tight concentration ofie-to-one correspondence between the remaining possibilities

pr. around the expectation given that message bits may be wrdagr; andrs, such that for somg > £+ 1, the correspondence

initially with probability po. This follows from a separate mar-has=;(j) = v, 72(j) = =, andw; andn, agree at all other

tingale argument, exposing the initial values at each node gulaces. Hence, the expectation over the two possibilities given

by one. by 71 andn, differs at most by the maximum difference in the
First, we consider the number of edges, ¢) such that if value of M™* between any two permutations that differ in the

we expand the neighborhood belewfor 2i levels, we do not placement of two edges.

obtain a tree. For such edges we cannot say anything about theMow consider any pair of graphs given by permutatio@sd

behavior, so we must show that there are few of them. Note thatwherer ando differ only on the placement of two edges. In

as the number of nodes in a treeXflevels is exponential in this case, the difference ifd* for o and« is bounded by a

1, this necessarily implies that the number of node the constant, since the placement of these edges can only affect a

graph must be exponential in Recall that in the statement ofconstant number of trees (this constant dependingamd the

the theorem, howevei,is a fixed constant and is taken to be maximum degree). Hence the lemma is proved. O

sufficiently large. Now let M’ be the number of edges from thé* edges with

It is easily seen that there is a constartepending ori and . . ) .
i .. valid tree neighborhoods f@i levels below set to pass incorrect
the maximum degree of the graph such that the probability tha ) ’ N )

. ; ; : messages aftarrounds. ClearlyE[M'] = M*p,. We again
the neighborhood of depth stemming from an edge is not @obtain a high probability result using a martingale argument
tree isy/n. To see this, consider the neighborhood stemmin gh b y 9 9 9 .

. We may reveal the initial value received at each node, one at
from an edge by expanding outward level by level, one ed%e

at a time. As there are fewer thdd; d,.)’ total nodes in the time. Again we may defingj, to be the expected value for

- . - M’ given the results of the first exposures, in which case
tree, the probability at any step that an edge in the neighb eY; form a standard Doob’s martingale. Here, it is easy to
hood hits a vertex already in the neighborhood is bounded above ~ * gate. ' y

by dy d,(d; d,)' /(n — (d, d,)'). From a union bound, the total seeé that consecutive valuesXf differ only by a constant, as

probability that the neighborhood fails to be a tree is therefo?é’j‘ch revealed node can only affect the edges where in lies in the

bounded above by corresponding tree. Hence

(d d,,)QH'l/(n —(ds dr)i) </n Pr(|M' — M*p;| > Me/2) < exp(—mn262M). (6)

for a suitable constant. Hence the expected number of edges The assertion follows from the two inequalities (5) and (6), as
fchatmight fail because their neighborhood s.tr.ucture isnotatree M' < MZ; < M'+|M* — M|

is only a constant. More concretely, for sufficiently largéhe

valuev/n is less thare /4. Hence, if we letd/* be the number gnd hence

of edges(m, ¢) for which the neighborhood of up & levels

is a proper tree, we obtain Pr(|MZ; — Mp;| > Me) < exp(—ne® M)

E[M*] > M(1—¢/4). for some constant. O

We now obtain a concentration result faf*, by exposing the Corol_lary 1: Givenarandom regular code withas defined
edges of the graph one by one using an edge exposure martin§¥13); if the sequence; converges t@, then for any; > 0
and applying Azuma’s inequality [18, Sec. 4.4]. In particulafn€re is a sufficiently large message sizsuch that Gallager's
we think in terms of exposing the permutatierthat defines hard-decision decoding correctly decodes all but at mosits
our bipartite graph one entry at a time, in order. We may thdf Some constant numbey; of rounds with high probability.
define Z; to be the expected value fad™*, given the results )
of the firsti exposures. In particulaky, = E[M*], Yy = B. Completing the Work: Expander-Based Arguments
M*, and the sequencg, forms a standard Doob’s martingale, In the previous section we have shown that the hard-decision
with E[Y;1|Yx] = E[Y%]. Moreover, consecutive valuesBf  decoding corrects all but an arbitrarily small constant fraction of
differ only by a constant, as we show in the following lemméhe message nodes for regular codes with sufficiently large block

Hence, using Azuma'’s inequality lengths. The analysis, however, is not sufficient to show that
. ) the decoding process completes successfully. In this section, we
Pr(|M* — M| > Me/2) < exp(—me"M). () show how to finish the decoding process with high probability
once the number of errors is sufficiently small using slightly dif-
Lemma 1: |Y;41 — Y%/ is bounded by a constant. ferent algorithms. Our work utilizes the expander-based argu-

Proof: Consider all possible results from exposing theentsin [22] and [23]. Alternatively, one should be able to con-
(k + 1)st edge. The value ofY;y; — Y3| is bounded by struct a similar argument using the approach of [26] and [8]. We
the maximum difference in the expectation &f* from any note that the recent work of Burshtein and Miller [2] shows that



590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

the hard-decision decoding algorithm is guaranteed to correct
all message nodes once it has corrected a sufficiently large frac-
tion of the message nodes, provided that the underlying graph
is a sufficiently good expander. Thus, the change of decoding
algorithm suggested in this section is technically unnecessary;
we include it for completeness.
We first define what we require in terms of the bipartite graph

represented by the code being a good expander.

L . . . . . Fig. 2. If the two left nodes are supposed to(heand all other nodes are
Definition 1. A bipartite graph has expansion, 3)ifforall  correct, then the majority tells the left nodes not to change.

subsetsS of size at mostvn of the vertices on the left, the size
of the neighborhoodV(S) of S on the right satisfiesv(S) >

315(5)|, wheres(S) is the set of edges attached to vertice§ in We note th_at the restriction in Lemma 3 that the Ie_ft_degr(_ees
are at least five appears necessary. For example, it is entirely

Following the notation of [22], we call a message node copossible for random graphs with degree three on the left to fail to
rupt if it differs from its correct value, and we call a check nodgomplete using the proposed sequential and parallel algorithms
satisfied (respectively, unsatisfied) if its value is (is not) the susyen after aimost all nodes have been corrected. A problem oc-
of the values of its adjacent message nodes. The work of [2%]rs when the graph has a small even cycle. In this case, if all
shows that if the underlying bipartite graph of a code has sufthe nodes in the cycle are received incorrectly, the algorithm
cient expansion for sets of size upde, then both of the fol- may fail to terminate correctly (see Fig. 2). Even cycles of any

lowing algorithms can correct any set®h/2 errors constant length occur with constant probability, so errors remain
with constant probability.
Sequential decoding: if there is a message node that To circumvent this problem Gallager designs specific regular
has more satisfied than unsatisfied neighbors, flipjthe graphs with no small cycles [7]. To circumvent this problem
value of that message node. Repeat until no such in random graphs, we make a small change in the structure of
message node remains. the graph, similar to that in [10], [27]. Suppose that we use

the previous analysis to correct all but at mgstmessage bits
Parallel decoding: for each message node, count fhe  with high probability. We add an additionaln check nodes,

number of unsatisfied check nodes among its wherer is a constant that dependsgrand construct a regular
neighbors. Flip in parallel each message node random graph with degreeon the left between all the mes-
with a majority of unsatisfied neighbors. sage nodes and thgn check nodes. The decoding proceeds as

before on the original random graph, correcting all but at most
Note that the above algorithms are very similar to Gallager@” message bits. We then use blﬂa_ c_heck nodes pr_ewou_sly
he{d in reserve to correct the remaining message bits using the

hard-decision decoding algorithm, except that here we need g?rﬂser—Spielman algorithm. That this procedure works follows

hold values for each (message node,check node) pair. We )
upon the results of [22] to show that once we use hard-decis%?%ecuy from Lemmas 2 and 3. Moreover, as batands;’ can

decoding to correct all but some arbitrarily small fraction o € made arbitrarily small by Corollary 1, the change in the rate

the message nodes, we can finish the process. The next Ierr?rfntge code due to this additional structure is negligible, and is

follows from [22, Theorems 10 and 11]. ignored in the sequel.

Lemma 2: Leta > 0 andj > 3/4 + « for some fixeds > 0.
Let B be an(«, 3) expander. Then the sequential and parall€. Theoretically Achievable Error Correction
decoding algorithms correct up te:/2 errors. The sequential
decoding algorithm does so in linear time and the parallel de-For every rate, and for every possible left degree and corre-
coding algorithm does so i@(log n) rounds, with each round sponding right degree, the valuef can be computed by the
requiring a linear amount of work. above analysis. A natural question to ask is which regular code

. . an achieve the largest value @gf. Among ratel/2 regular
We use the following standard lemma to claim that the gra@aﬁesy it turns out that the largest is achieved when all left

we choose is an appropriate e?<pander, and hgnce We can .ﬁng es have degreleand all right nodes have degrggn which
off the analysis of the decoding process using the previous_ ", . .
lemma. casep* ~ 0.0517. Thus, combining Corollary 1, Lemma 2,_and_
Lemma 3, we have shown that when the corresponding bipartite
Lemma 3: Let B be a bipartite graph, with nodes divided inta@yraph is chosen randomly, this code can correct all errors with
left and right sides. Suppose that a degree is assigned to eaigih probability when the initial fraction of errors approaches
node so that all left nodes have degree at least five, and all rigkt517. All of these regular codes run in linear time if we use
nodes have degree at m@sfor some constant’. Suppose that the sequential decoding algorithm in the final stage. This fol-
a random permutation is chosen and used to match each eldges from the fact that we need to run the hard-decision de-
out of a left node with an edge into a right node. Then, witboding only for a constant number of rounds (at linear time per
probability 1 — O(1/n), for some fixedaw > 0, ¢ > 0, and round), and then the sequential decoding algorithm can fix the
3 =3/4+¢ Bisan(«, 3) expander. remaining errors in linear time.
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ll. 1 RREGULAR CODES ITL N T — o1 — 2p) 7Y

A. Analyzing Irregular Codes Nl t 2

We now describe a decoding algorithm for codes based on ir- =1t
regular graphs, which we cattegular codes We first describe . {M} ) (8)
the construction of such codes. Message nodes are located on 2
the left and the check nodes on the right. Each message node has . L
a certain number of edges which connect to check nodes; si Igneed to determin, ; S0 as to_m|n|m|ze the value ?f+1-
n (4), the best value df;_; is given by the smallest integer

larly, each check node has a certain number of edges connec

to message nodes. The total number of edges in the graph i safisfies 2, —j+1
A random permutation of {1, ..., ¢} is chosen, and then, for 1-po < {1 +p(l — 2pi)} ) (9)
alli € {1, ..., ¢}, the edge with index out of the left side is Po 1—p(1—2p;)

identified with the edge with index (i) out of the right side.  This equation has an interesting interpretation. Note that
Note that this may potentially lead to nodes with several edg#s,; —J + 1 is a constant fixed by the above equation. The
between them, omultiedgesoften in practice multiedges andvalue
small cycles can be removed to improve performance [16]. i s — il =bi s — (= 1—bi,)
Following the notation used in [10] and [27], for an irreg- LR XA R
ular bipartite graph we say that an edge has degree the can be interpreted as the difference between the number of check
left (right) if its left (right) hand neighbor has degrée.et us nodes that agree in the majority and the number that agree in
suppose we have an irregular bipartite graph with some maxe minority. We call this difference thdiscrepancyof a node.
imum left degreed, and some maximum right degrég. We  Equation (9) tells us that we need only check that the discrep-
specify our irregular graph by sequenéas, A2, ..., Ag,) @and ancy is above a certain threshold to decide which value to send,
(p1, p2, - -+, pa,), Where); (p;) is the fraction of edges with regardless of the degree of the node.
left (right) degree. Further, we defing(z) := 3", pia*~!.
Our decoding algorithm in the case of irregular graphs is sirB- Designing Irregular Graphs
ilar to Gallager's hard-decision decoding as described in Secyye now describe techniques for designing codes based on
tion 1I-A, but generalized to take into account the varying dgrregular graphs that can handle larger probabilities of error at
grees of the nodes. Again we look at the process from the pojR¥ientially some expense in encoding and decoding time. Given
of view of an edgém, c). Consider the end of théhround, and oy analysis of irregular codes, our goal is to find sequences
consider a check nodéof m other tharc. The node’ sendsn. ) _ (A1, A2y .-, Ag,) @andp = (p1, po, ..., pa,) that yield
its correct value as long as there are an even number (includifg largest possible value p§ such that the sequencemgfde-
possibly0) of other message nodes sendifighe wrong bit. creases ta for a given rate. We frame this problem in terms
As each bit was correctly sent towith probability 1 — p;, it of linear programs. Our approach cannot actually determine the
is simple to check that the probability thetreceives an even pggt sequencesandp. Instead, our technique allows us to de-

number of errors is termine a good vectox given a vectop and the desired rate of
1+ p(1 —2p;) @ the code. This proves sufficient for finding codes that perform
2 ' significantly better than regular codes. (Similarly, we may also
Expression (7) is the generalization of (1), taking into accouapply this technique to determine a good vegtgiven a vector
the probability distribution on the degree &f A and the desired rate; as we explain below, however, this does

Also similarly to Section II-A, after round a message node not prove useful in this setting.)
m of degreej passes its initial value alor{gn, ¢) to checknode  Let pg be fixed. For a given degree sequence
c unless at leadt; ; of the check nodes’ adjacent ton other p=(p1, P2, - s pa)
thanc sendm the same value. Note that now the threshold Va|l.f8 ; -
. t the real valued functio be defined b
for anode depends on its degree. Also, the valug gichanges () y

according to the round. f(@) =po — i N
To analyze the decoding process, consider a random edge o !
(m, ¢). The left degree ofm, ¢) is j with probability X;. It 1
thus follows from the same argument as in Section II-A that the A =1\ [14 p(1—2x) ¢
recursive description fap; is ) pot ; < t ) [ 2 }

' [1 —p(1— 2x)r‘1‘t

de
Piv1 =Po — Z Aj 2
j=1

[p;(j?l) [M} +<1—po>§ (’;1) {W}
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where now For smallp; values, this is approximately
dr

bi,j = 1—p7;2(i—1)p7;.

P14 log((1 — po)/po) 5 i=1

J log((1+ p(1 —22))/(1 — p(1 — 2x))) To maximize this probability, we seek to minimize

dr

and the); are variables to be determined. Observe that con- Z(i ~ s
dition (8) now reads ag;+1 = f(p;). For a givenp, and — !
right-hand degree sequeneewe are interested in findi_ng ade'which is exactly the expected number of other neighbors
gree sequencgl,, ..., Aq, ) such that the corresponding funcy,5¢ - This quantity is minimized (subject to the constraints
tion f(z) satisfiesf(«) < z on the open interval0, po). We Z(il;l pi = 1 and (10)) when all check nodes have equal

begin by choosing a sét of positive integers which ConStitUtedegree or as nearly equal as possible

. range of possible degrees on the_ !eft-hand side. To find apUsing the linear programming technique, we have considered
propnate)\.g, L€ L, we use the conditiorf(z) <z above to graphs where the nodes on the left side may have varying de-
generate linear constraints that themust satisfy by consid- 5665 and the nodes on the right side all have the same degree.
ering different values of. For example, by_exammmg the con-| | other words, we have found good codes by considerive-

dition atz = 0.01, we obtain the constrainf(0.01) < 0.01, tors with just one nonzero entry. As we shall see in Section IV,

which is linear in thex, " this suffices to find codes with significantly better performance
We generate constraints of the fofti) < u for values ofe 4 that given by codes determined by regular graphs.

that are multiples ofo/V for some integeV. We also include 1 o mains to show that the codes we derive in this manner in
the constraints\, > 0 for all # € L, as well as the constraint fact function as we expect. Thatis, given a ve¢tor Aa)

1 Ny the right degred,., and the initial error probability, if the se-
[ng Ae/t=(1-R) EZ: pift (10) quencep; given by (8) is monotonically decreasing and hence
converges td, then the code obtained from the corresponding
where R is the rate of the code. This condition expresses th@egular random graph correctsgg-fraction of errors, with
fact that the number of edges incident to the left nodes equalgh probability. We first note that Theorem 1 holds for irreg-
the number of edges incident to the right nodes. We then ugar graphs as well as for regular graphs, by an entirely similar
linear programming to determine if suitable exist that satisfy proof (modified to take into account the different degrees). That
our derived constraints. The choice for the objective functioniis, we can use the hard-decision decoding algorithm to decrease
arbitrary as we are only interested in the existence of feasiig number of erroneous bits down to any constant fraction.
solutions. To finish the decoding, we use the sequential algorithm from
Given the solution from the linear programming problengection II-B. The overall decoding time is linear. (We again
we can check whether th, computed satisfy the condition note that Burshtein and Miller [2] have recently shown that the
f(z) < z on(0, po). The best value fop, is found by binary hard-decision decoding algorithm could be used to finish the
search. Due to our discretization, there are usually smméict decoding, although this would result in ér(nlogn) time al-
intervalsin which the solution does not satisfy this inequalitygorithm.)
Choosing large values for the tradeoff parameYeresults in )
smaller conflictintervals, although it requires more time to solve J€mma4: Leta > Oandg > 3/4+ ¢ for some fixed: > 0.
the linear program. For this reason, we use small values of SUPPOSe thaB is an irregular bipartitda, ) expander, and

during the binary search phase. Once a valuepfois found, thatd is.the maxi.mum degree on a left node Bf Then the
we use larger values a¥ for that specificp, to obtain small sequential decoding algorithm corrects upcte/2d errors in

conflict intervals. In the last step, we get rid of the conflict inl_mear time.

tervals by slightly decreasing the valueyof Proof: We follow [22, Theorem 10]. We show that the

This linear programming tool allows for efficient search fOpumber of unsatisfied check nodes decreases after each step in

good codes. That s, given a vectowe can find a good partnerthe sequential algorithm. Lét be the set of corrupt message

vector \. In a similar fashion, we can also find a good partnd}°des: WithV'| = v and|&(V')| = dv. Suppose there areun-
g P gatisfied check nodes and kebe the number of satisfied neigh-

vector p from a given\. However, our experiments reveal tha  th bl h s e h
the besty vector for this decoding algorithm is always the on@°'S Of the corrupt variables. By the expansiorthiwe have

where the nodes on the right have the same degree (or all nodes u+ s> (3/4)dv.

have as close to the same degree as possible). As each satisfied neighbor &f shares at least two edges with

There is anatural intuition explaining this phenomenon. From and each unsatisfied neighbor shares at least one, we have
the point of view of a message node it appears best if the

expected number of other neighbors a neighboring check node dvZu+2s
c has is as small as possible. This can be seen as follows. At fhi@llows that
end of theith round, the probability thatsends the correct vote -
tom is u > dv/2
14 p(1—2p;) and hence there is some message node with moreltfanf

2 . its incident check nodes unsatisfied. Hence at each step the se-
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TABLE | not have sufficient expansion for Lemma 3 to hold, we can use
PARAMETERS OFOUR CODES the additional structure discussed in Section I1-B to finish the

Code Right | Left Degree Value decoding. For Codeé0’ all nodes on the right have degree,
Name Degree | Parameters of p* and for Codel4’ all nodes on the right have degréé Recall

s = 0.496041, that0.0517 is the best value gf* that is possible using regular
Code 14 | 14 121;00153526225, 0.0505 graphs for ratd /2 codes.

A2 = 0.252871 ,

N, = 0.284961, IV. EXPERIMENTAL RESULTS FORGALLAGER'S ALGORITHM

s = 0.124061, We include preliminary experimental results for new codes
Code 22 | 22 Azr = 0068844, | ) \-0q we have found using the linear programming approach. Our ex-

Age = 0.109202, perimental design is similar to that of [22], whose results can

Aso = 0.119796, be compared with ours. We describe a few important details of

AlOO =0.293135 . . . .

Ns = 0193307, our gxpenments and implementations. We model a blnary-sy.m-
Code 10° | 10 Ay = 0.555003, 0.0578 metric channel. To more accurately compare code quality, in-

A = 0.321510 stead of introducing errors with probabilitywe introduced the

%5 = 0.093368, same number of errors at each trial (corresponding to a fraction

, Aq = 0.346966, p of the block length). This procedure allows for easier compar-

Code 14’ | 14 21 = 0.159355, 0.0627 ison with other codes and minimizes the variance in the experi-

Agz = 0.400312 ments that might arise from the variance in the number of errors.

Rather than encoding a message for each trial, we use an ini-

quential algorithm may flip a message node and decrease #gmessage consisting entirely of zeros. Since the code is linear

number of unsatisfied check nodes. and the decoding algorithm respects its linearity, no generality
Therefore, the only way the algorithm can fail is if the numbé? |03t.- .

of corrupt message nodes increases sothatan during the A different random graph was constructed for each t_rlal. No

algorithm. But ifv > an, thenu > dan/2. However, initially effort was made to test graphs and weed out potentially bad

wis at mostvd < an/2, andu decreases throughout the cours@nes, and hence we expect that our results would be slightly
of the algorithm, so this cannot happen. ] better if several random graphs were tested and the best ones

) ) ) chosen. Also, following the ideas of [16] and [22], when neces-
It follows that the irregular codes we derive function as WEary we remove multiedges from our graphs.

expect as long as our random graphs have sufficient expany, our implementation, we simply run Gallager’s improved
sion. This expansion property holds with high probablhty if Weecoding algorithm (with thresholds) until it finishes, or
choose the minimum degree to be at least five. However, &g 4 prespecified number of rounds pass without success.

stated previously, graphs with message nodes of smaller degigg implementation therefore takes as inpuschedulethat
may be handled with a small additional structure in the graphyatermines the discrepancy val2ie ; — j + 1 at each round
I .

This schedule can be calculated according to (9). In practice,
however, the schedule determined by (9) must be slightly

We have designed some irregular degree sequences usingrbdified. If the discrepancy threshold is changed prematurely,
linear programming methodology described in Section lll-Bbefore enough edges transfer the correct value, the decoding al-
The codes we describe all have rag. These codes perform gorithm is significantly more likely to fail. Hence changing the
well in practice as well as according to our theoretical modehreshold according to the round as given by (9) often fails to
However, it is likely that one could find codes that performvork well when the block size is small, since the variance in the
slightly better than codes using our techniques. Itis worth notim@mber of edges sending the correct value can be significant.
that the Shannon upper bound (or entropy bound)pfofor We find that stretching out the schedule somewhat, so that the
codes of ratel/2 is 11.1%. Although the irregular codes wediscrepancy threshold is changed after a few more rounds than
have designed to date are far from this limit, they are still mughe equations suggest, prevents this problem, at the expense of
better than regular codes. increasing the running time of the decoding algorithm.

Code 14 and Code22, described fully in Table I, are two  In our experiments it turns out that it is unnecessary to switch
irregular codes that we designed. For Cadeall nodes on the to the modified decoding algorithm of Section 1I-B or use the
right have degree4, and for Code22 all nodes on the right additional structure described in Section I1-B, as in our experi-
have degre@2.2 In both these codes, the minimum degree ognce the hard-decision decoding algorithm of Gallager finishes
the left-hand side is five. This ensures that the graphs have g@p@cessfully once the number of errors becomes small.
expansion as needed in Lemma 3, and thus there is no need faf is worthwhile to note that even when the decoding algo-
the additional structure discussed in Section II-B. rithm fails to decode successfully because too many rounds have

We can achieve even better performance by consideripdssed, it can report that failure back. We have yet to see the
graphs with smaller degrees on the left. While such graphs gecoding algorithm produce a codeword that satisfied all con-

2Actually, to balance the number of edges, we do allow one node on the ri%“amts but was not t_he Ol’lgl_nal message, althoth as far as we
to have a different degree. now such an event is possible.

C. Theoretically Achievable Error Correction
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Fig. 3. Percentage of successes based on 2000 trials.

A. Experiments with Hard-Decision Decoding they significantly outperform previous similar codes with sim-

We first describe experiments on codes of rage with llar decoding schemes, including regular codes.
16 000 message bits and 8000 check bits. In Fig. 3, we describd SUmmary, irregular codes Codé and Code22 appear su-
the performance of Codet and Code22 that we introduced in perior to any regular code in practlce, and irregular codes Code
Section I11-C. Each data point represents the results from 208¢ @nd Codel4’ are far superior to any regular code. We have
trials. Recall that the appropriate valuesfis approximately similarly found irregular codes that perform well at other rates.
0.0505 for Code 14 and 0.0533 for Code 22. Recall thatp*
represents the error rate we would expect to be able to handle, | . DensITY PARITY-CHECK CODES AND BELIEE
for arbitrarily long block lengths, and that we only expect to
approachp* asymptotically in practice as the number of nodes
grows. In this section, we review belief propagation for the low-den-

Our results show that for block lengths of length 16 000 thsity parity-check codes developed by Gallager using the frame-
codes appear to perform extremely well when a random fragerk of MacKay and Neal [7], [16].
tion 0.045 (or 720) of the original message bits are in error. Similar to the hard-decision decoding algorithm of Sec-
For the 2000 trials, Cod#&4 never failed, and Cod22 failed tion II-A, only extrinsic information is passed from the message
just once. (In fact in 10 000 trials with this number of errorsits to check bits and back. As explained in [16], the algorithm
Codel4 proved successful every time.) The probability that theins two alternating phases, in which for each nonzero entry
code succeeds falls slowly as the error probability approachesH with row ¢ and columnj (or, in other terms, for each
p*. Further experiments with larger block lengths demonstragelge of the associated bipartite graph) two valygsand
that performance improves with the number of bits in the mes;; are iteratively updated. The quantit;, approximates
sage, as one would expect. These codes therefore perform betierprobability that thejth bit of the codewordr is z, given
than similar regular codes, while still having linear running timehe information obtained from all checks gfother thani.

For instance, as mentioned before, the best regular code of Gimilarly, the quantity-7; approximates the probability that the
1/2 is obtained from random regular bipartite graphs with déth check node is satisfied when tligh bit of the codeworde
gree4 on the left and degre®on the right. The performance ofis » and all other message bits associated with checkhave
this code is also shown in Fig. 3. Although tpievalue for this a separable distribution given by the approprigte. That is,
regular code is approximatefy0517, in practice, with 16 000 we assume that the other message Jitare independently
message bits this regular code failed 23 times in 2000 trials withwith probability q}j,, and use this to calculate;. Over a
a fraction 0f0.045 errors. binary-symmetric channel with crossover probabijifyall ¢;;

We now consider Cod&) and Codel4’ introduced in Sec- have initially the valuel — p. In the first phase of a round,
tion 1lI-C (see Fig. 4). The experiments were run on 16 008l the r;; values are updated in parallel; then, in the second
message bits and 8000 check bits for 2000 trials. In our gxhase, all the,; values are updated in parallel. (These parallel
periments, we remove both multiedges and some small cyclepdates can also be simulated sequentially in a straightforward
as suggested in [16]. Recall that the appropriate valyg @& manner.) The total amount of work performed in each round is
approximately0.0578 for Code 10’ and0.0627 for Codel4’. linear in the number of edges of the graph. If the bipartite graph
These codes again perform near what our analysis suggests,defthed byH contains no cycles of length up 2o, then after

PROPAGATION
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Fig. 4. Percentage of successes based on 2000 trials.

7 rounds of updates the algorithm produces the exact posterior TABLE I
probabilities that each message bit is in error based on the PARAMETERS OFOUR CODES
neighborhood within a diameter @& of the message node. Code Rate 1/2

Left Degrees Az = 0.166600, A5 = 0.166600,
A9 = 0.166600, A7 = 0.166600,
Azz = 0.166600, Ag5 = 0.166700

Right Degrees  py = 0.154091, ps = 0.147486,
pro = 0.121212, pao = 0.228619,

A. Simulation of Irregular Graph Performance Under Belief psa = 0.219030, psgs = 0.129561

Propagation Code Rate 1/4

Left Degrees A3 = 0.166600, A5 = 0.166600,
Ag = 0.166600, A7 = 0.166600,

The presence of cycles in the graph skews the probabilities,
but in practice the effect on the algorithm appears to be small.
More details can be found in [6], [7], [16], and [24].

We describe a few important details of our experiments and

implementations. We performed simulations using two types of Asz = 0.166600, Ags = 0.166700
channels for several rates and block lengths. The first channel | Right Degrees  p4 = 0.160416, p1o = 0.404478,
we model is a binary-symmetric channel. We use a message p33 = 0.303338, p34 = 0.131768

consisting entirely of zeros, introduce a fixed number of errors
corresponding to a fractiom of the block length, create a new ) )
random graph for each trial, and remove multiedges as necBs-Binary-Symmetric Channel
sary. The second channel type we model is a white GaussiaTable Il compares the performance of regular and irregular
channel with binary inputtl and an additive noise of vari- codes of rate$/2 and1/4. Our results for regular codes (based
ances?. We report results for the Gaussian channel of ratn graphs in which all nodes on the left have degtpare
R and additive noiser? in terms of the signal-to-noise ratioslightly better than (but consistent with) previous results re-
E,/No = 1/2Ro? expressed as decibel30log;, E,/No). ported in [16]. (The differences may be due to our fixing the
Here F, represents the average energy per(bftR) and Ny number of errors, while the results of [16] use a genuine bi-
represents the noise spectral denéity?). nary-symmetric channel. Of course, there may also be other
In our experiments, we allowed the belief propagation algainor differences in the graph construction.) In the tablegp-
rithm to run for up to 200 rounds. If the algorithm failed to conresents the block lengtl® represents the rat¢,represents the
verge on a codeword within 200 rounds, a failure was reportddaction of errors introduced, ard represents the capacity of
Again, this was in fact the only failure we saw in our experithe binary-symmetric channel with crossover probabifityhe
ments; that is, the algorithm never returned a codeword that diésults are reported in terms of the number of trials, or blocks
fered from the initial message. decoded, and the number of errors, or the number of blocks for
We describe the irregular graphs used in Table II, which aweéhich the decoding algorithm failed to find a solution within
derived from irregular graphs for erasure codes [27]. Note th200 rounds.
given a vector\ andp one can construct a graph with (approx- At rate 1/2, our irregular codes perform only slightly better
imately) the correct edge fractions for any number of node$an the regular codes at block lengths of 16 000 bits. They do
using the construction method described in Section Ill. (Sonfel notably less often at higher error rates, however. At 64 000
care must be taken because of rounding and the necessity to hatge our code can handle over a half a percent more errors. While
the number of edges on the left equal the number of edgesitimas been previously noted that low-density parity-check codes
the right; however, this is easily handled.) perform better as the block length increases [16], we believe that
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Fig. 5. Irregular codes versus regular codes and turbo coded fate
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TABLE 11l
COMPARING REGULAR AND |IRREGULAR GRAPHS

n R f C errs  trials

Reg 16000 | 0.5 0.078 0.605 | 0 10000
0.5 0.080 0.598 | 35 10000

0.5 0.082 0.591 | 1033 10000

Irreg 16000 | 0.5 0.078 0.605 | 1 10000
0.5 0.080 0.598 | 14 10000

0.5 0.082 0.591 | 40 10000

0.5 0.084 0.584 | 116 10000

Reg 64000 | 0.5 0.082 0.590 | 1 1000
0.5 0.084 0.583 | 249 1000

Irreg 64000 | 0.5 0.086 0.577 | 0 1000
0.5 0.088 0.570 |0 1000

0.5 0.090 0.563 | 25 1000

Reg 16000 | 0.25 0.158 0.370 [ 0 10000
0.25 0.160 - 0.366 | O 10000

0.25 0.162 0.361 | 45 10000

0.25 0.164 0.356 | 697 10000

0.25 0.166 0.352 | 3767 10000

Irreg 16000 | 0.25 0.166 0.352 [ 0 10000
0.25 0.168 0.347 | 0 10000

0.25 0.170 0.342 | 4 10000

0.25 0.172 0.338 | 15 10000

0.25 0.174 0.333 | 53 10000

Reg 64000 | 0.25 0.164 0.356 | O 1000
0.25 0.166 0.352 | 176 1000

Irreg 64000 | 0.25 0.178 0.324 | 0 1000
0.25 0.180 0.320 | 2 1000

0.25 0.182 0.316 | 63 1000

At rate1/4, we have different irregular codes with lower de-
grees. This code greatly outperforms the regular codes, even at
block lengths of 16 000, where they correct approximately 1%
more errors. At block lengths of 64 000 bits, the effect is even
more dramatic, and the irregular codes appear to correct more
than 1% more errors. We note that initial experiments at other
rates further validate our contention that irregular codes can out-
perform regular codes in terms of the number of errors that can
be corrected.

When decoding both regular and irregular codes, the number
of operations required is proportional to the product of the
number of edges in the corresponding graph and the number of
rounds until the process terminates. The irregular graphs have
approximately 2.5 times as many edges as the regular graphs,
and at higher error rates they can take approximately 1.5 times
as many iterations to complete. Hence it takes approximately
four times as many operations to decode at higher rates. In
software implementations, performance can actually be worse
than this, however, since the larger graph size for the irregular
codes may require more accesses to slower levels of the
memory hierarchy. However, we believe the slower running
time is not dramatic in light of the improved performance.

C. Gaussian Channel

Figs. 5 and 6 compare the performance (in terms of the
bit-error rate (BER)) of irregular codes of rat¢2 and 1/4
with reported results for turbo codes [5] and regular codes
[17] at these rates. Again, our experiments were with block

this effect is magnified for our irregular codes, because the dengths of 16 000 bits, and for this block length each data point
grees of the nodes can be quite high. For example, our irregukathe result of 10000 trials. (We compare with results using
ratel/2 codes have nodes on the left of degééeand nodes on comparable block lengths. The results from [5] are available
the right of degree5.

at http://www331.jpl.nasa.gov/public/TurboPerf.html.) For our
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Fig. 6. Irregular codes versus regular codes and turbo codest fréite

irregular codes, the belief propagation algorithm terminatedso developed the “density evolution” algorithm, a numerical
after 200 rounds if the solution was not found. procedure to approximate the threshold of noise below which
For ratel /2 codes, our irregular codes perform notably bettéhe belief propagation algorithm is asymptotically successful.
than regular codes, greatly reducing the gap between the perfadeed, sequences of codes have since been constructed for
mance of low-density parity-check codes and turbo codes. Thikich the belief propagation algorithm had a performance
gap is further reduced when we move to larger block sizes, @dgremely close to the Shannon capacity, beating the best
our codes prove to perform better for larger block lengths in thigerforming turbo codes known at the time [20].
setting as well. At block lengths of 64 000 bits, our code never There remains, however, much more to be done. We suggest
failed in 1000 trials at both 0.95 and 1.00 dB. Our estimates fone problem in particular. The concentration bounds we use
the BER from 1000 trials at 0.9 dB 397-10—° and at 0.85 dB apply to the asymptotic behavior of low-density parity-check
is 6.03 - 10~°. Again, this is much better than the performanceodes, but they do not adequately explain the behavior of small
of regular codes at a comparable block length presented in [1d§des, say with only thousands of bits. For such small codes,
Our results for irregular codes at ratg4 (Fig. 6) similarly the corresponding bipartite graphs necessarily have small cy-
show significant improvement over regular codes. At this lowetes, which is a complication our asymptotic analysis cannot
rate and block length, however, turbo codes appear to havadequately handle. More understanding of small codes could be
significant edge. The edge has subsequently been reduced wiktremely useful for designing low-density parity-check codes

further exploration and experimentation [20], [21]. and making them the code of choice in practice.
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