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Polynomial Time Low-Density Parity-Check Codes With
Rates Very Close to the Capacity of the -ary Random

Deletion Channel for Large

Michael Mitzenmacher, Member, IEEE

Abstract—We demonstrate polynomial-time deletion codes based on
the verification-based decoding paradigm that come arbitrarily close to
capacity. The random deletion channel takes n symbols from a q-ary
alphabet, and each symbol is deleted independently with probability p.
Taking advantage of recent improvements on the results of Luby and
Mitzenmacher for verification-based decoding by Shokrollahi and Wang,
we show how to design for any � > 0 and sufficiently large n and q deletion
codes with the following properties: the rate is (1� p)(1� �), the failure
probability is n =q, and the computational complexity for encoding
and decoding is n log q. We also extend these schemes to obtain the
same results even if the undeleted symbols are also transposed arbitrarily,
and if a sufficiently small number of random symbols are inserted.

Index Terms—Deletion channel, low-density parity-check codes (LDPC),
q-ary symmetric channel, verification-based decoding.

I. INTRODUCTION

The random deletion channel deletes each symbol sent indepen-
dently with probability p. If the symbols sent are from a q-ary alphabet,
with sufficiently large q, then by embedding sequence numbers into
the transmitted symbols, one can make the deletion channel function
like an erasure channel. For example, using log for log

2
throughout,

if each of q = 2b symbols is represented by b bits, and n symbols
are sent, by using dlog ne of the b bits as a sequence number, one can
obtain a functional rate of (1 � p)(1 � dlog ne=b) � (1 � p). In
fact, since for constant p only O(logn) consecutive packets are ever
lost with high probability, sequence numbers that track the position
modulo c logn for some sufficiently large constant c will suffice with
high probability, reducing the bits required for the sequence number
to O(log logn).

An interesting question is to determine whether similar results are
achievable without the embedding of sequence numbers. Diggavi and
Grossglauser demonstrate that for large alphabets, choosing a random
codebook is sufficient to obtain rates near 1 � p, using a Shannon-
style argument [3]. Their result is nonconstructive, however, as one
might expect, and decoding requires exponential time to test whether
the received sequence is a subsequence of each possible codeword.

Here, we demonstrate new families of codes for the random dele-
tion channel based on low-density parity-check (LDPC) codes using
the framework of verification-based decoding, introduced in [6]. These
codes allow encoding and decoding in time polynomial inn, albeit with
an exponent of O(1=�2), where the rate is at least (1� p)(1� �).

While our main focus is this capacity result, we also show that a
variation of the verification-based decoding scheme allows for suc-
cessful decoding even if the channel arbitrarily transposes the symbols
that successfully pass through without being deleted. This of course
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can also be handled using dlog ne-bit sequence numbers; however, the
random codebook argument of [3] does not apply to this case. More-
over, we show verification-based decoding is also robust to certain
random substitution and insertion errors that sequence numbers alone
cannot handle.

Because standard deletions can be handled using sequence numbers,
and because our current schemes are computationally inefficient, our
results at this point are primarily of theoretical interest, highlighting
how LDPC codes might be used as an alternative approach in this set-
ting. We believe, however, that this general approach, if made more
efficient, could give viable alternatives in many practical situations.
For example, with small packets (e.g., 64 or 128 bits), sequence num-
bers may be expensive in terms of bits required, and verification-based
schemes may be more efficient. Also, if substitution, transposition, or
insertion errors may also occur, then verification-based decoding may
also offer significant advantages.

We begin by extending and elaborating on the approach summarized
in [12]. In particular, we focus on the high-level connection between
LDPC analysis for deletion channels and the q-ary symmetric channel
(qSC). We then utilize the idea of precoding, applied by Shokrollahi
and Wang [17] to obtain near–capacity verification-based decoding on
the qSC, to design near-capacity codes on the deletion channel. We
subsequently explain how random substitution and insertion errors as
well as arbitrary transpositions can be handled.

A. Previous Work

Deletion codes, although not as well studied as erasure and error-cor-
recting codes, have a long history; see [2], [3], [15], [18] for details and
references. More recently, the case of detecting a single deletion is cov-
ered in a recent survey of Sloane [18]. For the binary channel, Diggavi
and Grossglauser consider variations of Shannon’s theorem to prove
bounds on the capacity of a channel that deletes bits independently
with probability p [3]; their bounds have been improved by Drinea and
Mitzenmacher [4], [5]. Davey and MacKay design codes for channels
that can insert, delete, or substitute bits, using various approaches to
determine the probability of the value for each sent bit and applying an
LDPC code on the end results [2].

Verification-based decoding utilizes LDPC codes in the setting
where erroneous values lead to a false verification with suitably
small probability [6]. Earlier, similar ideas were also suggested by
Metzner [1], [10], [11], including ideas corresponding to verification,
although the application to deletion channels and related channels as
well as the corresponding LDPC analysis we provide are all new. As
previously mentioned, the analysis of [6] for the qSC was extended
by Shokrollahi and Wang [17], who show that by using precoding, a
simple verification-based decoding scheme can achieve near-capacity
performance on the qSC.

II. THE LDPC SETUP

We briefly summarize the standard framework for LDPC codes,
following [9]. LDPC codes can be represented by bipartite graphs. On
one side, the n variable nodes correspond to symbols in the codeword.
On the other side, the m check nodes correspond to constraints on
the adjacent variable nodes. The design rate R is given by R =
n�m

n
. (The actual rate R tends to be slightly higher than the design

rate R in practice, because the check nodes are not necessarily all
linearly independent. We ignore this distinction henceforth.) The q-ary
alphabet is assumed to have an appropriate group structure and group
operation. Specifically, the symbols can be interpreted as numbers
modulo q, with the constraints being on the sum of values of the
variable nodes modulo q. When q = 2b, as when the packet is a string
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of b bits, we may use the group (ZZZ2)
b, so the sum operation is a

bitwise exclusive–or and the constraints are packet-level parity-check
constraints.

A family of codes can be determined by assigning degree distribu-
tions to the variable and check nodes. Let ~� = (�2; . . . ; �d ) be the
vector such that the fraction of edges connected to variable nodes of
degree i is �i, and similarly let ~� = (�2; . . . ; �d ) be such that the frac-
tion of edges connected to check nodes of degree i is �i. We assume a
minimum degree of two throughout. We define the polynomials

�(x) :=

d

i=2

�ix
i�1 and �(x) :=

d

i=2

�ix
i�1:

The �i and �i variables must satisfy a constraint so that the number of
edges is the same on both sides of the bipartite graph. This constraint
is easily specified in terms of the design rate by the equation

R = 1�

1

0
�(x)dx

1

0
�(x)dx

:

Once degrees have been chosen for each node (so that the total de-
gree of the check nodes and the variable nodes are equal), a specific
random code can be chosen by mapping the edge connections of the
variable nodes to the edge connections of the check nodes via a random
permutation.

When we consider message passing algorithms below, to determine
their asymptotic performance of such codes, it suffices to consider the
case where the neighborhood of each node is a tree (that is, no cycles)
for some number of levels. Analysis in this case is greatly simplified
since random variables that correspond to messages in our message
passing algorithms can be treated as independent. The analysis is ac-
curate because the graph is asymptotically tree-like, and can be made
rigorous using now-standard martingale arguments, as in [7]–[13].

III. A SIMPLE ALGORITHM FOR THE DELETION CHANNEL

To develop our approach, we begin with a simple, nonoptimal
scheme. This scheme was summarized in the original publication of
this work [12].

In the context of the random deletion channel, we assume that the
data being sent consists of independent random symbols from the q-ary
alphabet, and further that the constraints are such that the sums of
the symbols associated with each check node c are also independent
random symbols from the q-ary alphabet, predetermined by the sender
and receiver. That is, the code consists of a single bipartite graph with
variable nodes and check nodes. Initially there are (approximately)
n �m values to be sent, stored in specific variable nodes, and the re-
maining m are determined by the random constraints. Linear time en-
coding and decoding schemes also exist for such single-layer schemes
[14]. In practice, nonrandom data can be make to appear random if the
sender and receiver share a source of (pseudo)-randomness: preprocess
the data by adding an independent pseudorandom value to each symbol.
(These random values can be thought of as part of the description of the
code.)

To analyze the decoding, we think of each variable node as being
in one of two possible states: unverified and verified. When a node is
unverified, the algorithm has not yet fixed the final value for that node.
Hence, the decoding algorithm begins with all nodes being unverified.
When a node is verified, it is given a fixed value for the remainder
of the algorithm. Hence the algorithm should, with high probability,
never assign a verified node an incorrect value. We shall also refer to

a variable node that was deleted but becomes verified as having been
recovered.

We first explain our scheme for the case where each check node has
fixed degree dc > 2. Suppose that a out ofn symbols values arrive. The

decoding algorithm begins by considering all (
a

dc
) ways of summing

dc of the a nodes. The decoding algorithm then applies the following
rules in any order as much as possible.

1) For any check node c, suppose that j of its neighbors have been
verified. If there exists a combination of dc� j symbols that have
arrived such that the sum of these dc � j values and the values
of the verified neighbors of c equals the value associated with c,
then verify these dc � j remaining neighbors of c. That is, label
all of the neighbors of this check node as verified, and assign the
value of the kth unverified neighbor of this node to be the kth of
the dc � j values in order of arrival.

2) If all but one of the neighbors of a check node is verified, the
remaining neighbor becomes verified, with its final value being
set so that the sum of all neighbors of the check node equals the
associated value.

In this decoding process, the check nodes play two roles. First, they
may verify that the appropriate positions of a collection of nodes are
correct, according to first rule. This verification rule applies because of
the following fact: if the sum of the values of a collection of i nodes
matches the value associated with a check node of degree i, then with
high probability these nodes must be the neighbors of that check node.
Concretely, we have the following lemma.

Lemma 1: The probability of a false verification at any point in
the decoding process is bounded above by m n

d
=q.

Proof: Consider any step of the algorithm where a check node
c verifies its remaining unverified neighbors. For a false verification
to occur at some point in the decoding, there must be a collection of
dc variable nodes with values that sum to the value of the check node
c, other than the dc neighbors of c. But any collection of dc variable
nodes (other than the neighbors of c) includes a variable node whose
value is independent of the check node, and conditioned on the values
of the other dc � 1 nodes in the collection, the probability that this
variable node takes on the precise value that will cause c to make a
false verification is at most 1=q. The bound of m n

d
=q then follows

by a trivial union bound.

To see the value of the above lemma, consider the case where sym-
bols consist of b bits, so q = 2b. Thus, the probability of a failure from
a false verification is exponentially small in b at each step. Hence, if
dc is constant, the packet size b needs to be only 
(logn) bits in order
that the probability of failure due to a false verification be polynomially
small in n. For codes that are �-close to capacity, we will see below that
we may require dc to grow like �(1=�2), and in this case b will need
to be 
(logn=�2).

The other role of a check node is to recover a neighboring variable
node that was not received, according to Rule 2. A check node can re-
cover a neighbor after all other neighbors have been verified and there-
fore are known to have the correct value with high probability.

The decoding algorithm above is easily generalized to the case where
the check nodes do not all have the same degree. In this case, when
dealing with a check node c of degree deg(c), one must check all com-
binations of deg(c) variable nodes for possible verifications. There are
therefore still onlyO(nd ) possible combinations to consider. The total
probability of a false verification remains O(mnd =q) by essentially
the same argument as Lemma 1. It will turn out that right-regular codes,
or codes where check nodes all have the same degree, will suffice to ob-
tain near-capacity achieving codes, although our analysis holds more
generally.
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A. A Message-Passing Decoding Algorithm

The algorithm above is easily modified to become a message-passing
algorithm, which allows us to apply standard analysis techniques to
determine the asymptotic fraction of deletions tolerable under our de-
coding process. Consider an edge (v; c) between a variable node v and
a check node c, and the associated tree describing the neighborhood
of v. The tree is rooted at v, and the tree branches out from the check
nodes of v excluding c.

The decoding process occurs in rounds, with each round having two
stages. In the first stage, each variable node passes to each neighboring
check node in parallel its current state and, if verified, a value. In the
second stage, if possible any c0 6= c that neighbors v verifies v and
provides it an appropriate value. (In the analysis, we think of each vari-
able node as passing on to the check node c the current value excluding
any information obtained directly from c. This avoids the problem of a
circular flow of information.) Note that in this second stage each check
node c0 must determine if some combination of dc arrived or recovered
variable node values (that include any verified neighbors of c0) sum ap-
propriately so that v can be verified. This can be done by, for example,
keeping a sorted list of all combinations of dc arrived or recovered vari-
able node values.

Let aj be the probability that v arrived but is unverified after j
rounds, and let bj be the probability that v did not arrive and is
unverified after j rounds. Hence, 1 � aj � bj is the probability that
v has been verified through the tree rooted at v within j rounds. We
ignore the possibility in the analysis that a false verification occurs,
since by Lemma 1 this occurs with negligible probability when the
alphabet is sufficiently large. (Technically, we can simply condition on
a false verification not happening.) Initially a0 = 1 � p and b0 = p.
The decoding algorithm succeeds if aj + bj converges to 0.

The evolution of the process from round to round, assuming that the
neighborhood of v is given by a tree, is given by

aj+1 = a0�(1� �(1� bj)) (1)

bj+1 = b0�(1� �(1� aj � bj)): (2)

We explain the derivation of (2). A node v that was deleted and remains
unverified in the (j + 1)th round was initially deleted with probability
b0. Also, it cannot be the case that there is some check node c0 other
than c neighboring v that has all of its children verified after j rounds,
or else v would be recovered in the (j + 1)th round. Now each c0 has
k � 1 children below it with probability �k , and each child is verified
after j rounds with probability 1� aj � bj . The probability that v has
not been recovered by a specific check node c0 by round j is therefore

i

�i(1� aj � bj)
i�1 = �(1� aj � bj):

As v has k�1 other neighboring check nodes besides cwith probability
�k , the probability that v remains unverified in round j + 1 is

i

�i(1� �(1� aj � bj))
i�1 = �(1� �(1� aj � bj)):

This yields (2); (1) is derived by similar considerations.
An important observation at this point is that the preceding anal-

ysis is entirely similar to the original analysis for verification codes for
errors on the qSC given by Luby and Mitzenmacher in [6]. A dele-
tion corresponds to an error; a deleted symbol that has not been subse-
quently recovered (and verified) corresponds to an erroneous symbol
that has not been corrected (and verified); an undeleted symbol that has
not been verified corresponds to a symbol that arrived without error but

has not been verified. This mapping between the deletion setting and
qSC setting gives an exact correspondence between the decoding algo-
rithm presented above and decoding algorithm for the qSC in [6], with
the only differences being the error probability for a false verification
and the running time, as here we may require exhaustively considering
all O(nd ) symbol combinations in order to find the right locations for
the symbols. Based on this correspondence, we can conclude the fol-
lowing theorem, from [6, Theorem 2].

Theorem 1: For any rate R, with 0 < R < 1, and a given
� > 0, there exists a family of verification-based deletion codes of

rate R that correct a 1� R

2
�
p
4R�3R

2
� � fraction of deletions with

high probability.

The decoding for such codes can be done in time polynomial in
n, assuming that dc is a constant. The result of Theorem 1, however,
is based on capacity achieving codes such as Tornado codes, where
dc grows like ln(1=�). Initially, O(nd log q) work must be done to
consider all relevant combinations of packets. It is convenient to sort
these values, to determine whether any of them lead to verifications,
leading to O(nd log(nd ) log q) work. After that, whenever the status
of a variable node is changed, the corresponding check node must see
whether it can send further useful information on to other packets. That
is, once a missing value is verified, new values corresponding to com-
binations involving that value must be checked. The entire decoding
time, however, remains O(nd log(nd ) log q).

As a perhaps more practical example, applying (1) and (2) to a 3-6
regular LDPC code yields a verification code for deletions of rate 1=2
that runs in O(n6 logn log q) time and can handle over 13% of the
symbols being deleted.

IV. IMPROVING TO NEAR-CAPACITY PERFORMANCE

Shokrollahi and Wang [17] have demonstrated that near-capacity
performance can be obtained on the qSC by using an improved de-
coding scheme suggested in [6] along with an appropriate precoding.
Given this result, and the correspondence between decoding on the qSC
and for deletion channels given above, it is natural to ask whether we
can obtain similar near-capacity performance on deletion channels. In
this section, we show that in fact this is the case. In order to make
this work entirely self-contained, we provide a full argument, using
the right-regular codes presented in [16]. Right-regular codes make the
decoding algorithm slightly easier to describe, although again irregular
degree sequences can be used with small modifications. We note that
the results of [17] (using an irregular code construction) could also be
used to obtain a similar result, perhaps giving a slight improvement on
the dependence of the decoding complexity and error probability on
�. Since we have 1=� terms in the exponent, even such improvements
would not lead to a practical scheme, and we do not attempt to optimize
such terms here.

We modify the verification-based decoding algorithm as follows. Be-
sides applying the previous rules, we consider all sums of combinations
of dc � 1 arrived or recovered variable nodes and one check node. In
this case, if two check nodes have dc � 1 neighbors that have arrived
and share one neighbor that has been deleted, the corresponding sums
will match. In this case, we have a match on a proposed value for a
deleted node; when this occurs, the value for this node can be recov-
ered and all neighbors of the two check nodes verified.

This modification corresponds to the improved algorithm for the qSC
given in [6] and [17]. The argument that no false verification occurs is
entirely similar to that of Lemma 1; as long as the variable node and
check node values are random, the probability of an incorrect verifi-
cation is small. (As stated in [6], we also require no cycles of length
4 in the graph representing the LDPC code.) Specifically, there are
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m n

d �1
possible ways of combining a check node and dc � 1 mes-

sage nodes; the probability any two combinations will have the same
value is bounded above by

m
n

dc � 1

2

q
=

nO(d )

q
:

Hence, b = 
(dc logn) bits per packet still ensures that no false
verification occurs with high probability. As we show below, using
dc = �(1=�2) suffices, so we may require b = 
(logn=�2) bits per
packet.

From [6], we have for this decoding algorithm

aj+1 = a0�(1� �(1� bj)) (3)

and

bj+1 = b0[�(1� �(1� bj))

+ �0(1� �(1� bj))(�(1� bj)� �(1� aj � bj))]: (4)

It is worth explaining the new (4) for the bj , following the framework
of [6]. For a variable node that has not arrived to remain unverified after
j + 1 rounds, one of the following two conditions must hold after j
rounds:

1) all neighbors of v other than c have some other neighboring vari-
able node that has not arrived and not been recovered; or

2) all but one neighbor of v other than c have some other neighboring
variable node that has not arrived and not been recovered, and the
one neighbor that of v for which all neighbors have either arrived
or been recovered cannot have all of its neighbors verified.

The first case corresponds to the term b0�(1� �(1 � bj)). For the
second case, when v has i � 1 other neighbors, the probability that a
specific set of i � 2 neighbors other than c have at least one variable
node neighbor other than v after round j that did not arrive and remains
unverified is (1��(1� bj))

i�2. Ignoring (temporarily) the last neigh-
boring check node, since there are i� 1 possible ways of choosing the
correct neighbor, we have the term

i

�i(i� 1)(1� �(1� bj))
i�2 = �0(1� �(1� bj))

where �0 is the derivative of �. We multiply this term by (�(1� bj)�
�(1� aj � bj)). Here �(1� bj) is the probability that all of the other
neighbors of the last check have arrived or been verified, and �(1 �
aj � bj) is the probability that all of the other neighbors are verified.

We now apply the insight of [17]; if we precode by using a standard
erasure-correcting code on the original message before coding for the
deletion channel, we do not need to recover all of the variable nodes,
but just a 1 �  fraction of them for some suitably small . Hence,
we do not need to show that ai + bi converges to 0, but only to some
suitably small constant  = O(�).

First, as noted in [6], we can modify (4) by replacing aj with aj+1;
this corresponds to breaking each round into two subrounds, with vari-
able nodes that having arrived being verified in the first subround, and
variable nodes that have been deleted being recovered in the second
subround

bj+1 = b0[�(1� �(1� bj))

+ �0(1� �(1� bj))(�(1� bj)� �(1� aj+1 � bj))]: (5)

Now substituting the expression for aj+1 gives a recursion in terms
of bj

bj+1 = b0[�(1� �(1� bj)) + �0(1� �(1� bj))(�(1� bj)

��(1� a0�(1� �(1� bj))� bj))]: (6)

Expressing things as a single recursion makes it somewhat easier to
show convergence of the bj to a fixed point close to 0.

We now recall the degree sequences introduced in [16], which were
designed to approach capacity for the erasure channel. For a � 2 and
N � 2, we let � = 1=(a� 1) and use

�a(x) = xa�1

and

�a;N(x) = �

N�1
k=1

�

k
(�1)k+1xk

� �N
�

N
(�1)N+1

where �

k
is the standard fractional binomial coefficient. Here�a;N (x)

is meant to be a close approximation of ��(x) = 1� (1� x)�, which
satisfies

��(1� �a(1� x)) = x:

Indeed, it follows easily from [16] that

�0a;N (x) � �0�(x) = �(1� x)��1

and

�a;N (1� �a(1� x)) �
�x

�

where

� = � �N
a

N
(�1)N+1:

The rate of the code (see [16, Proposition 2 and Theorem 2]) is

1�

��N
�

N
(�1)N+1

� �
�

N
(�1)N+1

� 1�
�

�

where the approximation can be made as close as desired by taking N
sufficiently large. Hence, �=� can be made arbitrarily close to 1 � R
by choosing N sufficiently large (see [16, Theorem 2]).

Using � = �a;N and � = �a in (3) yields

aj+1 �
�(1� b0)

�
bj : (7)

Similarly, applying these facts to (5) yields

bj+1 �
�b0
�

bj

+ b0��a(1� bj)
��1(�a(1� bj)� �a(1� aj+1 � bj))

=
�b0
�

bj + b0��a(1� bj)
� 1�

�a(1� aj+1 � bj)

�a(1� bj)

=
�b0
�

bj + b0�(1� bj) 1� 1�
aj+1
1� bj

a�1

�
�b0
�

bj + b0�:

We have terminated the equations using a seemingly very loose bound,
but it proves sufficient here. Choose N sufficiently large and R � 1�
p � �=2, so that �b0=� = �p=� � 1 � �� for a suitable constant
� . Further, choose a sufficiently large so that � � ��2 for a suitable
constant �. Then we have that bj+1 � bj as long as

bj � (1� ��)bj + b0��
2
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or equivalently as long as

bj � b0��

�
:

Hence, by choosing a = �(1=�2) and N sufficiently large, we can
guarantee that bj (and hence aj + bj ) does not reach its fixed point
until aj + bj is at most �=2.

We can therefore state the following theorem.

Theorem 2: Over a q-ary deletion channel with deletion proba-
bility p, an erasure precode and an LDPC code with the right-regular
degree distribution based on fractional binomial coefficients can to-
gether achieve a rate of (1� �)(1� p). The computational complexity
of the decoder is nO(1=� ) log q, and the decoding error probability is
nO(1=� )=q.

Proof: By choosing a = dc = O(1=�2) and N sufficiently large,
we can set the rate of the erasure code to be at least 1 � �=2 and the
rate of initial verification-based code to be at least (1 � p)(1� �=2).
The rate of the combined code is then at least

1� �

2
(1� p) 1� �

2
� (1� �)(1� p):

The corresponding bounds on the complexity and the decoding error
probability follow.

V. FURTHER IMPROVEMENTS AND VARIATIONS

A. Reducing the Decoding Time

The running time of verification-based codes for random deletions
can be improved by not considering all O(nd ) combinations of dc
symbols. Each received packet can be associated with its expected po-
sition in the sent stream of packets, and it will lie within O(

p
n logn)

packets of its expected position with all but polynomially small
probability. Taking advantage of this can reduce the decoding time to
O(nd =2(polylog(n))).

There appears to be further room for improvements of this type.
In particular, one could arrange for the neighbors of a check node to
lie within a small neighborhood, rather than be distributed nearly uni-
formly among the variable nodes. As long as the number of small cy-
cles is kept sufficiently small, the analysis will still hold. If one could
arrange for the symbols associated with each check node to be in a
block of size s � n initially, then by trying O(

p
n logn) positions

for the initial packet as in the preceding paragraph, one should be able
to reduce the decoding time to O

p
n(polylog(n)) s

d
. Similarly,

the alphabet size could be correspondingly reduced. It is not clear how
small s can be chosen, or whether such an approach can be made prac-
tical; this remains a point for future work.

B. Insertion and Transposition Errors

The verification-based decoding scheme is robust against substitu-
tion errors or insertions of packet data, as long as such errors or in-
sertions maintain the property that no false verification occurs with
high probability. Hence, if random errors are made (so a symbol takes
on a uniform incorrect value) or symbols with random values are in-
serted, as long as q is sufficiently large, the decoding process will still
be successful. For example, suppose n random symbols are interleaved
among the n encoding symbols before passing through the deletion
channel. This gives at most m 2n

d
possible additional combinations

involving the extraneous symbols, and thus an additional probability
of m 2n

d
=q for a false verification. In this setting, it is still the case

that a suitable b = 
(dc logn) bits per packet ensures that no false
verification occurs with high probability. More general error or inser-
tion models can be handled, as long as one can bound the overall error
of a false verification step under the model.

The codes are also obviously robust against small amounts of packet-
reordering (transpositions). As long as packets associated with every
check node are received in the correct order, the decoding algorithms
we have described above will function correctly.

In fact, arbitrary reordering can be handled as well with only slightly
more work, as we now sketch. In the case of arbitrary reordering, when
all the neighbors of a check node have arrived or been recovered, the
check node can verify these values, but because the check node does not
know the proper order, it can only provide a list of the possible values
to a variable node. If a variable node receives such a list from two (or
more) distinct check nodes, with high probability only a single value
will occur on both lists (assuming no cycles of length four in the code
graph), providing a variable node with the appropriate unique value.
Let us think of a variable node that has determined its unique value as
fully verified, and a variable node that knows its value as being in a
list of up to dc values as being partially verified. We allow a deleted
variable node to be recovered if a neighboring check node has all of its
other neighboring variable nodes fully verified.

Now, as previously, we consider the additional modification where
all sums of combinations of dc�1 arrived or recovered variable nodes
and one check node yield proposed values for an unrecovered neighbor
of a variable node. If two check nodes with one common unrecovered
variable node neighbor offer the same proposed value, so that we have
a match on a proposed value for a deleted node, then the value for this
node can be recovered. Note that in this case the value for this node is
in fact fully verified, since we know exactly which node takes on the
prescribed value. The other neighbors of the check nodes will become
either partially or fully verified.

We claim that with this understanding, we again have the equation

bj+1 = b0[�(1� �(1� bj))

+�0(1� �(1� bj))(�(1� bj)� �(1� aj � bj))] (8)

where aj is the fraction of symbols that have arrived but have not been
fully verified. That is, we again have that for a variable node that has not
arrived to send a message that it is still unverified after j+1 rounds to
a neighboring check node c, one of the following two conditions must
hold after j rounds:

1) all neighbors of v other than c have some other neighboring vari-
able node that has not arrived and not been recovered; or

2) all but one neighbor of v other than c have some other neighboring
variable node that has not arrived and has not been recovered, and
the one neighbor that of v for which all neighbors have either
arrived or been recovered cannot have all of its neighbors fully
verified.

From (8), it is straightforward to repeat the argument of Section IV,
showing that Theorem 2 holds even if we allow arbitrary reordering of
the undeleted symbols.

VI. CONCLUSION

We have demonstrated a fundamental correspondence between veri-
fication-based decoding on the qSC and the deletion channel, and used
this correspondence to modify recent analysis for near-capacity codes
for the qSC to obtain similar codes for the deletion channel. Variations
on these codes can handle arbitrary reordering of the arriving symbols
as well. Although the resulting decoding algorithms are polynomial in
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n, they are exponential in dc, which grows large for near-capacity per-
formance. While the codes we present here could possibly be improved
in various ways, the key goal for future work would be to remove the
exponential dependence on dc; ideally, we would aim for a code whose
running time was polynomial in both n and dc. Our hope is that this
framework can either directly be improved in such a way to yield effec-
tive algorithms, or will give insight into alternative efficient algorithms.
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An Upper Bound on the Minimum Distance of Serially
Concatenated Convolutional Codes

Alberto Perotti, Member, IEEE, and Sergio Benedetto, Fellow, IEEE

Abstract—This correspondence presents an upper bound on the min-
imum distance of serially concatenated codes with interleaver where the
inner code is a systematic recursive convolutional encoder and the outer
code is any convolutional encoder. The resulting expression shows that
the minimum distance of the concatenated code cannot grow more than

O(K ), where K is the information word length, and d is the
free distance of the outer code. The obtained upper bound is shown to
agree with and, in some cases, improve over previously known results.

Index Terms—Combinatorial, concatenated, convolutional, minimum
distance, performance bounds, serial.

I. INTRODUCTION

Serially concatenated convolutional codes with interleavers [1] are
known to perform better than parallel turbo codes in the error floor re-
gion [2]. However, when heavy puncturing is applied to obtain higher
code rates, it is not uncommon to observe a significant error floor. In
order to estimate the error probability in such a region, the minimum
distance is a crucial parameter. In this correspondence, a method to ob-
tain an upper bound on the minimum distance of serially concatenated
convolutional codes (SCCCs) is described. The present result applies
to serial concatenations where the outer code is any convolutional en-
coder and the inner code is generated by a rate k0=n0 systematic re-
cursive convolutional encoder.

Results on the minimum distance of serially concatenated codes have
been presented in [3] and [4]. Both papers show that the minimum dis-
tance grows with the block length as O(Kx): in [3] the exponent x
depends on the minimum distance of the outer code, while, in [4], it
depends on the memory and rate of the outer encoder. Our result, al-
though similar to the cited ones, improves over [4], where a broader
class of constituent encoders is considered. Moreover, it is coherent
with [3]. The method used here to derive the upper bound has been
inspired by that used in [5] and [6] to obtain an upper bound on the
minimum distance of parallel turbo codes.

Section II summarizes the previously known results and Section III
describes the coding scheme used as a reference in order to derive the
bound. In Section IV, the upper bound is derived. Finally, in Section V,
the obtained upper bound is applied to different coding schemes and
compared with the previously known results.

We will interchangeably use the following notations for symbol
vectors:

vvv = fvi; i = 0; . . . ; N � 1g  ! v(D) =

N�1

i=0

viD
i:
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