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and

G2
K � 1 + 2

1

0

e�x dx = 1 +
p
2�:

By the Poisson summation formula, we know that

K̂� = 1=
p
2�

k

e�(!+2k�) =2:

Then we have e�2�=
p
2� + 2=e � K̂� � 1=

p
2� + 2 and

k K kL [�1;1]� 1=
p
2�(

p
2e�1=4 + 4e�1=2):

By Theorem 4, we derive an estimate of the upper bound

rK <
e�2�=

p
2� + 2=e

1=
p
2�(

p
2e�1=4 + 4e�1=2)

� 0:35:

3) Example 4: Let '̂(!) = �[�2a�;2a�)(!), 0 < a < 1
2

. Then

G'(!) = �[�2a�;2a�)(!) on [��; �):

Since '̂�(!) = k '̂(! + 2k�) in L2[0; 2�] (see [4]), we derive

'̂�(!)�[��;�) = �[�2a�;2a�)(!):

Then C1 = C2 = 1. It is easy to verify that f'(� � n)jn 2 g
is a frame for V0(') (see [13]). By [4], f'(� � n)jn 2 g is not a
Riesz basis for the subspace V0('). Since '̂0(!) = i!'̂(!), M =
sup! k j'̂0(! + 2k�)j2 = (2a�)2, 0 < a < 1

2
. By Theorem 5, we

derive an estimate

supnj�nj <
1

(2a�)2
:
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On Lower Bounds for the Capacity of Deletion Channels

Eleni Drinea and Michael Mitzenmacher, Member, IEEE

Abstract—This correspondence considers binary deletion channels,
where bits are deleted independently with probability d; it improves upon
the framework used to analyze the capacity of binary deletion channels
established by Diggavi and Grossglauser, improving on their lower bounds.
Diggavi and Grossglauser considered codebooks with codewords generated
by a first-order Markov chain. They only consider typical outputs, where
an output is typical if an N bit input gives an N(1� d)(1� �) bit output.
The improvements in this correspondence arise from two considerations.
First, a stronger notion of a typical output from the channel is used,
which yields better bounds even for the codebooks studied by Diggavi and
Grossglauser. Second, codewords generated by more general processes
than first-order Markov chains are considered.

Index Terms—Binary deletion channel, channel capacity, channels with
memory.

I. INTRODUCTION

Deletion channels are a special case of channels with synchroniza-
tion errors. A synchronization error is an error due either to the omis-
sion of a bit from a sequence or to the insertion into a sequence of a bit
which does not belong; in both cases, all subsequent bits remain intact,
but are shifted left or right, respectively.

In this work, we are interested in lower bounds for the capacity of bi-
nary deletion channels where bits are deleted independently with prob-
ability d, or independent and identically distributed (i.i.d.) deletion
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channels. It is known that the capacity of such channels is related to
the mutual information between the codeword sent and the received se-
quence [4], but this does not give an effective means of proving capacity
bounds. Diggavi and Grossglauser [1] have shown that random codes
where codewords are chosen independently and uniformly at random
from the set of all possible codewords of a certain length can provide
a lower bound of

Cdel � 1�H(d) bits; for d < 0:5

where H(d) = �d log d � (1 � d) log (1� d) is the binary entropy
function [1] (we denote by log the logarithm base 2 and by ln the nat-
ural logarithm throughout). This bound coincides with previous bounds
(as discussed in [1]), and can be generalized to stationary and ergodic
deletion processes.

Diggavi and Grossglauser then go on to give much improved lower
bounds. Their insight revolves around using random codes, but with
more sophisticated means of choosing the codewords and a more so-
phisticated analysis. In particular, they consider codes consisting of
codewords of length N generated by a symmetric first-order Markov
process with transition probability p. More specifically, the first bit in
the codeword is 0with probability 1=2; every bit after the first one is the
same as its previous one with probability p, while it is flipped with prob-
ability 1 � p. It can be shown that the sequence after passing through
the i.i.d. deletion channel also obeys a first-order Markov process with
transition probability q (a formula for q will be given later). The de-
coding algorithm they consider takes a received sequence and deter-
mines whether this is a subsequence of exactly one codeword from the
randomly generated codebook; if this is the case, the decoder is suc-
cessful, and otherwise, the decoder fails. To analyze this decoder, they
use the fact that a simple greedy algorithm can be used to determine
if a sequence Y is a subsequence of another sequence X . Specifically,
reading Y and X from left to right, the greedy algorithm matches the
first character of Y to the leftmost matching character ofX , the second
character of Y to the subsequent leftmost matching character ofX , and
so on. By analyzing this greedy algorithm, they determine for what
transmission rate the probability of error goes to zero asymptotically.
This analysis yields the following lower bound for the capacity, which
proves strictly better than the previous lower bound (for random codes),
and is substantially better for high deletion probabilities d:

Cdel � sup [�t � log e� (1� d) log f(1� q)A + qBg] bits (1)

whereA = (1�p)e

1�pe
; B = (1�p) e

1�pe
+pe�t, and q = 1� 1�p

1+d�2pd
.

In this correspondence, we further improve on the bound in (1). Our
improvement arises from two considerations. First, in the analysis of
Diggavi and Grossglauser, they consider only typical outputs, which
consist of at leastN(1�d)(1��) bits, for some � = o(1). In their anal-
ysis, any output that is atypical is considered an error. The probability
of an atypical output is exponentially small. By using a stronger no-
tion of a typical output, and declaring successful decoding if and only
if such a typical output is the subsequence of exactly one codeword,
we can improve the analysis while keeping an error rate that goes to 0
asymptotically. This technique improves the bound even for the case of
codewords generated by first-order Markov chains considered by Dig-
gavi and Grossglauser.

Modifying the definition of a typical output sequence improves the
capacity bound rather mildly. Our more important improvement comes
by considering the following generalization of the framework described
above: we encode the messages by codewords of length N that consist
of alternating blocks of zeros and ones. The lengths of the blocks are
determined sequentially and are i.i.d. random variables, according to

some distribution P over the positive integers. The first-order Markov
chains used by Diggavi and Grossglauser give block lengths that are ge-
ometrically distributed. There is no reason a priori why the geometric
distribution is the right choice, either in terms of reaching capacity or
in terms of proving lower bounds in this fashion. To consider other dis-
tributions, we extend the analysis of [1] to this more general case. We
suggest some simple distributions for the block lengths that provide
better lower bounds when the deletion probability is at least 0:35, and
report initial results for when the deletion probability is smaller.

Of course, the ultimate goal would be to determine the optimal
block-length distribution for every value of d, and prove these dis-
tributions meet some upper bound. Although this is beyond our
current understanding, our extensions to the Diggavi and Grossglauser
framework moves us further in this direction.

Before beginning, we review some of the previous work. Prior to
this work, the best provable lower bounds for the i.i.d. deletion channel
are given by (1). Dolgopolov [5] also obtains upper and lower bounds
on channels with i.i.d. deletions and insertions, considering codebooks
with codewords chosen uniformly at random. Such codewords appear
to perform worse than codebooks chosen by more general Markovian
processes.

Vvedenskaya and Dobrushin in [10] attempt to bound the mutual in-
formation between the input and output of the i.i.d. deletion channel
experimentally, via simulation. They estimate lower bounds for the ca-
pacity of the i.i.d. deletion channel for d � 0:3 using codewords gen-
erated by a low-order Markov chain (up to order 2). However, it is not
clear that their results give true bounds. The quantities used for the
estimation of the mutual information are computed from codewords
at most 13 bits long and received sequences at most 8 bits long, but
the estimates for the capacity obtained in this manner appear to de-
crease with the sequence length. Recent work by Kavčić and Motwani
[7] also employs the Monte Carlo method for estimating information
rates, using much larger simulations and codeword lengths. The lower
bounds for the i.i.d. deletion channel reported in [7] are significantly
lower than those reported in [10]. Although the bounds in [7] and [10]
are not strictly provable (as they rely on Monte Carlo simulation), they
strongly suggest that the capacity of the i.i.d. deletion channel is indeed
much larger than the lower bounds proven in past theoretical work.

The remainder of the correspondence is organized as follows. In
Section II, we describe our framework. In Section III, a general lower
bound for the capacity of the i.i.d. deletion channel is presented. In Sec-
tions IV and V, we derive specific lower bounds, arising from consid-
ering geometric and our suggested alternative (m;M; x) block length
distributions for our codebooks, respectively. A discussion of these
bounds and the upper bounds provided by Ullman in [9] and Dolgo-
polov in [5], follows in Section VI. Section VII concludes the corre-
spondence.

II. DESCRIPTION OF THE MODEL

Consider a codeC with 2NR binary codewords of lengthN , where
C refers to the corresponding family of codes andRC is the rate of C in
bits. Each codeword consists of alternating blocks of zeros and ones
and is generated independently by the following stochastic process.
The first block of the codeword is a block of zeros with probability
1=2; it consists of j zeros with probability Pj , where P is a probability
distribution over the positive integers with geometrically decreasing
tails. More specifically, for real constants 0 < c � 1; 0 � � < 1 and
an integer constant U � 1, we require that Pj � c for all 1 � j � U ,
and Pj � (1 � �) � �j�1 for all j > U . We let denote the set of
all such valid distributions. Clearly, P has finite mean and variance; in
fact it has a well-defined moment generating function on an interval
around 0, a fact which we will make use of subsequently.
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Fig. 1. B inY arises from blocks z; s ; r ; s ; and r fromX . Blank rectan-
gles denote blocks of zeros, while filled rectangles denote blocks of ones. Thick
contours indicate that the corresponding blocks are completely deleted. Arrows
indicate that at least one bit is not deleted from the blocks they originate from.

We keep generating blocks so that every block is independently as-
signed an integer length j with probability Pj . Thus, the block lengths
are described by i.i.d. random variables, governed by the same distribu-
tionP . Moreover,P is symmetric in the sense that there is no difference
in the way blocks of zeros and blocks of ones behave. Blocks are gen-
erated until the codeword reaches length N ; the last block is properly
truncated so that the length is N . This truncation does not affect the
asymptotic behavior as N grows large, and is ignored henceforth. Ap-
plying a standard large deviations bound, we can show that for large N
and a specific � = O(N�1=3), the number of blocks in the codeword is

N

jP
(1� �) with probability all but super-polynomially small in

N (see Proposition 1 in the Appendix). Note that here and throughout
the correspondence we use the notation T (1� � ) to refer to a number
that is meant to be between T (1�� ) and T (1+� ) where the meaning
is clear.

In the remainder of the correspondence, we consider a random binary
code C that consists of 2NR codewords generated as above. We will
omit the subscript C from R where the meaning is clear. We denote by
X the transmitted codeword and by Y the sequence received at the end
of the channel. Standard letters will be used for quantities related toX ,
while calligraphic letters will describe quantities related to Y .

When X is transmitted over the deletion channel, the received se-
quence Y also consists of alternating blocks of zeros and ones. The
lengths of these blocks are again i.i.d. random variables according to
some distribution P over the integers. Like P; P is symmetric with re-
spect to blocks of zeros and ones.

We can express P in terms of P by reasoning as follows. Consider
a block BY of k � 1 zeros in Y , other than the first or the last block1

(the reasoning is exactly the same for a block of k ones sinceP is sym-
metric). Then BY arises from an odd number of blocks in X , starting
at a block of zeros and ending in a block of zeros, that are possibly the
same. Any blocks of ones between these blocks of zeros in X must be
completely deleted (see Fig. 1). We consider a block of zeros in X to
be the ending block for BY (block r2 in Fig. 1) if at least one bit is not
deleted from its succeeding block of ones inX (therefore, that block of
ones in X starts a new block of ones in Y ). Following this reasoning,
we know that at least one zero is not deleted from the first block of
zeros in X used for BY (block z in Fig. 1), because this first block is
finishing off the block of ones that immediately precedes BY in Y .

More formally, a block of k � 1 zeros in Y arises from 2i+ 1 (for
some i � 0) contiguous blocks in X starting at a block of zeros, if the
following three conditions hold: a) the i intermediate blocks of ones are
completely deleted, b) at least one bit is not deleted from the block of
ones in X following the 2i+ 1th block, and c) exactly k zeros are not
deleted from the i+ 1 blocks of zeros, with at least one of these zeros
arising from the first block of zeros. Since the lengths of the blocks in

1The first and the last block in Y may not follow P ; this does not affect the
asymptotic analysis.

X are i.i.d., we can recursively define the length of the concatenation of
any m blocks in X as the length of the concatenation of m� 1 blocks
with a single block. In symbols, let Qn;m be the probability that m
blocks concatenated have length n. Then

Qn;m =

n�m+1

`=1

P` �Qn�`;m�1; for n;m � 0

with Q0;0 = 1 and Qn;1 = Pn. Also, let D = j�1 Pj � d
j be the

probability that a block in X is completely deleted. Restating condi-
tions a)–c) in terms of D and Qn;m, the probability that a block in Y
consists of k � 1 bits is given as follows:

Pk =

1

i=0 s�i

Qs;id
s

T

1�
j�1

Pjd
j

T

�

z�1 r�i

Pz �Qr;i �
dz+r�k � (1� d)k

1� j�1 Pj � d
j

T

z + r

k
�

r

k

T

(2)

=
1� d

d

k 1

i=0

D
i
�

z�1 r�i

Pz �Qr;i � d
z+r

�
z + r

k
�

r

k
: (3)

Here and throughout this correspondence, we use the convention that
n
k

is zero for k > n.
The first factor in (2), T0, corresponds to condition a): it expresses

the probability that the i intermediate blocks of ones are completely
deleted. The following factor, T1, corresponds to condition b) and ex-
presses the probability that at least one bit is not deleted from the
2i+2th block (of ones) in X . The last two factors, T2 and T3, refer to
the i+1 blocks of zeros in X and correspond to condition c). First, T2
expresses the joint probability that the first block has length z, the other
i blocks together have length r, and exactly k of these z + r zeros are
not deleted, given that at least one zero (from the k zeros) comes from
the first block. Then T3 counts the number of ways in which these k
zeros may be chosen from the z+ r: any way that includes at least one
zero from the first z zeros is acceptable. Finally, (3) is obtained from
(2) by observing that T0 simplifies toDi, since it is just the probability
that i independently generated blocks are deleted.

Just as we require large deviation bounds on the number of blocks
in the original codeword, we will want large deviation bounds on the
number of blocks in the received sequence as well. From our analysis
above, we can now compute the moment generating function of P ,
denoted by L(t).

Lemma 1: The moment generating functionL(t) of the block length
distribution P in the received sequence is given by

L(t) =
H(t)�D

1�H(t) �D

where H(t) = 1
z=1 Pz � (d+ (1� d)et)z and D = 1

z=1 Pz � d
z .

Moreover, the average block length in the received sequence is given
by

k

kPk = (1� d) �
1 +D

1�D
�

z

zPz : (4)
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Proof: Let h(t) = d+(1�d) �et and H(t) = 1

z=1 Pz �h(t)
z .

Let Vi =
1

r=iQr;i � h(t)
r; i � 0. Then

Vi =

1

r=i

Qr;i � h(t)
r

=

1

r=i

r�1

s=i�1

Qs;i�1 � h(t)
s � Pr�s � h(t)

r�s

=

1

s=i�1

Qs;i�1 � h(t)
s �

1

r=s+1

Pr�s � h(t)
r�s

=

1

s=i�1

Qs;i�1 � h(t)
s �

1

z=1

Pz � h(t)
z

= Vi�1 �H(t):

It follows that Vi = H(t)i.
Using (3), we obtain for the moment generating function L(t)

k

Pk � e
t�k =

1

i=0

D
i
1

z=1

1

r=i

PzQr;i � d
z+r

�
1

k=1

(1� d) � et

d

k
z + r

k
�

r

k

=

1

i=0

D
i �

1

z=1

1

r=i

PzQr;i � (h(t)
r+z � h(t)r � dz)

=

1

i=0

D
i �

1

r=i

Qr;ih(t)
r
1

z=1

Pzh(t)
z

�
1

r=i

Qr;ih(t)
r �

1

z=1

Pzd
z

=

1

i=0

D
i � (H(t)i �H(t)�H(t)i �D)

=

1

i=0

D
i � [H(t)i+1 �D �H(t)i)

=
H(t)�D

1�D �H(t)

where going from line 1 to line 2 in the preceding equation, we used
the fact that the two summations terminate at z+ r and r, respectively
(since n

k
= 0 for k > n).

To calculate the average block length in Y , we first observe that

H
0(t) =

1

z=1

Pz � h(t)
z

0

=

1

z=1

(Pz � h(t)
z)0

=

1

z=1

Pz � z � h(t)
z�1 � h0(t)

= (1� d)et �
1

z=1

z � Pz � h(t)
z�1

:

Hence H 0(0) = (1 � d) 1

z=1 z � Pz , and we obtain for k kPk =

L0(0)

L
0(0) =

H 0(0)(1�D �H(0)) +D �H 0(0) � (H(0)�D)

(1�D �H(0))2

=
H 0(0)(1�D2)

(1�D �H(0))2
= (1� d) �

1 +D

1�D
�

z

zPz :

III. A LOWER BOUND FOR DISTRIBUTIONS WITH GEOMETRICALLY

DECREASING TAILS

Before beginning our formalization of the lower bound, we introduce
some notation here. Let N = N � (1 � d) and B = N

kP
. We

denote by Bk the number of blocks of length k in Y . Let K be the
set of block lengths k such that Pk � N�1=3. A received sequence
Y is considered a typical output of the channel if for each k 2 K , it
consists ofPkB� (1�)(1��)(1��) blocks of length k, for � = � =
N�1=3, and  = N�1=6. The choices for K and ; �; � are made so
that appropriate strong concentration results (to be discussed shortly)
hold for each Bk with k 2 K ; other choices with  = � = � = o(1)
and k 2 K if and only if Pk � B = 
(N1��) for a small constant
0 < � < 1 could guarantee similar results as well. Such concentration
results are essential for proving that for appropriate rates, our decoding
algorithm fails with exponentially small probability upon reception of
a typical output. Finally, we denote by T the set of all typical outputs
for code C .

As mentioned in the Introduction, our decoding algorithm is suc-
cessful if and only if the received sequence is in the set of typical out-
puts and it is the subsequence of exactly one codeword.2 In the fol-
lowing subsections, we provide upper bounds for the probabilities of
the negations of these two events. Specifically, we first show that a re-
ceived sequence is atypical with probability vanishingly small in N .
Then we show that our decoding algorithm fails with probability expo-
nentially small in N for appropriate rates. This gives our lower bound
on the capacity.

A. Typical Outputs

The following theorem states that a received sequence Y fails to be
a typical output of the channel with probability that goes to zero as N
grows large.

Theorem 1: Let Y be the sequence received at the end of the dele-
tion channel when a random codeword X generated as in Section II
is transmitted. The probability that Y is not in the set T of the typical
outputs is upper-bounded by

PT < e
��(N )

: (5)

Proof: A standard application of Chernoff bounds shows that the
received sequence consists of N � (1 � �) bits, for � = N�1=3, with

probability at least 1� 2e� . Then Proposition 1 in the Appendix
guarantees that, conditioned onN (1��) bits in Y and for � = N�1=3,
the number of blocks in the received sequence Y is N (1��)

kP
(1 � �)

with probability at least 1 � e��(N ). Finally, for every k 2 K , a
simple application of Chernoff bounds shows that, conditioned on there
beingB�(1��)(1��) blocks in Y; Bk is strongly concentrated around
its expectation PkB � (1 � �)(1 � �)

Pr [jBk � PkB(1� �)(1� �)j >  � PkB(1� �)(1� �)]

< 2e� :

Let  = N�1=6. Since Pk � N�1=3 for all k 2 K , the probability
that there exists at least one Bk which fails to be as described in the
definition of the typical output (conditioned on B(1� �)(1� �) blocks
in Y ) is upper-bounded by

jKj � 2e�
(N )
< N � 2e�
(N )

:

The theorem follows.

2Strictly speaking, a received sequence that is atypical does not necessarily
constitute a decoding error, since even such a sequence might allow for suc-
cessful decoding. Hence, declaring an error in this case only yields underesti-
mates for the rate.
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B. Decoding Error Probability

We shall now show that upon reception of a typical output (which is
the case with all but vanishingly small probability), our decoder fails
with probability exponentially small in N for appropriate rates. To this
end, we need to upper-bound the probability that any typical output is
a subsequence of more than one codeword. We denote this probability
byPS and use an approach similar to [1] for computing it. More specif-
ically, we will first upper-bound the probability that a fixed typical se-
quence Y (arising from a codeword X) is a subsequence of another
random codeword X0 6= X generated as in Section II. As in [1], this
argument will be based on the fact that a greedy algorithm matching
bits from the left in the received sequence Y to the successively ear-
liest matching bits from the left in X 0 can determine whether Y is a
subsequence of X 0 or not. A slight difference in our analysis is that we
will work with blocks in the received sequence, instead of individual
bits in the received sequence as done in [1], since our received sequence
is not governed by a first-order Markov chain but by a distribution on
block sizes. Since all typical outputs and all codewords share the same
structural properties, this will also be the probability that any typical
output is a subsequence of any other random codeword. Then the de-
sired probability PS follows by a union bound over all codewords.

Let Gj;k be the distribution of the number of bits j from a random
codeword necessary to cover a single block of length k in Y using this
greedy strategy. To be clear, a block of length k in Y may need more
than one block from X 0 to be covered. For example, a block of five
zeros in Y may be covered by a block of three zeros followed by an
intermediate block of two ones and the another block of seven zeros.
In this case, we say that all 12 bits were necessary to cover the block
in Y , and the next block of ones in Y will start being covered by the
subsequent block of ones inX 0. In general, we say that all the bits from
the last block used fromX 0 will be used for the block in Y since blocks
are alternating. Then G is given by

Gj;k =

k�1

i=0

Qr;iQs;iPj�r�s: (6)

To see (6), consider a block of k zeros (without loss of generality
(w.l.o.g.), since P is symmetric) in Y . This block will be covered with
j bits belonging to 2i + 1 blocks in X 0, starting at a block of zeros.
All together, the first i consecutive blocks of zeros may have length at
most k� 1; otherwise, they would suffice to cover the block in Y . The
i + 1th block of zeros must have length at least 1 and be sufficiently
long so that the total number of zeros from all the i+1 blocks of zeros
is at least k. The concatenation of the i intermediate blocks of ones may
have any length between i and j � k.

Fix a typical output Y and consider a block of length k in Y . Let
Jk denote the number of bits from X 0 needed to cover it. Then Jk is
distributed according to Gj;k . There are PkB � (1� )(1� �)(1� �)
blocks of length k in Y , for every k 2 K . The number of bits each of
these blocks needs to be covered are i.i.d. random variables. If Jx is the
number of bits needed to cover block x in Y , we can use the Chernoff
bounds to bound the probability that a randomly generated codeword
contains Y as a subsequence as follows:

Pr

B

x=1

J
x
< N � e

tN

k2K

E e
�tJ

B

: (7)

Since Y is a typical sequence

Bk =
Pk � N

k�1 kPk

(1� �)(1� )(1� �)

�
Pk �N(1� d)

k�1 kPk

(1� o(1)):

For k � 1 and t > 0

E[e�tJ ] =

1

j=k

e
�tj

Gj;k < e
�t �

1

j=k

Gj;k < 1:

Then, by a union bound, the probability that Y is a subsequence of
more than one codeword is at most

PS < 2NR � etN �
k2K

E e
�tJ

P
(1�o(1))

= 2Ret

k2K

E e
�tJ

P
(1�o(1))

N

:

Since the o(1) term in the exponent does not affect the asymptotics, it
can be ignored. Hence, for the probability that the decoder fails to go
to zero asymptotically it suffices that the expression raised to the N th
power is less than 1. Therefore, we can achieve any rate R (in bits)
satisfying

R < sup � t � log e�
1� d

k�1 kPk

log
k2K

E e
�tJ

P

(8)

We thus obtain the following theorem for arbitrary distributionsP 2 .

Theorem 2: Consider a channel that deletes every transmitted bit
independently and with probability d and a binary input alphabet. The
capacity of this channel in bits is lower-bounded by

Cdel� sup �t � log e�
1�d

k�1 kPk

�
k2K

Pk � log
1

j=k

e
�tj

Gj;k

(9)

for P given by (3),
k
k � Pk given by (4), and G given by (6).

While Theorem 2 does not yield a simple closed form, given a
specific distribution P , a provable lower bound for the capacity can
be evaluated numerically using the theorem. We remark that since
1
j=k e

�tjGj;k < 1, every logarithm inside the summation over K
is negative. This implies that summing over a finite number of k’s
strictly underestimates the final capacity bounds, and hence K in (9)
may be replaced by any subset of finite cardinality. This observation
allows numerical calculations to be performed over a finite number of
k’s, while still providing a provable lower bound.

IV. GEOMETRIC DISTRIBUTIONS

In the special case where the block lengths in X are geometrically
distributed, i.e., Pj = (1�p)pj�1, the following corollary to Theorem
2 shows that the lower bounds to the capacity achieved by our frame-
work are always better than the lower bounds obtained in [1].

Corollary 1: Consider a channel that deletes every transmitted bit
independently and with probability 0 < d < 1, a binary input alphabet
and geometric block length distributionP . The capacity of this channel
is lower-bounded by

Cdel � sup [�t � log e� (1� d) log (A1�q �Bq)]

whereA = (1�p)e

1�pe
; B = (1�p) e

1�pe
+pe�t and q = 1� 1�p

1+d�2pd
.

Moreover

sup [�t � log e� (1� d) log (A1�q � Bq)]

� sup [�(1� d) log f(1� q)A+ qBg � t � log e]:
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Fig. 2. Improvements in rates with our framework, for geometric and (m;M; x) distributions.
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A detailed proof appears in the Appendix. We point out that our proof
can also be derived by following the corresponding proof in [1] while
using our stronger notion of a typical output. The left graph in Fig. 2
and the numerical results of Table I show resulting underestimates of
rates obtained using the corollary. (The results are underestimates as
we optimized p up to only two decimal digits for d < 0:96 and three
decimal digits for g � 0:9.)

V. NUMERICALLY DERIVED LOWER BOUNDS FOR THE CAPACITY

We also considered codebooks consisting of codewords with more
general block length distributions P 2 . As Theorem 2 does not
generally yield bounds as simply expressible as for the case of geo-
metric distributions, our results arise from numerical calculations. In
trying alternative block length distrubutions, we first tried to improve
on geometric distributions using local-search-based approaches to re-
peatedly modify the distribution toward a better rate. This approach did
appear to lead to minor improvements across the board for all rates, but
was extremely slow.

We suspected that for high deletion rates, greater variability in block
lengths would lead to improved code rates. We considered the case
where a block in X is either assigned a short integer length m with
probability x or a larger integer lengthM > m with probability 1�x.
We denote such distributions by (m;M; x). The intuition behind this
choice is that is provides an alphabet similar to a Morse code for the
deletion channel, with short blocks being the equivalent of dots and
long blocks being the equivalent of dashes. Of course there is still the
possibility that short blocks may be deleted, or short and long blocks
may be confused, which limits the posible sending rate.

The upper graph in Fig. 2 shows the improvement (m;M; x) distri-
butions yield over the geometric distribution when d � 0:35. Because
we found no easily computable closed form for the capacity using these
distributions, the calculated rates (given in Table II) are underestimates
of the best achievable rates, derived as follows.

Let Rd be the rate achieved by the best possible distribution
(m;M; x) for the fixed deletion probability d. Similarly, let Rd;m

be the rate achieved by the best pair (M;x) when m;d are fixed;
and Rd;m;M be the rate achieved by the best x for fixed M;m;

and d. We compute local maxima that approximate these quantities;
computation becomes fairly time consuming even for moderate
deletion probabilities. Let R̂d; R̂d;m; and R̂d;m;M denote our ap-
proximations to Rd; Rd;m and Rd;m;M , respectively. For each
d, we only consider a limited number of triplets (m;M; x). Let
R̂d;m;M(x) be the rate we compute according to Theorem 2 for the
distribution (m;M; x) when the deletion probability is d. Starting
at m = M = 1 and x = 0:01, and successively incrementing x
by 0:01, we set R̂d;m;M = R̂d;m;M(x) for the first x that satisfies
R̂d;m;M(x) > R̂d;m;M(x + 0:01); we only optimize x over two
decimal digits. Similarly, we set R̂d;m = R̂d;m;M for the first M
such that R̂d;m;M > R̂d;m;M+1. Finally, we set R̂d = R̂d;m for
the first m that satisfies R̂d;m > R̂d;m+1. The lower graph in Fig. 2
shows R̂d; clearly, Rd � R̂d. Tables I and II explicitly specify the
input distribution that achieves R̂d for geometric and (m;M; x)
distributions respectively, for each deletion probability d between 0:05
and 0:95 in increments of 0:05.

Table II suggests that for (m;M; x) distributions, the m value
should be chosen so that short blocks are deleted fairly infrequently,
and M should be chosen so that small numbers of consecutive small
blocks are unlikely to be confused with a long block.

VI. DISCUSSION OF OUR RESULTS

As discussed in the Introduction, the improvement in our bounds as
compared to the bounds in [1] is due to two reasons. The left graph

TABLE I
LOWER BOUNDS BASED ON CODEBOOKS DERIVED FROM

GEOMETRIC DISTRIBUTIONS

TABLE II
LOWER BOUNDS BASED ON CODEBOOKS DERIVED FROM

(m;M; x) DISTRIBUTIONS

in Fig. 2 shows the improvement in the rates due to the stronger def-
inition of the typical output sequence. Here the lengths of the blocks
are still geometrically distributed. The right graph in Fig. 2 shows the
improvement due to using Morse-code-like block-length distributions.
As already discussed, both curves are underestimates of the actual rates
achievable by the technique described in Section II. The graph also
shows a combinatorial upper bound for the capacity of channels with
synchronization errors derived by Ullman in [9]:

Cdel � 1� (1 + d) log2 (1 + d) + d log2 (2d) bits (10)

where d in his notation is the limit of the fraction of synchronization
errors over the block length of the code, as the latter goes to infinity.
However, Ullman’s bound is based on a channel that introduces d �N
insertions only in the first (1�d) �N bits of the codeword and it is for a
codebook with zero probability of error. Hence it does not necessarily
constitute an upper bound for the i.i.d. deletion channel, although it has
been used as an upper bound for comparison purposes in previous work
[1]. In fact, using different techniques, we have recently shown [3] that
this bound can be broken in the case of the i.i.d. deletion channel for
deletion probability larger than 0:65 and codewords following some
first-order Markov chain.
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Dolgopolov [5] relies on a theorem by Dobrushin [4] relating the
capacity of the i.i.d. channel with synchronization errors to the mu-
tual information between the transmitted codeword and the received
sequence to derive upper bounds for the binary i.i.d. deletion channel:

Cdel � 1� d

2
log (2� d) +

d

2
log d bits: (11)

These bounds hold for codebooks with nonzero probability of error and
therefore are closer to the nature of our bounds than Ullman’s bounds.
However, they rely on an unproven assumption, and arise from consid-
ering codebooks consisting of uniformly at random chosen codewords.
Hence, it is not surprising that in [3], we show lower bounds on the
i.i.d. deletion channel that exceed (11) for d > 0:8.

VII. CONCLUSION

We have presented lower bounds for the capacity of binary deletion
channels that delete every transmitted bit independently and with prob-
ability d. We suggested using codes that consist of codewords with al-
ternating blocks of zeros and ones; the lengths of these blocks are in-
dependently distributed according to the same distribution P over the
integers. We both improved the previous lower bound argument for ge-
ometrically distributed block lengths and showed better lower bounds
using (m;M; x) distributions for d � 0:35. Our work suggests two
ways to continue improving the lower bound for the capacity of the
deletion channel. First, we might introduce even more powerful notions
of typical outputs that would allow for better analysis. Second, deter-
mining better distributions for blocks as a function of d could yield
improved results.

APPENDIX

In this appendix, we provide additional technical details. We first
prove a proposition which is key to showing that received sequences
are typical with high probability (see Theorem 1).

Proposition 1: Consider a random codeword generated as in Sec-
tion II. Let � = j jPj and �2 = j j

2Pj � �2. Then for � =

��N�1=3, the number of blocks in X is N
�
(1� �) with probability at

least 1 � e��(N ).
Similarly, for �Y = k kPk; �2Y = k k

2Pk��2Y ; � = N�1=3;
and � = N�1=3, the number of blocks in the received sequence Y is
N (1��)
�

(1� �) with probability at least 1� e��(N ).
Proof: Let Zi; 1 � i � N

�
be i.i.d. random variables, each dis-

tributed according to P , with E[Zi] = � and Var(Zi) = �2. Let
Wi; 1 � i � N

�
be i.i.d. random variables, such that Wi = Zi � �.

Then E[Wi] = 0 and Var(Wi) = �2. Recall by our definitions that
since P 2 , there exist constants U; �; and c such that Pj � c for
all 1 � j � U , and Pj � (1 � �) � �j�1 for all j > U . A simple
calculation yields that the moment generating function of Wi is well
defined in an interval around 0; specifically

E etW � e�t�
U

j=1

cetj +
j>U

(1� �)�j�1etj

= e�t� cet
etU � 1

et � 1
+

(1� �)et(�et)U

1� �et
:

We can therefore apply standard large deviation bounds; specifically,
we apply [6, p. 553, eq. (7.28)], or alternatively the form corresponding

to Theorem 5.23 in [8, p. 178] (and the corresponding equations in [8,
p. 183]) with the value x = N1=6. This immediately yields

1�Pr

N=�
i=1 Wi

�
p
N

< N1=6

= 1� �(N1=6) � e 1 +O(N�1=3)

) Pr

N=�

i=1

Zi �N < �N2=3 > 1� e��(N )

where �(x) is the standard normal distribution and the result follows
from the inequality 1��(x) < 1

x
p
2�
e�x =2 and the fact that E[W 3

i ]

and �2 are finite. An entirely symmetric bound for x = �N1=6 from
the same equation gives

Pr

N=�

i=1

Zi �N > ��N2=3 > 1� e��(N ):

We conclude that asymptotically

Pr

N=�

i=1

Zi �N � �N2=3 < e��(N ): (12)

Since each block has length at least 1, (12) implies that with probability
at least 1�e��(N ); N=���N2=3 blocks result in total length less
than N while N=� + �N2=3 blocks result in total length greater than
N . Since � and � are both finite, we conclude that for � = ��N�1=3,
the number of blocks in X is N

�
(1 � �) with probability at least 1 �

e��(N ).
The second part of the proposition is quite similar. First, we note

that jY j = N (1� �) with probability at least 1� e��(N ), for � =
N�1=3, by standard Chernoff bounds. With this we need only show
that the random variables Wi = Zi � k kPk have a well-defined
moment-generating function in an interval around 0, where theZi’s are
distributed according to the block length distribution P in the received
sequence. Lemma 1 gives the moment-generating function L(t) of P .
Again, since P 2 , there exist constants U; �; and c such that Pj � c
for all 1 � j � U , and Pj � (1� �) � �j�1 for all j > U . Hence,

D =

1

z=1

Pzd
z �

U

z=1

cdz +
z>U

(1� �)�z�1dz

� cd
dU � 1

d� 1
+

(1� �)d(�d)U

1� �d
:

Similarly

H(t)=

1

z=1

Pzh(t)
z<c � h(t) � h(t)

U�1

h(t)�1
+
(1��)h(t)(�h(t))U

1��h(t)

where h(t) = (1 � d) � et + d. (Note that H(0) = 1.) It follows
that the moment-generating function L(t) is finite in a neighborhood
around 0. A similar argument to that used for the codeword X now
shows the number of blocks in the received sequence is N (1��)

�
(1��)

with probability at least 1� e��(N ), and the lemma easily follows.

We now provide the necessary technical arguments behind Corol-
lary 1, which we repeat below.
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Corollary 1: Consider a channel that deletes every transmitted bit
independently and with probability 0 < d < 1, a binary input alphabet,
and geometric block length distributionP . The capacity of this channel
is lower-bounded by

Cdel � sup [�t � log e� (1� d) log (Aq � B1�q)]

where A = (1�p)e

1�pe
; B = (1�p) e

1�pe
+pe�t and q = 1� 1�p

1+d�2pd
.

Moreover

sup [�t � log e� (1� d) log (A1�q �Bq)]

� sup [�(1� d) log f(1� q)A+ qBg � t � log e]:

Proof: Let Pj = (1 � p)pj�1. We start by deriving closed for-
mulas for distributions Q and G when the block lengths in X are dis-
tributed according to P . We present the intuitive explanations of the
corresponding formulas whenever possible instead of their mathemat-
ical derivations.

Fact 1: The probability that i blocks concatenated have length r is

given by Qr;i = (
r � 1

i� 1
)pr�i(1� p)i.

Proof: If r = i = 0, then Q0;0 = 1, since zero blocks concate-
nated have length 0. For r < i;Qr;i = 0, since a block consists of at
least one bit. For i � 1 and r � i, it is easy to observe that Qr;i is
indeed given by Fact 2: from a total of r bits, there are r � 1 choices
to place the last bits of i� 1 blocks (the ith block is fixed to end at the
rth bit). The last factor (pr�i(1� p)i) corresponds to the individual

probability of each of the aforementioned (
r � 1

i� 1
) equiprobable ar-

rangements.

Fact 2: The probability that it required j bits from X to cover a
block of k bits in Y is given by

Gj;k = (1� p)pj�1
k�1

i=0

k � 1

i

j � k

i

1� p

p

2i

: (13)

Proof: Consider a block of k zeros in Y , denoted by BY (the
reasoning is exactly the same for a block of k ones, since P is sym-
metric). In order to cover BY ; 2i + 1 blocks from X are used, for
0 � i � k � 1, starting at a block of zeros and ending in a block of
zeros. The total length of the first i blocks of zeros is at most k � 1
(otherwise, they would suffice to cover BY ). Then the number of ways
to choose the lengths of these i blocks is given by the number of non-
negative integer solutions to the inequality l1+ l2+ � � �+ li < k, with
lj � 1 for 1 � j � i. The latter equals k�1

i
.

Similarly, there are j�k
i

ways to choose the lengths for the i blocks
of ones (their total length may range from i up to j � k). Finally,
pj�2i�1(1 � p)2i+1 yields the probability of an individual arrange-
ment of 2i+ 1 blocks with total length j.

The following combinatorial fact will be directly applied to (8) to
upper-bound the rate.

Fact 3: Let Pk = (1� q) � qk�1 for q = 1� 1�p
1+d�2pd

; G given by

(13), � = 1�p
p+(1�2p)e

, and � = e
1�pe

� (p+ (1� 2p)e�t). Then

k2K

1

j=k

Gj;k � e
�tj

P

= �1�o(1) � � �o(1)
:

Proof: We first derive a closed form for 1

j=k Gj;k �e
�tj in terms

of � and �

1

j=k

Gj;k � e
�tj =

1

j=k

pj�1(1� p)

�
k�1

i=0

k � 1

i

j � k

i

1

p
� 1

2i

� e�tj

=
1� p

p

k�1

i=0

k � 1

i

1

p
� 1

2i

�
1

j=k

j � k

i
(pe�t)j

=
1� p

p

(pe�t)k

1� pe�t

�
k�1

i=0

k � 1

i

1

p
� 1

2

�
pe�t

1� pe�t

i

=
1� p

p

(pe�t)k

1� pe�t

� 1 +
1

p
� 1

2

�
pe�t

1� pe�t

k�1

=
1� p

p

pe�t

1� pe�t

k

� 1 +
1

p
� 2 e�t

k�1

= � � �k:

It follows that

k2K

(� � �k)q �(1�q) = �
q
�

k�q

= �
q

� �
�

= �1�o(1) � � �o(1)

since for the geometric distribution, Pk � N�1=3 implies that K con-
sists of all block lengths up to logN

�3 log q
.

Plugging Fact 3 into (8) (and ignoring the o(1) terms which do not
affect the asymptotic nature of the latter), we get

R < sup �t � log e�
1� d

1=(1� q)
log � � �

= sup �t � log e� (1� d) log (�1�q � �) :

It is easy to check that

�1�q � � =
(1� p)1�qe�t(p+ (1� 2p)e�t)q

1� pe�t

= A1�q �Bq

Thus,

R < sup [�t � log e� (1� d) log (A1�q �Bq)]: (14)
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Recall that the rate R1 computed in [1] is bounded by

R1 < sup [�t � log e� (1� d) log ((1� q)A+ qB)]

(see (1)). Let t� > 0 be such that for fixed d; p;R1(t�) is maximized.
Then for all 0 � q � 1; Aq

� B1�q
� qA + (1� q)B by convexity.

Hence, we conclude that

R � R(t�) � R1(t�):

In fact, the optimization of (14) for fixed d; p has a closed form since
it results in a quadratic equation in t (similar to (1)).

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for valuable
comments and pointers to relevant prior work.

REFERENCES

[1] S. Diggavi and M. Grossglauser, “On information transmission over
a finite buffer channel,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
1226–1237, Mar. 2006.

[2] E. Drinea and M. Mitzenmacher, “On lower bounds for the capacity
of deletion channels,” in Proc. IEEE Int. Symp. Information Theory,
Chicago, IL, Jun./Jul. 2004, p. 227.

[3] E. Drinea and M. Mitzenmacher, “Improved lower bounds for i.i.d.
deletion channels,” in Proc. 42nd Annu. Allerton Conf. Communica-
tion, Control and Computing, Monticello, IL, Oct. 2004.

[4] R. L. Dobrushin, “Shannon’s theorems for channels with synchroniza-
tion errors,” Probl. Inf. Transm., vol. 3, no. 4, pp. 11–26, 1967, Trans-
lated from Probl. Pered. Inf., vol.3, no. 4, pp. 18–36, 1967.

[5] A. S. Dolgopolov, “Capacity bounds for a channel with synchroniza-
tion errors,” Probl. Inf. Transm., vol. 26, no. 2, pp. 111–120, 1990,
Translated from Probl. Pered. Inform., vol. 26, no. 2, pp. 27–37, Apr./
Jun. 1990.

[6] W. Feller, An Introduction to Probability Theory and its Applications,
2nd ed. New York: Wiley, 1971, vol. 2.
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A Simple Lower Bound for the Capacity of the
Deletion Channel

Michael Mitzenmacher, Member, IEEE, and Eleni Drinea

Abstract—We present a simple proof that the capacity of the binary in-
dependent and identically distributed (i.i.d.) deletion channel, where each
bit is deleted independently with probability d, is at least (1 � d)=9, by
developing a correspondence between the deletion channel and an inser-
tion/deletion channel that we call a Poisson-repeat channel.

Index Terms—Binary deletion channel, channel capacity, insertion
and/or deletion channels.

I. INTRODUCTION

In this work, we consider a natural correspondence between the bi-
nary independent and identically distributed (i.i.d.) deletion channel
(referred to henceforth simply as the deletion channel), where a fixed
number of bits n are transmitted and each is deleted independently with
probability d, and a simple insertion/deletion channel that we call a
Poisson-repeat channel. Based on this correspondence, we are able to
conclude that the capacity of the deletion channel in bits, which we de-
note here by Cd, is at least 0:1185 � (1 � d) for every d; 0 < d < 1.
We prefer to write this in the simpler form

Cd � (1� d)=9

to emphasize that this bound is within a constant factor of the trivial
upper bound on the capacity of (1 � d) (based on the capacity of the
binary erasure channel) for all d. As far as we can tell, no previous work
has given a capacity lower bound that is within a fixed constant factor
of (1�d). Our approach also naturally generalizes to larger alphabets,
but for this work we focus on the binary case.

The deletion channel has been the subject of recent study. The best
lower bounds known for the capacity arise from an argument of Drinea
and Mitzenmacher [2], [3], which we apply here to lower-bound the ca-
pacity of the Poisson-repeat channel. For deletion channels with larger
alphabets, the work of Diggavi and Grossglauser [1] gives the best
general capacity bounds. For more information and background, see
[2], [3].

II. THE POISSON-REPEAT CHANNEL

We define a Poisson-repeat channel with parameter � as follows:
the input is a binary string of length n. As each bit passes through the
channel, it is replaced by a discrete Poisson number of copies of that bit,
where the number of copies has mean � and is independent for each bit.
Notice that some bits will be replaced by 0 copies. The receiver obtains
the concatenation of the bits output by the channel.

We use basic facts about the Poisson distribution that can be found
in standard texts (see, e.g., [4]). For example, the sum of a constant
number of independent random variables with a Poisson distribution
also has a Poisson distribution; similarly, if we have a number of items
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