604 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

Compressed Bloom Filters

Michael MitzenmachermViember, IEEE

Abstract—A Bloom filter is a simple space-efficient randomized introduced by using a Bloom filter is greatly outweighed by the
data structure for representing a set in order to support member- significant reduction in network traffic achieved by using the
ship queries. Although Bloom filters allow false positives, formany g,ccinct Bloom filter instead of sending the full list of cache
applications the space savings outweigh this drawback when the tents. This techni . din th Web
probability of an error is sufficiently low. We introduce compressed contents. . IS technique IS use _'n € open source VVeb proxy
Bloom filters, which improve performance when the Bloom filteris ~ cache Squid, where the Bloom filters are referred to as cache
passed as a message, and its transmission size is a limiting factordigests [16], [14]. Bloom filters have also been suggested for
For example, Bloom filters have been suggested as a means forother distributed protocols, e.g., [6], [10], [15].
sharing Web cache information. In this setting, proxies do not share Our paper is based on the following insight. In this situation,

the exact contents of their caches, but instead periodically broad- . . -
cast Bloom filters representing their caches. By using compressed the Bloom filter plays a dual role. Itis both a data structure being

Bloom filters, proxies can reduce the number of bits broadcast, the USed at the proxies, and a message being passed between them.
false positive probability, and/or the amount of computation per When we use the Bloom filter as a data structure, we may tune

lookup. The cost is the processing time for compression and de- jts parameters for optimal performance as a data structure. For
compression, which can use simple arithmetic coding, and more gy ample, given a memory size (or more specifically, the number
memory use at the proxies, which utilize the larger uncompressed f bit "’ din the bit that s th E,,I filt
form of the Bloom filter. of bits allowed in the bit array that represents the Bloom fi er)
and the number of elements in the set to be represented, we can
minimize the probability of a false positive. Indeed, this is the
approach taken in the analysis of [7], [18]. If this data structure
is also being passed around as a message, however, then we in-
I. INTRODUCTION troduce another performance measure we may wish to optimize
LOOM filters are an excellent data structure for succinctly": tran'sm|SS|on'3|ze. The tran§m|§3|on SIz€ 1S the size of t'he
a being sent; if no compression is used, it is simply the size

representing a set in order to support membership quer i .)
[3]. We describe them in detail in Section II-A; here, we simpl the bit array, but it could potentially be smaller once compres-
y ! ion is introduced. Transmission size may be of greater impor-

note that a Bloom filter is a bit array, it is randomized (in that i hen th t of network traffic i but th
uses randomly selected hash functions), and it has some pr, ce when the amount of network traffic 1S a concern but there

ability of leading to afalse positivethat is, it may posit that is memory ayailable atthe endpoint rnachings. This is especially
an element is in a set when it is not. For many applications, tHé't? '(T dlstrl?u;elzd fsystems threllr:formar\]t'lontmust be t{ﬁns'
probability of a false positive can be made sufficiently small a Ite repTag t{} r\(/)Vmbone ﬁn %0”7 mac tlne do ma_rkl)y(;) t;ers.
the space savings are significant enough that Bloom filters rexampleé, in the YWeb cache sharing system described above,
useful. the required memory at each proxy is linear in the number of
In fact, Bloom filters have a great deal of potential fOproxies, while the total message traffic rate is quadratic in the

distributed protocols where systems need to share informatf(‘)'ﬁmber of proxies, assuming point-to-point .communlcanon 1S
about what data they have available. For example, dtaa. used. Moreover, the amount of memory required at the endpoint

describe how Bloom filters can be used for Web cache shari dc_?mes IS f|t>;]edl.1;or t??h“fe oftthe system, where the waffic is
[7], [18]. To reduce message traffic, proxies do not transf | 'L\é_e overthe 'e?] ehsys em. . Bl filt
URL lists corresponding to the exact contents of their cachefs, n this paper, we show how compressing a sloom Tilter can

but instead periodically broadcast Bloom filters that represey f"d to improved performance. By using compressed Bloom

the contents of their caches. If a proxy wishes to determinefto' > pr(_)'_[ocols redL_Jpe the number of bits broadcast, _the
-fggée positive probability, and/or the amount of computation

another proxy has a page in its cache, it checks the appropri X)
Bloom filter. In the case of a false positive, a proxy may requeg?r lookup. The tradeoff costs are the increased processing

a page from another proxy, only to find that that proxy does nBe{quirement for compression and decompression and larger

actually have that page cached. In that case, some additiona oY requwlernents at the endpoint machines, Wh'(f‘h may
e a larger original uncompressed form of the Bloom filter in

delay has been incurred. The small chance of a false positNﬁa . . L .
order to achieve improved transmission size.
We start by defining the problem as an optimization problem,

Manuscript received August 1, 2001; revised December 5, 2001; approvedhKich we solve using some simplifying assumptions. We
IEEE/ACM TRANSACTIONS ONNETWORKING Editor J. Rexford. This work was

supported in part by the National Science Foundation under CAREER Grz&pﬁn consider practlcal ISsues, mCIUdmg effective compressmrj
CCR-9983832, Grant CCR-0118701, Grant CCR-0121154, and an Alfredsehemes and actual performance. We recommend arithmetic

Index Terms—Algorithms, computer networks, information
theory, distributed computing, distributed information systems.

Sloan Research Fellowship. . _coding [12], a simple compression scheme well suited to this
The author is with Harvard University, Cambridge, MA 02138 USA (e-mail;_. ;

michaelm@eecs.harvard.edu). Situation with fast implementations. We follow by showing
Digital Object Identifier 10.1109/TNET.2002.803864. how to extend our work to other important cases, such as in

1063-6692/02$17.00 © 2002 IEEE

MITZENMACHER: COMPRESSED BLOOM FILTERS 605

the case where it is possible to update by sending changeswermake the simplifying assumption of independence for ease
deltas) in the Bloom filter rather than new Bloom filters. of exposition.) The probability of a false positive is thus
Our work underscores an important general principle for dis- 1\ k X
tributed algorithms: when using a data structure as a message,<1 — <1 _ _>) ~ (1 _ e—kn/m) —(1- p)k'
one should consider the parameters of the data structure with m
both of these roles in mind. If transmission size is importanjye let f = (1 — e=**/™)* = (1 — p)*. From now on, for

tuning the parameters so that compression can be used effefvenience, we use the asymptotic approximatioasd f to

tively may yield dividends. represent, respectively, the probability that a bit in the Bloom
filter is 0 and the probability of a false positive.
Il. COMPRESSEDBLOOM FILTERS: THEORY Although it is clear from the above discussion, it is worth
A. Bloom Filters noting that there arthreefundamental performance metrics for

Bloom filters that can be traded off: 1) computation time (cor-
responding to the number of hash functidf)s2) size (corre-
4 : sponding to the array size); and 3) the probability of error

A Bloom filter is used to represent a seéf = (cqrresponding to the false positive probabiljty
{s1, 82, ..., sn} of n elements from a universe’. Note ~ g, n05e we are givem andn and we wish to optimize
that representing elements of the underlying universe uniquehé number of hash functioristo minimize the false positive
with fixed length identifiers requireflog |U/]] bits per element, ,,papility 7. There are two competing forces: using more hash
so transmitting the set directly requireglog|U[] bits. A f,nctions gives us more chances to find a 0 bit for an element
Bloom filter consists of an array of. bits, initially all setto 14t is not a member of, but using fewer hash functions
0; generallym/n is a fixed constant determined by design fof,creases the fraction of 0 bits in the array. The optimal number
the application. A Bloom filter use# independent random o hagsh functions that minimizeg as a function of: is easily
hash functionsh,, ..., b with range{0, ..., m — 1}. We tond taking the derivative. More conveniently, note tiat
make the natural assumption that these hash functions MRRialsexp(kln(l — e=*/m)). Let g = kln(1l — e=*/m).

each element in the universe to a random number uniform O¥@himizing the false positive probability’ is equivalent to

We begin by introducing Bloom filters, following the frame-
work and analysis of [7], [18].

the range{0, ..., m — 1} for mathematical convenience. Forminimizingg with respect tok. We find

each element € S, the bitsh,(s) are setto 1 fol < ¢ < k. J i ~(ken/m)

A location can be set to 1 multiple times, but only the first Y (1 - e*<’m/m>) Lmoe
dk m 1 — e=(kn/m)

change has an effect. To check if an elemens in S, we
check whether all;(z) are set to 1. If not, then clearly is
not a member of. If all ;(z) are set to 1, we assume that

isin S, although we are wrong with some probability. Hence,)
g g P Y 1/2)* = (0.6185)™/™. In practice, of course; must be an

Bloom filter may yield &alse positivewhere it suggests that an _ .
elementz is in S even though it is not. For many applications',nteger’ and smallet might be preferred since they reduce the

this is acceptable as long as the probability of a false positi¢g1ount of computation necessary.
is sufficiently small. F_or' comparison with later r.esults, it is u§eful to frar_ne the
The probability of a false positive for an element notinthe seqptlmlzatlon another way. Letting be a function op, we find
or thefalse positive probabilitycan be calculated in a straight- f=(@1-p*
forward fashion, given our assumption that hash functions are =(1- p)(— Inp)-(m/n)
perfectly random. After all the elements Sfare hashed into (oIl \ T
the Bloom filter, the probability that a specific bit is still 0 is = (e n(p) In(”)) : 1)
1\ kn From the symmetry of this expression, it is easy to check that
<1 — —) ~ e kn/m p = 1/2 minimizes the false positive probabili§ Hence, the
optimal results are achieved when each bit of the Bloom filter is
We letp = e~**/™_ For a false positive to occur, when an ele0 with probability (roughly) 1/2.
ment not in the set is checked, each of thiecations checked ~ Note that Bloom filters are highly effective evervif = cn
must not contain a 0. To simplify the analysis, let us assurf@y a small constant, such as: = 8. The obvious approach
that entries in the Bloom filter are independently set to 0 witiwhen more bits are available is to simply hash each element into
probability p and set to 1 with probability — p. (Technically, ©(logn) bits and send a list of hash values. Bloom filters can
this is not precisely true, both because the fraction of bits setabow significantly fewer bits to be sent while still achieving a
1 is a random variable and the bits are not completely indepetery good false positive probability.
dent: the fact that one bit was set to 1 affects the probability of i
other bits being set to 1, since the set element and hash thatsefompressed Bloom Filters
a bit to 1 cannot set any other bit to 1. An argument showing Our optimization above of the number of hash functiéns
that the fraction of O entries is sharply concentrated arqundbased on the assumption that we wish to minimize the failure of
is given in the Appendix. Also, asymptotically and in practica false positive as a function of the array sizend the number
the dependence is negligible; see, for example, [1]. In fact, ind&#- objectsn. This is the correct optimization if we consider
pendence is not required for the argument below, but hencefottie Bloom filter as an object residing in memory. In the Web

It is easy to check that the derivative is 0 whén =
(In2) - (m/n); further efforts reveal that this is a global
inimum. In this case the false positive probabilify is

m

606 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

cache application, however, the Bloom filter is not just an objettdependent. Also, as a mathematically convenient approxima-

that resides in memory, but an object that must be transferitémh, we assume that we have an optimal compressor. That is,

between proxies. This fact suggests that we may not wantvie assume that oun bit filter can be compressed down to only

optimize the number of hash functions farandn, but instead mH (p) bits, whereH(p) = —plog,p — (1 — p)log,(1 — p)

optimize the number of hash functions for the size of the daathe binary entropy function. Our compressor, therefore, uses

that needs to be sent, or thansmission sizeThe transmission the optimal H(p) bits on average for each bit in the original

size, however, need not be; we might be able to compress thestring. We consider the practical implications more carefully

bit array. Therefore, we choose our parameters to minimize thgbsequently. Here, we note just that near-optimal compressors

failure probability after using compression. exist; arithmetic coding, for example, requires on average less
Let us consider the standard uncompressed Bloom filtéhan H (p) + € bits per character for any > 0, given suitably

which is optimized fok = (In2) - (m/n), or, equivalently, for large strings.

p = 1/2. Can we gain anything by compressing the resulting bit Our optimization problem is as follows: giverand=, choose

array? Under our assumption of good random hash functioms,and/ to minimize f subject tomH (p) < z. One possibility

the bit array appears to be a random stringioD’s and 1's, istochoosen = z andk = (In2)-(m/n) so thatp = 1/2; this

with each entry being 0 or 1 independently with probabilitis the original optimized Bloom filter. Hence, we can guarantee

1/21 Hence, compression does not gain anything for this choitieat f < (0.6185)*/".

of k. We can, however, do better. Indeed, in theory this choice
Suppose, however, we instead choasso that each of the of % is theworst choice possible once we allow compression.

entries in them bit array is 1 with probability 1/3. Then we To see this, let us again writ¢ as a function ofp: f =

can take advantage of this fact to compressithiit array and (1—p)(—#)(m/") subject tom = z/H(p) (we may without

reduce the transmission size. After transmission, the bit ardags of generality choose as large as possible). Equivalently,

is decompressed for actual use. Note that the uncompresaedhave

Bloom filter size is stillm bits. While this choice of: is not

optimal for the uncompressed sizeg if our goal is to optimize

for the transmission size, using compression may yield a better)))

result. The question is whether this compression gains us am7c€# andn are fixed with= > », we may equivalently seek

thing, or if we would have been better off simply using a smalldf Minimize/3 = f*/=. simple calculations show

f=01- p)—(zlnp/nH(P)).

number of bits in our array and optimizing for that size. B=(1-— p)—(lnp/H(p))
We assume here that all lookup computation on the Bloom — o—(InpIn(i—p)/H(p))
filter is done after decompression at the proxies. A compres- —1In(p) - In(1 — p)
sion scheme that also provided random access might allow us = exp <) - (2
P g (—logy &) (plup + (1 — p) In(L - p))

to compute on the compressed Bloom filter; however, achieving _ _ : _
random access, efficiency, and good compression simultaes interesting to compare this equation with (1); the relevant

ously is generally difficult. One possibility is to split the BloomeXPression ip shows a similar symmetry, here with additional
filter into several pieces, and compress each piece. To look igpms due to the compression.

a bit would only require decompressing a certain piece of the1he value off3 is maximized when the exponent is maxi-
filter instead of the entire filter, reducing the amount of memoryized, or equivalently when the term

required [11]. This approach will slightly reduce compression P 1—p
but greatly increase computation if many lookups occur between - In(1—p) Inp
updates.

To contrast with the original Bloom filter discussion, we not& minimized. Note that

that for compressed Bloom filters there are nfowr funda- 9 _ 1 1 P e

mental performance metrics for Bloom filters that can be tradeddr In(l1—p) Inp (1-p)*(1-p) pl’(p)

off. Besides computation time (corresponding to the number phe value ofd/dp is clearly 0 wherp = 1/2, and using sym-

hash function) and the probability of error (corresponding tanetry it is easy to check thalty /dp is negative fop < 1/2 and

the false positive probability), there are two other metrics: thepositive forp > 1/2. Hence, the maximum probability of a false

Uncompressed filter sizbat the Bloom filter has in the proxy positive using a compressed Bloom filter occurs when]_/2’

memory, which we continue to denote by the number of array equivalentlyk = (In2) - (m/n).

bits m; and thetransmission sizeorresponding to its size after \We emphasize the point again: the number of hash functions

compression, which we denote by Our starting point is the that minimizes the false positive probability without compres-

consideration that in many situations the transmission size mgyn in fact maximizes the false positive probability with com-

be more important than the uncompressed filter size. pression. Said in another way, in our idealized setting using

We may establish the problem as an optimization problem @mpression always decreases the false positive probability.

follows. Let = be the desired compressed size. Recall that eachrhe argument above also shows thais maximized and,

bit in the bit array is O with probability; we treat the bits as hence;3 andf are minimized in one of the limiting situations as
pgoesto0orl. Ineach case, using, for example, the expansion

~ 2 3 :
1Again, technically the bits are not completely independent, but they are l-z)=-z—z /_2 -z /3 —.eaWe find thaty goes t9_1-
near independent that the difference is unimportant for this argument. Hence /3 goes to 1/2 in both limiting cases, and we can in theory

MITZENMACHER: COMPRESSED BLOOM FILTERS 607

achieve a false positive probability arbitrarily closg(€05)*/"™ sizem of the uncompressed Bloom filter also constrain the pos-
by letting the number of hash functions go to O or infinity. sibilities. For example, while theoretically we can do well using

It is an interesting and worthwhile exercise to try to undeene hash function and compressing, achieving a false positive
stand intuitively how the expressigh= (0.5)*/™ for the lim- probability ofe with one hash function requires ~ n /¢, which
iting case arises. Suppose we start with a very large bit arrayay be too large for real applications.
and use just one hash function for our Bloom filter. One way of Also, it may be desirable to have be a power of two for
compressing the Bloom filter would be to simply send the arragarious computations. We do not restrict ourselves to powers of
indices that contain a 1. Note that this is equivalent to hashitwo here.
each element into @/n bit string; that is, for one hash function e Compression overheadCompression schemes do not
and suitably large values efandm, a compressed Bloom filter achieve optimal performance; all compression schemes have
is equivalent to the natural hashing solution. Thinking in terns®me associated overhead so that they do not exactly match the
of hashing, it is clear that increasing the number of bits each space as given by the entropy formula. Hence, the gain from
ement hashes into by 1 drops the false positive probability Bye compressed Bloom filter must overcome the associated
approximately 1/2, which gives some insight into the result f@verhead costs.

Bloom filters. e Compression variabilityOf perhaps greater practical im-

In practice, we are significantly more constrained than thgortance is that if there is an absolute maximum packet size,
limiting situations suggest, since, in general, lettingo to 0 we generally want that the compressed array does not exceed
or 1 corresponds, respectively, to using an infinite number #fe size of some fixed number of packets. Compression per-
one or zero hash functions. Of course, we must use at least §@rgnance, however, varies depending on the input. We would
hash function! Note, however, that the theory shows we méilge to make our Bloom filter memory sizex as large as pos-
achieve improved performance by takiag< In2 - (m/n) for ~ sible while maintaining a high probability that the compressed
the compressed Bloom filter. This has the additional benefit thgize~ does not exceed a given threshold, so that we do not send
acompressed Bloom filter uses fewer hash functions and, hereditional packets beyond the threshold with little information.
requires less computation per lookup. This contrasts with therelated problem is that if the number of elementsn the
additional computation required for encoding before transmiset.S cannot be determined in advance, a misprediction of
sion and decoding upon receipt, which are one-time costs. Faguld yield insufficient compression.
ther practical considerations are discussed in Section IIl. e Hashing performanceDepending on the data and the hash

The optimization framework developed above is not tHginctions chosen, real hash functions may behave differently
only one possible. For example, one could instead fix tifgom the analysis above.
desired false positive probability and optimize for the final ~ The issue of achieving good hashing performance on arbi-
compressed size To compare in this situation, note that in thdrary data sets is outside the scope of this paper, and we do not
limit as the number of hash functions goes to 0, the compresggsider it further except to raise the following points. First,
Bloom filter has a false positive probability tending(fb";)"/", in practice we suspect that using standard universal families of
while the standard Bloom filter has a false positive probabilityash functions [5], [13] or MD5 (used in [7], [18]) will be suit-
tending to(0.5)(™»2)/» Hence, the best possible compressetble. Second, in situations where hashing performance is not
Bloom filter achieving the same false positive probability agufficiently random, we expect that compressed Bloom filters
the standard Bloom filter would have = m1n?2, a savings Wil still generally outperform the uncompressed Bloom filter.
in size of roughly 30%. Again, this is significantly better tharl he pointis that if the false positive probability of a compressed
what can be realized in practice. Bloom filter is increased because of weak hash functions, we

The primary point of this theoretical analysis is to demorwould expect the false positive probability of the uncompressed
strate that compression is a viable means of improving perfdloom filter to increase as well; moreover, since compressed
mance, in terms of reducing the false positive probability for Bloom filters use fewer hash functions, we expect the effect will
desired compressed size, or for reducing the transmission digeworse for the uncompressed filter. For compressed Bloom
for a fixed false positive probability. Indeed, because the corfilters, however, there is the additional problem that weak hash
pressed Bloom filter allows us another performance metric,fitnctions may yield bit arrays that do not compress as much as
provides more flexibility than the standard original Bloom filterexpected. The choice of parameters may, therefore, have to be
An additional benefit is that the compressed Bloom filters ugened for the particular data type. Finally, for the Bloom filter
a smaller number of hash functions, so that lookups are mdegfunction properly, all of the senders and receivers must agree
efficient. Based on this theory, we now consider implement@n the hash functions used. There are several ways to achieve
tion details and specific examples. agreement; the correct approach may depend on the application.

The hash functions can be fixed once and for all. With this ap-

proach, in rare instances a specific data set may yield poor per-
Ill. COMPRESSEDBLOOM FILTERS: PRACTICE formance, in that it might not compress as well as expected or

the false positive rate might be higher than expected. Alterna-

Our theoretical analysis avoided several issues that are itiwely, the sender can specify the hash functions from the family
portant for a real implementation: to be used in some explicit form with the Bloom filter. This ap-

e Restrictions onvn: While the sizez of the compressed proach incurs some overhead, but it allows the sender to avoid
Bloom filter may be of primary importance, limitations on théhash functions that perform poorly on specific data. The hash

608 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

TABLE |
AT MOST EIGHT BITS PERELEMENT (COMPRESSELD
Array bits per element m/n | 8 14 92
Transmission bits per element | z/n | 8 7923 | 7.923
Hash functions k 6 2 1
False positive probability f 0.0216 | 0.0177 | 0.0108

functions can also be changed periodically through a similasing compressed Bloom filters. We consider cases where 8 and
mechanism. 16 bits are used in the compressed Bloom filter for each ele-

For compression issues, arithmetic coding provides naent; this corresponds to configurations examined in [7], [18].
flexible compression mechanism for achieving near-optimalso, it is important to note that in these tables, the false posi-
compression performance with low variability. Moreoverive probability f is given for the Bloom filter in isolation. In an
arithmetic coding is well understood and has extremely fagpplication such as shared Web caching, additional false posi-
implementations for both encoding and decoding. Looseliyes and negatives may arise because changes in the local cache
speaking, for a randorm bit string where the bit values arecontents may occur between times when the Bloom filters are
independent and each bit is 0 with probabilityand 1 with updated. For a further discussion of this point, see [7], [18].
probability 1 — p, arithmetic coding compresses the string Suppose we wish to use at most 8 bits per set element in our
to nearmH (p) bits with high probability, with the deviation transmission with a Bloom filter; that i;/n = m/n = 8.
from the average having a Chernoff-like bound. For morghen using the optimal number of hash functiéns: 6 yields
information on arithmetic coding, we refer the reader to [124 false positive probability of 0.0216. Fbr= 5, the false pos-
[17]. For more precise statements and details regarding ihiee probability is only 0.0217, so this might be preferable in
low variability of arithmetic coding, we refer the reader to theractice. If we are willing to allow 14 array bits for the uncom-
Appendix. We note that other compression schemes may atsessed Bloom filter per set element, then we can reduce the
be suitable, including, for example, run-length coding. false positive probability by almost 20% to 0.0177 and reduce

Given this compression scheme, we suggest the followitige number of hash functions to two while keeping the (theoret-
approach. Choose a maximum desired uncompressedrsizeical) transmitted bits per elemeatr below eight, as shown in
Then design a compressed Bloom filter using the above thedigble .
using a slightly smaller compressed size than desired; forlt is also interesting to compare the standard Bloom and the
example, if the goal is that the compressed size,lesign the compressed Bloom filter pictorially in this case wheye. = 8.
structure so that the compressed siz®.89z. This provides In Fig. 1, we show the false positive probability as a function of
room for some variability in compression. Note that the amoutiie number of hash functioshbased on the theoretical analysis
of room necessary may depend-anthe 0.99 factor is a rough of Sections II-A and 1I-B, where we alloi to behave as a
target that should be subjected to empirical testing, as is doneontinuous variable. Note that, as the theory predicts, the opti-
our examples given below. (The exact amount of room dependized uncompressed filter actually yields the largest false posi-
on how much overhead the specific compression implementae probability once we introduce compression. Fig. 2 provides
tion has, for example; the concentration bounds and bouralsimilar picture for the case whetg¢n = 16.
for arithmetic coding given in the Appendix can also be used We tested the compressed Bloom filter via simulation. We
to determine appropriate settings based on the paramatersrgpeated the following experiment 100000 times. A Bloom
similar effect may be achieved by slightly overestimatingf filter for n = 10000 elements andn = 140000 bits was
our uncompressed filter is more than half full of zeros, then dreated, with each element being hashed to two positions
we have fewer than expected elements in the set, our filter wéthosen independently and uniformly at random in the bit array.
tend to have even more zeros than expected and, hence, Wile resulting array was then compressed using a publicly
compress better. With this design, the compressed filter shoalhilable arithmetic coding compressor based on the work
be within the desired size range with high probability. of Moffat, Neal, and Witten [4], [12}. Using z = mH(p)

To deal with cases that still do not compress adequately, weggests that the compressed size should be near 9904 bytes; to
suggest using multiple filter types. Each filter typés associ- meet the bound of 8 bits per element requires the compressed
ated with an array of sizen, a set of hash functions, and a desize not exceed 10 000 bytes. Over the 100 000 trials, we found
compression scheme. These types are agreed on ahead of tineeaverage compressed array size to be 9920 bytes, including
A few bits in the header can be used to represent the filter ty@dl. overhead; the standard deviation was 11.375 bytes; and the
If one of the filter types is the standard Bloom filter (no commaximum compressed array size was only 9971 bytes, giving
pression), then the set can always be sent appropriately ugiisgseveral bytes of room to spare. For largerand n, we
at least one of the types. In most cases, two types—compressed|d expect even greater concentration of the compressed size
and uncompressed—would be sufficient. around its mean; for smaller. andn, the variance would be a

A. Examples 2We note that this is an adaptive compressor, which bases its prediction of the

Wi he th ical f Kk ab b .. f next bit based on the bits seen thus far. Technically, it is slightly suboptimal for
e test the theoretical framework above by examining a 1&yy hurposes, since we generally know the probability distribution of the bits

specific examples of the performance improvements possilal@ad of time. In practice, the difference is quite small.

MITZENMACHER: COMPRESSED BLOOM FILTERS 609

0.1 bit array, onlyn log,(92n) bits could be used for the sorted list;

& 009 this is much smaller for reasonable values:of
£ 0.08 - Similarly, considering the specific case of a Bloom filter
= .
g 0.07 - wherez/n = m/n = 16, we would use eleven hash functions
2 0.06 to achieve an optimal false positive probability of 0.000 459.
3‘ 0.05 As eleven hash functions seems somewhat large, we note that
;E 0'04 i we could reduce the number of hash functions used without
é’ 0'03 applying compression, but using only six hash functions more
g than doubleg to 0.000 935. Table Il summarizes the improve-
= 002 ments available using compressed Bloom filters. If we allow

0.01 28 array bits per element, our false positive probability falls

0 w : ; about 30% while using only four hash functions. If we allow 48

0 1 2 3 4 5 6 7 & 9 10 array bitsperelement, our false positive probability falls over
50% using only three hash functions. We simulated the case

Hash functions with 7 = 10000 elementsyn = 480000 bits, andk = 3 hash
Standard functions using 100000 trials. The theoretical considerations
- - - -Compressed above suggest the compressed size will be 19 787 bytes. Over

our simulation trials, the average compressed array size was
Fig. 1. False positive probability as a function of the number of hash functiod® 805 bytes, including all overhead; the standard deviation
for compressed and standard Bloom filters using 8 bits per element. was 14.386 bytes and the maximum compressed array size was
only 19 865 bytes, well below the 20 000 bytes available.

We have also tested the case whefe = m/n = 4 against
usingm/n = 7, or 7 array bits per element. The results ap-
pear in Table Ill. We expect this case may prove less useful in
practical situations because the false positive probability is so
high. In this case, using the standard Bloom filter with the op-
timal three hash functions yields a false positive probability of
0.147; usingn/n = 7 and one hash function gives a false posi-
tive probability of 0.133. Again, we performed 100 000 random
experiments witlm = 10000. The largest compressed filter re-
quired 4998 bytes, just shy of the 5000 byte limit.

As previously mentioned, we may also consider the optimiza-
tion problem in another light: We may try to maintain the same
false positive ratio while minimizing the transmission size. In
0 Tables IV and V, we offer examples based on this scenario. Our

0123456 7 8 9101112131415 resultsyieldtransmission size decreases in the range of roughly
5%-15% for systems of reasonable size. Here again, our sim-
ulations bear out our theoretical analysis. For example, using
Standard n = 10000 elementsy = 126 000 bits, andt = 2 hash func-

- = - -Compressed tions over 100 000 trials, we find the average compressed filter
required 9493 bytes, closely matching the theoretical prediction.

Fig. 2. False positive probability as a function of the number of hash functiomhe largest filter over the 100 000 trials required 9539 bytes.
for compressed and standard Bloom filters using 16 bits per element.

0.005

0.004

0.003

0.002

0.001

False positive probability

Hash functions

larger fraction of the compressed size. We believe the example V. DELTA COMPRESSION

provides good insight into what is achievable in real situations. In the Web cache sharing setting, the proxies periodically
Theoretically, we can do even better by using just one haltoadcast updates to their cache contents. As described in [7],
function, although this greatly increases the number of array bS], these updates can either be new Bloom filters or repre-
per element, as seen in Table I. sentations of the changes between the updated filter and the old
Itis worth noting that if the memory for the Bloom filter arrayfilter. The difference, odelta between the updated and old filter
after decompression is a concern, it is often possible to do bettan be represented by the exclusive-or of the corresponding bit
by not keeping the Bloom filter in array form. Instead, the arragrrays of sizern, which can then be compressed using arith-
indices where there is a 1 can be kept as a list in sorted ordeetic coding as above. For example, one may decide that up-
Checking ifanindexis 1 can then be accomplished with interpdates should be broadcast whenever 5% of the underlying array
lation search irO(log log n) time on average [8]. While this is bits have changed; in this case, the compressed size of the delta
more than the constant time for an array lookup, it may be suitould be roughlym H(0.05). Hence, one may wish to opti-
able for some applications. In the case of one hash functionraize the array size for a target size of the compressed delta and
described above, instead of usiiy bits for the uncompressedallow the one-time cost of longer initial messages to establish

610 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

TABLE I
AT MOST SIXTEEN BITS PERELEMENT (COMPRESSEL)
Array bits per element m/n | 16 28 48
Transmission bits per element | z/n | 16 15.846 15.829
Hash functions k 11 4 3
False positive probability f 0.000459 | 0.000314 | 0.000222
TABLE Il
AT MOST FOUR BITS PERELEMENT (COMPRESSED
Array bits per element m/n | 4 7
Transmission bits per element | z/n | 4 3.962
Hash functions k 3 1
False positive probability f 0.147 | 0.133
TABLE IV
MAINTAINING A FALSE POSITIVE PROBABILITY AROUND 0.02
Array bits per element m/n |8 12.6 46
Transmission bits per element | z/n | 8 7.582 | 6.891
Hash functions k 6 2 1
False positive probability f 0.0216 | 0.0216 | 0.0215
TABLE V
MAINTAINING A FALSE POSITIVE PROBABILITY AROUND 0.000 45
Array bits per element m/n | 16 37.5 93
Transmission bits per element | z/n | 16 14.666 13.815
Hash functions k 11 3 2
False positive probability f 0.000459 | 0.000454 | 0.000453

a base Bloom filter at the beginning. It makes sense to cast thfgproximation) the overall probability of this first case is
problem as an optimization problem in a manner similar to whatl — e~ ¢"*/),

we have done previously. As we will show, using compressedin the second case, the corresponding bit in the Bloom filter
Bloom filters in conjunction with delta compression can yielavas originally a 1 but became a 0 after the elements changed.
even greater performance gains. This is equivalent to the previous case. The probability that the

We emphasize that using delta compression may not be stif-is 0 atthe end is jugt, and the probability that the: deleted
able for all applications. For example, sending deltas may riJements failed to set that bit to 1 weks— 1/m)°**, and the
be suitable for systems with poor reliability; a missed delta m&yerall probability of this case is alggl — e”e™*/™). Hence,
mean a proxy filter remains improperly synchronized for a lon§y = 2p(1 - e_cn.k_/m) = 2p(1. - pc)-_ .
period of time (assuming full filters are sent occasionally to 1he false positive probability satisfies
resynchronize). In many cases, however, sending deltas will pe= (1 — p)* = (1 — p)(~ P (/n) — (1 _ p)=Elap/nH (D),
preferred. Sincez andn are given, minimizingf is equivalent to mini-

Suppose that our sétof elements changes over time througimizing
insertions and deletions, but the size is fixed alements. We
send a delta whenever a fractierof the n elements of the

set have changed. We consider the case where our goal igjifiortunately, we have lost the appealing symmetry of the stan-

minimize the false positive probability while maintaining a garq and compressed Bloom filter, making analysis of the above

specific size for the delta. We again have the power to Choc@)‘?pression unwieldy. The value gfstill appears to be mini-

the array sizen and the number of hash functiohsgivenn mized asp — 1foranye < 1/2, but a simple formal proof

and the compressed delta size, which we denote here oy appears challenging.

this_setting, we lety k_)e the probability that a bit in the delta i_s a |t is worthwhile to again consider hoybehaves in the lim-

1, given that a fractior of then elements have changed. Simyting case ag — 1. Algebraic manipulation yields that in this

ilar to the case for compressed Bloom filters, our constraint &ises — (1/2)/2¢, so f approacheg0.5)/2<" . This result is

z = mH(g). As before, we lep = e~*"/™ be the probability jntitive under the reasoning that the limiting case corresponds

that a bit in the Bloom filter is 0. to hashing each element into a large number of bits. The expo-
We determine an expression far in terms of other nentisz/2cn instead ofz/n since the updates represent both

parameters. A bit will be 1 in the delta in one of two casesleletions and insertions ef. elements; half of the bits sent

In the first case, the corresponding bit in the Bloom filtedescribe the array elements to be deleted.

was originally a 0 but became a 1 after the elements changedWe present some examples for results in this setting in

The probability that the bit was originally O is jugt the Tables VI and VII. As before, these tables give the false

probability that thecn new elements fail to change that bit topositive probability f for the Bloom filter in isolation. Also,

alis(l—1/m)™ ~ e~e"k/m so (using the asymptotic the tables are based on the analysis above and do not take into

B = e~ @) In(l=p)/ H(2p(1=p"))

MITZENMACHER: COMPRESSED BLOOM FILTERS 611

TABLE VI
COMPARING THE STANDARD BLOOM FILTER AND COMPRESSEDBLOOM FILTERS WITH DELTA ENCODING, ¢ = (.05
Array bits per element m/n 8 12 32 13
Transmission bits per element z/n 1.6713 | 1.6607 | 1.6532 | 1.3124
Transmission bits per element changed | z/(cn) | 33.426 | 33.214 | 33.064 | 26.248
Hash functions k 5 3 2 2
False positive probability f 0.0217 | 0.0108 | 0.00367 | 0.0203
TABLE VI
COMPARING THE STANDARD BLOOM FILTER AND COMPRESSEDBLOOM FILTERS WITH DELTA ENCODING; ¢ = 0.01
Array bits per element m/n 8 16 48 13
Transmission bits per element z/n 0.4624 | 0.4856 | 0.4500 | 0.3430
Transmission bits per element changed | z/(cn) | 46.24 | 48.56 [45.00 34.30
Hash functions k 5 3 2 2
False positive probability f 0.0217 | 0.0050 | 0.00167 | 0.0203

account compression overhead and variability, which tend eatropy per array entry would be much smaller than the number
have a greater effect when the number of transmitted bitsagbits used per entry, since large counts would be extremely
smaller. unlikely. Our optimization approach for finding appropriate
In Table VI, we consider the case where 5% of the elementspdrameters can be extended to this situation, and arithmetic
S change between updates. A standard Bloom filter using 8 bitsding remains highly effective. We expect that similar varia-
per element and five hash functions uses only about 1.67 Hitms of Bloom filters would benefit from compression as well.
per element when using delta compression. (Another reason-
able measure is thg number of bits per changed e[ement, instgad VI. CONCLUSION
of the number of bits per element; we include this number in
Table VI.) Alternative configurations using more array bits per e have shown that using compression can improve Bloom
element and fewer hash functions can achieve the same trdi§r performance, in the sense that we can achieve a smaller
mission size while dramatically reducing the false positive profRlse positive probability as a function of the compressed size
ability f. Using four times as much memory (32 bits per ele2ver a Bloom filter that does not use compression. More gen-
ment) for the decompressed filter lowefby a factor of six. The €rally, this is an example of a situation where we are using a
scenario withn /n = 32 andk = 2 hash functions was testeddata structure as a message in a distributed protocol. In this
with simulations. Over 100000 trials, the average compress&fting, where the transmission size may be important, using
filter required 2090 bytes, closely matching the theoretical préompression affects how one should tune the parameters of the
diction of 2066.5 bytes. The maximum size required was 21glgta structure. It would be interesting to find other useful exam-
bytes. Alternatively, one can aim for the same false positive rafies of data structures that can be tuned effectively in a different
while improving compression. As shown in the last column dpanner when being compressed.
Table VI, one can achieve the same false positive ratio as théour work suggests several interesting theoretical questions.
standard Bloom filter while using only about 1.31 bits per eld=0r example, our analysis depends highly on the assumption that
ment, a reduction of over 20%. the hash functions used for the Bloom filter behave like com-
With more frequent updates, so that only 1% of the elemeri¢tely random functions. It is an open question to determine
change between updates, the transmission requirements d¥bgt sort of performance guarantees are possible using prac-
below 1/2 of a bit per element for a standard Bloom filter. Ag-cal hash function families. AISO, it is not clear that the Bloom
shown in Table VI, substantial reductions in the false posititer is necessarily the best data structure for this problem; per-

probabmty or the bits per element can again be achieved. haps another data structure would allow even better results.
Finally, we have not yet implemented compressed Bloom fil-

V. COUNTING BLOOM FILTERS ters in the context of a full working system for an application

h h lsod i . | il such as distributed Web caching. We expect that significant per-
In[7], the authors also describe an extension to a Bloom "86rmance improvement will occur even after minor costs such

where instead of using a bit array the Bloom filter array uses@ o mpression and decompression time are factored in. The

small number of bits per entry to keep counts. To represenf g o ction of the compressed Bloom filter with a full system
set, thejth entry is incremented for each hash functigrand may lead to further interesting questions

each element in the set such thai;(«) = j. Thecounting
Bloom filter is useful when elements can be deleted from the
filter; when an element is deleted, one can decrement the value APPENDIX
at locationh;(z) in the array for each of the hash functions, MATHEMATICAL DETAILS
i.e., forl <4 < k. We emphasize that these counting Bloom Here, we briefly discuss some of the mathematical issues that
filters are not passed as messages in [7], [18]; they are only us@siglossed over previously. Specifically, we wish to show that
locally. the size of a compressed Bloom filter is very closerntél (p)

We note that if one wanted to pass counting Bloom filtersith high probability. We sketch the argument, omitting the fine
as messages, compression would yield substantial gains. @eé&ail and focusing on the main points.

612

We calculated that the expected fraction of 0 bits in a Bloom
filter with m bits, £ hash functions, and elements ig’ =
(1-1/m)"*. We proceeded as though the bits in the Bloom filtgr,
were independent with probabiligy= e=*/", The difference
betweeny’ andp is well known to be very small, g8 —1/m)™
converges quickly td /e. We will ignore this distinction. The
bits of the Bloom filter, however, are also not independent. In [1]
fact, as we describe later, for arithmetic coding to perform well,
it suffices that the fraction of O bits is highly concentrated around [2]
its mean. This concentration follows from a standard martingale 3
argument. [

Theorem 1: Suppose a Bloom filter is built with hash func-
tions, n elements, andr bits, using the model of perfectly
random hash functions. Léf be the number of 0 bits. Then

(4]

(5]

Pr[|X — mp| > em] < 2e(=<'m?)/2nk. [6]

Proof: This is a standard application of Azuma’s in-
equality. (See, e.g., [2, Th. 2.1].) Pick an order for the elements[7
to be hashed. LeX; be a random variable representing the
number of 0 bits aftef hashes. ThenXy, X1, ..., X, = X
is a martingale, withX; — X,1,] < 1. The theorem then
follows. O

For our arithmetic coding, we suppose that we use an adaptivé’!
arithmetic coder that works as follows. There are two countersg; g
Cy andCy; C; is incremented every time the bit valuies seen.
Initially, the C; are set to 1, to avoid the division-by-zero prob-
lems discussed below. The encoder and decoder use the moggj
that the probability the next bit iss to beC; /(C; +C; _;) to de-
termine how to perform the arithmetic coding. (Thus, initially, [12]
when no information is given, the encoder and decoder assunes)
the first bit is equally likely to be aO ora 1.)

Recall that for arithmetic coding the total lengttof the en- [14]
coding can be taken to be the logarithm of the inverse of the
product of the model probabilities for each bit, plus 1. (See, fof15]
example, [9].) In this case, if there arebits total andr of the

(8]

bits are 0, regardless of the position of thé bits, the total [16]
length L of the encoding satisfies 7]
(m+1)!
= |logy —— 1. (18]
L [Og? zl(m — x)! +

We consider the case whete= pm for some constani. Sim-
plifying, we have

=mH(p) + O(logm).
In the above, we used the approximation

m

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

ACKNOWLEDGMENT

The author would like to thank A. Broder for introducing him
Bloom filters and for helpful discussions.

REFERENCES

M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen, “Par-
allel randomized load balancingRandom Structures and Algorithms
vol. 13, no. 2, pp. 159-188, 1998.

N. Alon and J. Spencethe Probabilistic Method New York: Wiley,
1992.

] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”

Commun. ACMvol. 13, no. 7, pp. 422-426, July 1970.

J. Carpinelli, W. Salomonsen, A. Moffat, R. Neal, and I. H. Witten.
(1995, Mar.) Source code for arithmetic coding, version 1. [Online].
Available: http://www.cs.mu.oz.au/~alistair/arith_coder/.

J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. Syst. Scivol. 18, pp. 143-154, 1979.

S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz, “An archi-
tecture for a secure service discovery service Piac. Fifth Annu. Int.
Conf. Mobile Computing and Networks (MobiCOM'98Jg. 1999, pp.
24-35.

1 L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable

wide-area web cache sharing protocol,"Aroc. SIGCOMM’'98 1998,

pp. 254-265.

G. H. Gonnet and R. Baeza-Yatdsandbook of Algorithms and Data
Structures in Pascal and,@nd ed. Chatham, NJ: Addison-Wesley,
1991.

P. G. Howard and J. Vitter, “Analysis of arithmetic coding for data com-
pression,Inform. Process. Managvol. 28, no. 6, pp. 749-763, 1992.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B.
Zhao, “OceanStore: An architecture for global-scale persistent storage,”
in Proc. ASPLOS 20Q(p. 190-201.

M. D. Mcllroy, “Development of a spelling list[EEE Trans. Commun.

vol. 30, pp. 91-99, Jan. 1982.

A. Moffat, R. Neal, and I. H. Witten, “Arithmetic coding revisiteddCM
Trans. Inform. Systvol. 16, no. 3, pp. 256-294, July 1998.

M. V. Ramakrishna, “Practical performance of Bloom filters and parallel
free-text searching,Commun. ACMvol. 32, no. 10, pp. 1237-1239,
Oct. 1989.

A. Rousskov and D. Wessels, “Cache diges@jmputer Netw. ISDN
Syst, vol. 30, no. 22-23, pp. 2155-2168, 1998.

A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakounito,
S. T. Kent, and W. T. Strayer, “Hash-based IP tracebackProt. SIG-
COMM, Aug. 2001, pp. 3-14.

D. Wessels. SQUID frequently asked questions. [Online]. Available:
http://www.squid-cache.org

I. H. Witten, A. Moffat, and T. BellManaging Gigabyte2nd ed. San
Francisco, CA: Morgan Kaufmann, 1999.

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol (Extended version),” Computer
Sciences Dept., Univ. Wisconsin—Madison, Tech. Rep. 1361, Feb. 1999.

Michael Mitzenmacher (M'01) received the B.A.
degree in mathematics and computer scieswsema
cum lauddrom Harvard College, Cambridge, MA, in
1991, the C.A.S. degree in mathematics with highest
distinction from Cambridge University, Cambridge,
U.K.,in 1992, and the Ph.D. degree in computer sci-
ence from the University of California at Berkeley in
1996.

He was a Research Scientist with the Digital Sys-
tems Research Center, Palo Alto, CA, from 1996 to
1998. From 1999 to 2002, he was an Assistant Pro-

(

which follows by Stirling’s formula for a constapt
Sincep is with high probability close t@’, which is very

) _ 2rnH(p)+O(log m)
om

fessor with Harvard University, Cambridge, MA, where he has been an Asso-

ciate Professor since July 2002. He is the coinventor of ten issued patents. His

research interests include design and analysis of algorithms, dynamic processes,

load balancing, Web algorithms, compression, error-correcting codes, and com-
uter science education.

close top, the total number of bits used by the encoding is CIOé)eDr. Mitzenmacher was the recipient of an Alfred P. Sloan Research Fellow-

to mH (p) with high probability.

ship in 2000.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

