
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004 767

Informed Content Delivery Across
Adaptive Overlay Networks

John W. Byers, Jeffrey Considine, Michael Mitzenmacher, Member, IEEE, and Stanislav Rost

Abstract—Overlay networks have emerged as a powerful and
highly flexible method for delivering content. We study how to op-
timize throughput of large transfers across richly connected, adap-
tive overlay networks, focusing on the potential of collaborative
transfers between peers to supplement ongoing downloads. First,
we make the case for an erasure-resilient encoding of the content.
Using the digital fountain encoding approach, end hosts can effi-
ciently reconstruct the original content of size from a subset of
any symbols drawn from a large universe of encoding symbols.
Such an approach affords reliability and a substantial degree of
application-level flexibility, as it seamlessly accommodates connec-
tion migration and parallel transfers while providing resilience to
packet loss. However, since the sets of encoding symbols acquired
by peers during downloads may overlap substantially, care must be
taken to enable them to collaborate effectively. Our main contribu-
tion is a collection of useful algorithmic tools for efficient summa-
rization and approximate reconciliation of sets of symbols between
pairs of collaborating peers, all of which keep message complexity
and computation to a minimum. Through simulations and experi-
ments on a prototype implementation, we demonstrate the perfor-
mance benefits of our informed content-delivery mechanisms and
how they complement existing overlay network architectures.

Index Terms—Bloom filter, content delivery, digital fountain,
erasure code, min-wise sketch, overlay, peer-to-peer, reconcilia-
tion.

I. INTRODUCTION

CONSIDER the problem of distributing a large new file
across a content-delivery network of several thousand

geographically distributed machines. Transferring the file with
individual point-to-point connections from a single source
incurs two performance limitations: wasted bandwidth and
transfer rates limited by the characteristics of the end-to-end
paths. The problem of excessive bandwidth consumption can
be solved by reliable multicast. For example, one elegant and
scalable solution is the digital fountain approach [9], whereby
the content is first encoded via an erasure-resilient encoding
[19], [28], then transmitted to clients. In addition to providing
resilience to packet loss, this approach also accommodates

Manuscript received May 29, 2003; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor S. Seshan. This work was supported in part by the
National Science Foundation under Grant ANI-0093296, Grant ANI-9986397,
Grant CCR-9983832, Grant CCR-0118701, and Grant CCR-0121154, and in
part by an Alfred P. Sloan Research Fellowship.

J. Byers and J. Considine are with Boston University, Boston, MA 02215
USA (e-mail: byers@cs.bu.edu; jconsidi@cs.bu.edu).

M. Mitzenmacher is with Harvard University, Cambridge, MA 02138 USA
(e-mail: michaelm@eecs.harvard.edu).

S. Rost is with the Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: stanrost@csail.mit.edu).

Digital Object Identifier 10.1109/TNET.2004.836103

asynchronous client arrivals and, if layered multicast is also
employed, heterogeneous client transfer rates.

Unfortunately, IP multicast suffers from limited deployment,
which has led to the development of end-system approaches
[11], [14], along with a wide variety of related schemes relevant
to peer-to-peer content-delivery architectures [10], [31]. These
architectures overcome the deployment hurdle faced by IP mul-
ticast by constructing overlay topologies that comprise collec-
tions of unicast connections between end systems, in which each
edge (or connection) in the overlay is mapped onto a path in the
underlying physical network by IP routing.

End-system multicast differs from IP multicast in a number of
fundamental aspects. First, overlay-based approaches do not use
a multicast tree; indeed, they may map multiple virtual connec-
tions onto the same network links. Second, unlike IP multicast
trees, overlay topologies may flexibly adapt to changing net-
work conditions. For example, applications using overlay net-
works may reroute around congested or unstable areas of the In-
ternet [1], [30]. Finally, end systems are now explicitly required
to collaborate. This last point is crucial and forms the essence of
the motivation for our work. Given that end systems are required
to collaborate in overlays, does it necessarily follow that they
should operate like routers, and simply forward packets? We
argue that this is not the case, and that end systems in overlays
have the opportunity to improve performance, provided they are
able to actively collaborate, in an informed manner.

We now return to the second limitation mentioned above:
the transfer rate to a client in a tree topology is limited by the
available bandwidth of the bottleneck link along the path from
the server. In contrast, overlay networks can overcome this lim-
itation. In systems with ample bandwidth, transfer rates across
overlay networks can substantially benefit from additional
cross-connections between end systems, if the end systems
collaborate appropriately. Assuming that a given pair of end
systems has not received exactly the same content, this extra
bandwidth can be used to fill in, or reconcile, the differences in
received content, thus reducing the total transfer time.

Our approach to addressing these limitations is illustrated in
the content-delivery scenario of Fig. 1. In the initial scenario de-
picted in Fig. 1(a), S is the source and all other nodes in the tree
(nodes A–E) represent end systems downloading a large file via
end-system multicast. Each node has a working set of packets,
the subset of packets it has received (for simplicity, we assume
the content is not encoded in this example). Even if the overlay
management of the end-system multicast architecture ensured
the best possible embedding of the virtual graph onto the net-
work graph (for some appropriate definition of “best”), there is
still considerable room for improvement. A first improvement

1063-6692/04$20.00 © 2004 IEEE

768 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

Fig. 1. Possibilities for content delivery. Shaded content within a node in the topology represents the working set of that node. Connections in (b) supplement
those in (a); connections in (c) supplement those in (a)+(b). Source S and peer F have the content in its entirety. A, B each have different, but overlapping halves
of the full content. C, D, E each have 25% of the content. Panel (d) depicts the portions of content which can be beneficially exchanged via pairwise transfers.
(a) Initial delivery tree. (b) Parallel downloads. (c) Collaborative transfer.

can be obtained by harnessing the power of parallel downloads
[8], i.e., establishing concurrent connections to multiple servers
or peers with complete copies of the file [Fig. 1(b)]. More gen-
erally, additional significant performance benefits may be ob-
tained by taking advantage of “perpendicular” connections be-
tween nodes whose working sets are complementary, as shown
in Fig. 1(c). Benefits of establishing concurrent connections to
multiple peers have been demonstrated by popular peer-to-peer
file-sharing systems such as Kazaa, Grokster, and Morpheus.
The improvements in transfer rates that these programs obtain
provide preliminary evidence of availability of bandwidth for
opportunistic downloads between collaborating peers.

As discussed earlier, the tree and directed acyclic graph
topologies of Fig. 1(a) and (b) impede the full flow of content
to downstream receivers, as the rate of flow monotonically
decreases along each end-system hop on paths away from the
source. In contrast, the opportunistic connections of the graph
of Fig. 1(c) allow for higher transfer rates, but simultaneously
demand more careful orchestration between end systems to
achieve those rates. In particular, any pair of end systems in a
peer-to-peer relationship must be able to determine and transfer
those packets that lie in the set difference of their working sets.

When working sets are limited to small groups of contiguous
blocks of sequentially indexed packets, reconciliation is simple,
since each block can be succinctly specified by an index and
a size. However, restricting working sets to such simple pat-
terns greatly limits flexibility to the frequent changes which
arise in adaptive overlay networks, as we argue in Section II.
But the added flexibility provided by encoded content also
makes reconciliation a more difficult problem. To address
this challenge, in Sections III–VI, we provide a set of tools
for estimating, summarizing, and approximately reconciling
working sets of connected clients, all of which keep message
complexity and computation to a minimum. In Section VII,
we demonstrate through simulations and experiments on a
prototype implementation that these tools, coupled with the
encoding approach, form a highly effective delivery method
which can substantially reduce transfer times over existing
methods. We outline ongoing research directions and draw
conclusions in Sections VIII and IX.

II. CONTENT DELIVERY ACROSS OVERLAY NETWORKS

We motivate our approach by sketching fundamental chal-
lenges that must be addressed by any content-delivery architec-

ture and outlining the set of opportunities that an overlay ap-
proach affords. Then, we argue the pros and cons of encoded
content, namely a small amount of added complexity for greatly
improved flexibility and scalability.

A. Challenges and Opportunities

The fluid Internet environment poses a number of challenges
that a content-delivery infrastructure must cope with, including
the following.

• Asynchrony: Receivers may open and close connections
or leave and rejoin the infrastructure at arbitrary times.

• Heterogeneity: Connections vary in speed and loss rates.
• Transience: Routers, links, and end systems may fail and

their performance may fluctuate over time.
• Scalability: The service must scale to large receiver pop-

ulations and large content.

For example, a robust overlay network should have the ability
to adaptively detect and avoid congested or temporarily unstable
areas of the network [1], [30]. It should also be able to dy-
namically establish paths with the most desirable end-to-end
characteristics. Such reactive behavior of the virtual topology
may frequently induce the nodes to reconnect to better-suited
peers. However, this adaptive behavior exacerbates the prob-
lems enumerated above. Another consequence of the fluidity
of the environment is that content is likely to be disseminated
nonuniformly across peers. For example, discrepancies between
working sets may arise due to uncorrelated losses, bandwidth
differences, asynchronous joins, and topology reconfigurations.
More specifically, receivers with higher transfer rates and re-
ceivers who initiate the download earlier will simply have more
content than their peers.

Finally, we also want to take advantage of a significant op-
portunity presented by overlay networks discussed in the intro-
duction: the ability to download content across multiple connec-
tions in parallel. More generally, we wish to make beneficial use
of any available connection present in an adaptive overlay, in-
cluding ephemeral connections which may be short-lived, may
be preempted, or whose performance may fluctuate over time.
This opportunity raises the further challenge of delivering con-
tent which is not only useful, but which is useful even when
other connections are being employed in parallel, and doing so
with a minimum of setup overhead and message complexity.

BYERS et al.: INFORMED CONTENT DELIVERY ACROSS ADAPTIVE OVERLAY NETWORKS 769

B. Limitations of Stateful Solutions

While issues of connection migration, heterogeneity, and
asynchrony are tractable, solutions to each problem gener-
ally require a significant per-connection state. The retained
state makes such approaches highly unscalable. Moreover, a
bulky per-connection state can have a significant impact on
performance, since this state must be maintained in the face of
reconfiguration and reconnection.

Parallel downloading using stateful approaches is by itself
problematic, as discussed in [8]. The natural approach divides
the missing packets into disjoint sets that can be downloaded
from different sources. But network heterogeneity and tran-
sience necessitate frequent renegotiation of which packets to
obtain from each source. Also, there is a natural bottleneck
that arises from the need to obtain “the last few packets” [8].
Both of these problems are alleviated by the use of encoded
content, as we describe below. While we do not argue that
parallel downloading with unencoded content is impossible
(for example, see [29]), the use of encoding facilitates simpler
and more effective parallel downloading.

One other complication is that in our framework, it is actu-
ally beneficial to have partially downloaded content distributed
unevenly across participating end systems, so that there is con-
siderable discrepancy between working sets. As noted earlier,
discrepancies in working sets will arise naturally. Stateful ap-
proaches in which end systems attempt to download contiguous
blocks of unencoded packets work against this goal, since end
systems effectively strive to reduce the discrepancies between
the packets they obtain. Again, in schemes using encoded con-
tent, this problem is not a consideration.

C. Benefits of Encoded Content

An alternative to using stateful solutions is the use of the
digital fountain paradigm [9] running over an unreliable trans-
port protocol. The digital fountain approach was originally de-
signed for point-to-multipoint transmission of large files over
lossy channels. Resilience to packet loss is achieved by using
an erasure-correcting code [19], [28] to produce an unbounded
stream of encoding symbols derived from the source file. The
encoding stream has the guarantee that a receiver is certain to be
able to recover the original source file from any subset of dis-
tinct symbols in the encoding stream equal to the size of the orig-
inal file. In practice, this strong decoding guarantee is relaxed in
order to provide efficient encoding and decoding times. Current
implementations are capable of efficiently reconstructing the
file, having received only a few percent more than the number of
symbols in the original file [9], [18], [19]. A digital fountain ap-
proach provides a number of important benefits which are useful
in a variety of content-delivery scenarios.

• Continuous Encoding: Senders with a complete copy of
a file may continuously produce fresh encoding symbols.

• Time Invariance: New encoding symbols are produced
independently from symbols produced in the past.

• Tolerance: Digital fountain streams are useful to all re-
ceivers regardless of the times of their connections or dis-
connections and their rates of sampling the stream.

• Additivity: Fountain flows generated by senders with dif-
ferent sources of randomness are uncorrelated, so parallel
downloads from multiple servers with complete copies of
the content require no orchestration.

While the full benefits of encoded content described above apply
primarily to a source with a copy of the entire file, some benefits
can be achieved by end systems with partial content, by re-en-
coding the content as described in Section V. The flexibility pro-
vided by the use of encoding frees the receiver from receiving all
of a set of distinct symbols, and enables fully stateless connec-
tion migrations. It also allows the nodes of the overlay topology
to connect to as many senders as necessary and obtain distinct
encoding symbols from each, provided these senders are in pos-
session of the entire file.

There is one significant disadvantage from using encoded
content, aside from the small overhead associated with encoding
and decoding operations. In a scenario where encoding symbols
are drawn from a large universe, end systems that hold only
part of the content must take care to arrange transmission of
useful information between one another. The digital fountain
approach handles this problem in the case where an end system
has decoded the entire content of the file. Once this happens,
the end system can generate fresh encoded content at will. How-
ever, when collaborating end systems have only a portion of the
content, reconciliation methods are needed to avoid redundant
transmissions.

III. RECONCILIATION AND INFORMED DELIVERY

The preceding sections have established expectations for in-
formed collaboration. We abstract our solutions away from the
issues of optimizing the layout of the overlay over time [1], [11],
[14], as well as distributed naming and indexing; our system
supplements any solutions employed to address these issues.

The approaches to reconciliation we propose are local in
scope, and typically involve a pair or a small number of end sys-
tems. In the setting of wide-area content delivery, many pairs of
systems may desire to transfer content in an informed manner.
For simplicity, we will consider each such pair independently,
although we point to the potential use of our techniques to
perform more complex, nonlocal orchestration. Our goal is
to provide the most cost-effective reconciliation mechanisms,
measuring cost both in computation and message complexity. In
the subsequent sections, we propose the following approaches.

• Coarse-grained reconciliation employs sketches of each
peer’s working set. Using random sampling or min-wise
sketches [5], coarse-grained reconciliation is not resource-
intensive and allows quick estimates of the fraction of
symbols common to the working sets of both peers.

• Speculative transfers involve a sender performing “ed-
ucated guesses” as to which symbols to generate and
transfer. As the number of symbols common to both
working sets increases, there are fewer useful symbols
which the sender can generate cheaply, and the sender
must strike a balance between increased computation and
the probability of utility. This process can be fine-tuned
using the results of coarse-grained reconciliation.

770 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

• Fine-grained reconciliation employs compact, search-
able working set summaries such as Bloom filters [3] or
ARTs (to be introduced in Section VI). Fine-grained ap-
proaches are more resource-intensive and allow a peer to
determine the symbols in the working set of another peer
with a quantifiable degree of certainty.

The techniques we describe provide a range of options and
are useful in different scenarios, primarily depending on the re-
sources available at the end systems, the correlation between
the working sets at the end systems, and the requirements of
precision. The sketches can be thought of as an end system’s
calling card: they provide some useful high-level information,
are extremely lightweight, can be computed efficiently, can be
incrementally updated at an end system, and fit into a single
1-kB packet. Generating the searchable summaries requires a
bit more effort. While they can still be computed efficiently
and incrementally updated, they require more space, and a gi-
gabyte of content will typically require a summary on the order
of 1 MB in size. Finally, speculative transfers tune the content
sent across a peer-to-peer connection based on information con-
veyed in sketches.

IV. COARSE-GRAINED RECONCILIATION

We start with simple and quick methods for coarse-grained
reconciliation which estimate the resemblance of the working
sets of pairs of nodes prior to establishing connections. Knowl-
edge of the resemblance allows a receiver to determine the ex-
tent to which a prospective peer can offer useful content. Our
methods are designed to give accurate answers when only a
single 1-kB packet of data is transferred between peers.

We first establish the framework and notation. Let peers
and have working sets and containing symbols from
an encoding of the file.

Definition 1 (Containment and Resemblance): The contain-
ment of in is the quantity . The resem-
blance of and is the quantity .

These definitions are due to Broder [4], and were applied to
determine the similarity of documents in search engines. The
containment represents the fraction of elements that are use-
less (already known) to . If this quantity is close to zero, the
containment is small, and rates to be a useful source of infor-
mation for . We point out that containment is not symmetric,
while resemblance is. Also, given and , an estimate for
one can easily be used to calculate an estimate for the other.

We suppose that each element of a working set is identified
by an integer key; sending an element entails sending its key.
We will think of these keys as unique, although they may not
be. For example, if the elements are determined by a hash func-
tion seeded by the key, two keys may generate the same element
with small probability. This may introduce small errors in esti-
mating the containment, but since we generally care only about
the approximate magnitude of the containment, this will not
have a significant impact. With 64-bit keys, a 1-kB packet can
hold roughly 128 keys, which enables reasonable estimates for
the techniques we describe. Finally, we assume that the integer
keys are distributed over the key space uniformly at random,

Fig. 2. Example of min-wise summarization and estimation of resemblance
(key universe size is 64, example permutation functions shown).

since the key space can always be transformed by applying a
(pseudo)random hash function.

The first approach we consider is straightforward random
sampling. Simply select elements of the working set at random
(with replacement) and transport those to the peer. (We may
also send the size of the working set, although this is not es-
sential). Suppose sends a random sample from .
The probability that each element in is also in is

, and hence, is an unbiased es-
timate of the containment. Random samples can be incremen-
tally updated upon acquisition of new elements using reservoir
sampling [32]. Random sampling suffers the drawback that
must search for each element of in its own list . Although
such searches can be implemented quickly using standard data
structures (interpolation search will take av-
erage time per element), they require some extra updating over-
head. One remedy, suggested in [4], is to sample only those el-
ements whose keys are 0 modulo for an appropriately chosen

, yielding samples and . (Here we specifically assume
that the keys are random.) In this case, is
an unbiased estimate of the containment; moreover, all compu-
tations can be done directly on the small samples, instead of on
the full working sets. However, this technique generates sam-
ples of variable size, which can be awkward, especially when
the size of the working sets varies dramatically across peers. An-
other concern about both of these random sampling methods is
that they do not easily allow one peer to check the resemblance
between prospective peers. For example, if peer is attempting
to establish connections with peers and , it might be helpful
to know the resemblance between the working sets of and .

Another clever sampling technique from [4] avoids the
drawbacks of the first two approaches. This approach, which
we employ, calculates working set resemblance based on
min-wise sketches, following [4] and [5]; the method is de-
picted in Fig. 2. Let represent a random permutation on
the key universe . For a set , let

, and let
. Then for two working sets and containing

symbols of the file , we have
if and only if . That is, the minimum

BYERS et al.: INFORMED CONTENT DELIVERY ACROSS ADAPTIVE OVERLAY NETWORKS 771

element after permuting the two sets and matches
only when the inverse of that element lies in both sets. In this
case, we also have . If is a random
permutation, then each element in is equally likely
to become the minimum element of . Hence, we
conclude that with probability

. Note that this probability is the
resemblance of and . To estimate the resemblance, peer
computes for some fixed number of permutations

, and similarly for and . The peers must agree on these
permutations in advance; we assume they are fixed universally
offline.

For to estimate sends a
vector containing ’s minima, . then compares
with , counts the number of positions where the two are
equal, and divides by the total number of permutations, as de-
picted in Fig. 2. The result is an unbiased estimate of the resem-
blance , since each position is equal with probability .

In practice, truly random permutations cannot be used, as
the storage requirements are impractical. Instead, we may use
simple permutations, such as for
randomly chosen and and when is prime, without affecting
overall performance significantly [5]. Also, instead of sending
values in , these values can be hashed to fewer bits,
allowing us to store more sketch elements in each packet. This
introduces the possibility of false positives, which can subse-
quently be accounted for when estimating the resemblance. We
omit details for lack of space.

The min-wise sketches above allow similarity comparisons,
given any two sketches for any two peers. Moreover, these
sketches can be combined in natural ways. For example, the
sketch for the union of and is easily found by taking the
coordinate-wise minimum of and . Estimating the
resemblance of a third peer’s working set with the combined
working set can, therefore, be done with ,
and . Min-wise sketches can also be incrementally updated
upon acquisition of new content, with constant overhead per
receipt of each new element.

V. SPECULATIVE RECONCILIATION

Recall that speculative transfers involve a sender performing
“educated guesses” as to which symbols to generate and
transfer. For example, after exchanging min-wise sketches,
peers may know that there is an abundance of useful symbols
to transfer, but they do not yet know which ones are useful. In
this case, one peer wishes to send symbols which are probably
useful to the other, while attempting to minimize computation
and communication costs. In some cases, such as when the
containment of in is low, speculative reconciliation is
trivial, since most of ’s symbols are useful to . But when
the containment of in is high, this simple strategy is
inefficient. For example, consider peers and that estimate
the containment of in to be 0.8. Without fine-grained
reconciliation, there is an 80% probability that any symbol
that sends to is already known, and thus is useless. On
the other hand, if randomly chooses nine encoding symbols
and sends the bitwise XOR of them, there is only a probability

of % that all nine encoding symbols were already
known to . This is the intuition behind recoding.

A. Sparse Parity-Check Codes

A key ingredient we use in our recoding methods are sparse
parity-check codes. The content being sent by the encoder is
a sequence of symbols , where each is called
an input symbol. An encoder produces a sequence of encoding
symbols from the set of input symbols. With parity-
check codes, each encoding symbol is simply the bitwise XOR

of a specific subset of the input symbols. A decoder attempts to
recover the original content from the encoding symbols. For a
given symbol, we refer to the number of input symbols used to
produce the symbol as its degree, i.e., has degree
2. Using the methods described in [19], the time to produce an
encoding symbol is proportional to the degree of the encoding
symbol, while decoding takes time proportional to the total de-
gree of the symbols in the sequence. Encoding and decoding
times are a function of the average degree; when the average de-
gree is constant, we say the code is sparse. Well-designed sparse
parity-check codes typically require recovery of a few percent
(less than 5%) of symbols beyond , the minimum needed for
decoding. The decoding overhead of a code is defined to be if

encoding symbols are needed, on average, to recover
the original content. (There is also a small amount of overhead
for the space needed in each packet to identify which input sym-
bols were combined, which is typically represented by a 64-bit
random seed.)

Provably good degree distributions for sparse parity-check
codes were first developed and analyzed in [19]. However, these
codes are fixed rate, meaning that only a predetermined number
of encoding symbols are generated, typically only , where

is a small constant. In some applications, such as in [8],
this can lead to inefficiencies, as servers are forced to retransmit
symbols. Similarly, in our application, fixed rates result in re-
duced diversity in the working sets of peers. Newer codes, called
rateless codes, avoid this pitfall and allow unbounded numbers
of encoding symbols to be generated on demand. Two examples
of rateless codes, along with further discussion of the merits of
ratelessness, may be found in [18] and [21]. Both of these codes
also have have strong probabilistic decoding guarantees, along
with low decoding overheads and average degrees.

B. Recoding Methods

We now describe recoding for speculative reconciliation. In
this setting, peers and have working sets of encoding sym-
bols. Peer may attempt to send useful information to peer
by using recoding symbols. A recoding symbol is simply the
bitwise XOR of a set of encoding symbols. Like a regular en-
coding symbol, a recoding symbol must be accompanied by
a specification of the encoding symbols blended to create it.
But unlike a regular encoding symbol, a recoding symbol must
explicitly list the random seeds of the encoding symbols from
which it was produced. This has an important side effect of im-
posing a fixed degree limit upon recoding symbols. Encoding
and decoding of recoding symbols are performed in a fashion
analogous to the substitution rule. For example, a peer with en-
coding symbols , and can generate recoding symbols

772 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

, and . A peer that receives
, and can immediately recover . Then by substituting

into , the peer can recover , and similarly can recover
from . As the encoding symbols are recovered, the normal

decoding process proceeds.
As with normal sparse parity-check codes, irregular degree

distributions work well for recoding. To generate a good degree
distribution for recoding, we modified the degree-distribution
generation process of [12]. Here, the key modifications are to
impose an upper bound on the symbol degree, and to generate
an encoding for the case in which a set of input symbols have
already been recovered by the decoder, and where the decoder
need not recover all input symbols.

To provide brief intuition about the methods of [12], we
consider the probability that a recoding symbol is immediately
useful. Suppose peer knows the exact value of the contain-
ment . The probability that a recoding
symbol of degree immediately yields a new encoding symbol
is

This is maximized for target degree . Note
that as recoding symbols are received, containment naturally in-
creases and the target degree increases accordingly. Using this
formula for maximizes the probability of immediate benefit,
but is actually not optimal, since a recoding symbol of this de-
gree runs a large risk of being a duplicate. A theoretical foun-
dation for the design of ideal degree distributions for sparse
parity-check codes can be found in [18].

VI. FINE-GRAINED RECONCILIATION

As shown in Section IV, a single packet can allow peers to
estimate the resemblance in their working sets. If the difference
is sufficiently large to allow useful exchange of data, the peers
may then use the methods of Section V to determine what to ex-
change. As this level of summarization may be too coarse to be
effective, we now describe methods for fine-grained reconcilia-
tion that still have an overhead of only a handful of packets.

Fine-grained reconciliation is a set-difference problem.
Again, suppose peer has a working set and peer has a
working set , both sets being drawn from a universe with

. Peer sends peer some message with the goal
of peer determining as many elements in the set as
possible. We will use , though
will generally not be known exactly.

The set-difference problem has been widely studied in com-
munication complexity. The focus, however, has generally been
on determining the exact difference . With encoded
content, a peer does not generally need to acquire all of the sym-
bols in this difference. For example, two peers may each have

symbols, with symbols in common, where symbols
are necessary to reconstruct the file. In this case, only of the

symbols in need to be transferred. One of our con-
tributions is this insight that approximate reconciliation of the
set differences is sufficient for our application.

We consider the following performance criteria in our discus-
sion of approaches to reconciliation.

• Number of communication rounds.
• Message size: The number of bits sent by to .
• Construction time: For , the construction time is the

time for to compute its messages; for , the construc-
tion time is the time to produce a representation of .

• Reconciliation time: The time for to compute the ap-
proximation to , given the message from and
an appropriate representation of .

• Accuracy: The probability that a given element in
is correctly identified by .

Optimization of the evaluation metrics presented above is es-
pecially important in the reconciliation of large data sets. In our
application, sets of encoding symbols for 1-GB files may have
sizes on the order of millions, with hundreds of thousands of
differences between overlay peers. It is also desirable to sepa-
rate costs of preprocessing from reconciliation, since the latter
is always incurred in real time. This is important in a peer-to-
peer setting, where a peer reconciling with multiple other peers
may wish to amortize the cost of preprocessing across several
pair-wise communications. Thus, while we account for all costs,
we emphasize the real-time costs of reconciliation. We also note
that minimizing communication complexity may be less impor-
tant, as long as the cost for reconciliation messages is small
relative to the size of the transfer. With these factors in mind,
approximate solutions are highly desirable as they will be both
faster and more compact.

The best exact reconciliation protocols to date, in terms of
communication complexity, are based upon the use of character-
istic polynomials [23]–[25]. A technical description is beyond
the scope of this paper, but the main idea involves each peer
evaluating the characteristic polynomial of their set at several
points, and using this information to compute the ratio of the
two characteristic polynomials, and hence, their set differences.
One requirement for these protocols is an upper bound on the
number of set differences, so as to determine how many points
to evaluate. Each of these points must then be updated each time
a new element is added to the set. In the case that an upper
bound on is not known, a guess is made, and a security
parameter is chosen. Then, coefficients are sent, and
a probabilistic check is made that will discover if with
probability . While very attractive for
small numbers of differences, this method is computationally
expensive (cubic) for large numbers of differences, both in con-
struction time and reconciliation time. While the variant in [24]
is much faster, it still requires rounds of communica-
tion, which is not well suited to our application. This leads us to
consider approximate methods, which offer much lower com-
putational complexities. Since we are focused on reconciling a
large number of differences, often of them, the infor-
mation theoretic communication complexity of exact reconcil-
iation is in the common case, where is much
larger than . Using approximate methods, we can reconcile a
constant fraction of the set differences using a message of size

. Table I gives a high-level comparison of the various
approaches we discuss.

BYERS et al.: INFORMED CONTENT DELIVERY ACROSS ADAPTIVE OVERLAY NETWORKS 773

TABLE I
COMPARISON OF VARIOUS FINE-GRAINED RECONCILIATION METHODS WITH AT LEAST CONSTANT ACCURACY

A. Enumeration-Based Approaches

In contrast to polynomial-based methods, the simplest, but
most expensive, approach to computing differences is for peer

to enumerate and send the entire working set . This re-
quires bits to be transmitted. A natural alternative
is to use hashing. Suppose the set elements are hashed using
a random hash function into a universe . Peer
then hashes each element and sends the set of hashes instead
of the actual working set . Now only bits are
transmitted. Strictly speaking, this process may not yield the
exact difference. There is some probability that an element

will have the same hash value as an element of ,
in which case peer will mistakenly believe . The miss
probability can be made inversely polynomial in by set-
ting , in which case bits are
sent. Using hash tables to compare the lists of elements or hash
values sent, exact reconciliation (subject to hash collisions) can
then be done in time with high probability.

A more compact enumeration-based method for approximate
reconciliation is to use a Bloom filter [3]. This solution is sur-
prisingly effective, particularly when the number of differences
is a large fraction of the set size. A Bloom filter is used to rep-
resent a set of elements from a universe

of size , and consists of an array of bits, initially all set
to 0. A Bloom filter uses independent random hash functions

with range . For each element ,
the bits are set to 1 for . To check if an ele-
ment is in , we check whether all are set to 1. If not,
then clearly is not a member of . If all are set to 1, we
assume that is in , although we are wrong with some prob-
ability. Hence, a Bloom filter may yield a false positive when
it reports that an element is in , even though it is not, in
fact, in . The probability of a false positive depends on the
number of bits used per item , and the number of hash func-
tions as follows: . (We note that this is
a highly accurate approximation and we treat it as an equality
henceforth.) This false positive rate is minimized by picking

, which results in .
For an approximate reconciliation solution, peer sends a

Bloom filter of ; peer then simply checks for each ele-
ment of in . When a false positive occurs for an element

, peer will incorrectly assume that peer also has
element , and thus, peer fails to identify as an element of

. However, the Bloom filter never causes peer to mis-
takenly find an element to be in when it is not.

With Bloom filters, the message size can be kept small, while
still achieving high accuracy. For example, using just four bits

per element of , i.e., a message of length , and three
hash functions, yields an accuracy of 85.3%; using eight bits per
element and five hash functions yields an accuracy of 97.8%.
Further improvements can be had by using the recently intro-
duced compressed Bloom filter, which reduces the number of
bits transmitted between peers at the cost of using more bits to
store the Bloom filter at the end systems and requiring com-
pression and decompression at the peers [26]. With a constant
number of hash functions and making the standard assumption
that hashes and array accesses are constant-time operations, ’s
construction time is to set up the Bloom filter, and ’s
reconciliation time is to find the set difference. has
no construction time, although could precompute hashes of
its set elements to shift reconciliation time to construction time.

The requirement for construction time and
message size may seem excessive for large . There are sev-
eral possibilities for scaling this approach up to larger set sizes.
For example, for large or , peer can create a Bloom
filter only for elements of that are equal to modulo for
some appropriate and . Peer can then only use the filter
to determine elements in equal to modulo (still a
relatively large set of elements). The Bloom-filter approach can
then be pipelined by incrementally providing additional filters
for differing values of , as needed. This pipelining approach
can similarly be used in many other schemes.

An unavoidable drawback of Bloom filters is the large recon-
ciliation time. Even when the set difference is small,
every element of must be tested against the filter . As de-
scribed in the introduction, minimizing the reconciliation time
can be crucial in applications where reconciliation must be per-
formed in real time. Our approximate reconciliation-tree data
structure described in Section VI-C avoids this problem.

B. Search-Based Approaches

In contrast to enumeration-based approaches, search-based
approaches are more efficient, both at finding small numbers of
differences and at identifying sets of differences. Search-based
approaches to set reconciliation generally leverage Patricia tries
[16] and Merkle trees [22]. Patricia tries are used to provide
structured searching based upon comparable subsets, while
Merkle trees solve the problem of testing the equivalence of
large subsets in constant time.

Abstractly, a trie is a complete binary tree that represents a
subset of a universe (stored at the root),
and where the th child at depth corresponds to the set

. By this definition, a given element in
is present in all of the nested subsets along a path from the root

774 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

Fig. 3. Components of the approximate reconciliation tree (ART) data
structure (universe size jU j = h = 64).

to the leaf, representing the singleton set . Therefore, when
sets and are each represented in trie form, an element
in the set difference can be located by identifying a root-to-leaf
path where each of the nodes on the path in correspond to
distinct subsets from those stored in the nodes on the path in .
In this basic method, identifying a single discrepancy involves
performing comparisons to identify a path of length
to a leaf.

However, there are two inefficiencies in the approach de-
scribed so far. First, the trie has nodes and depth ,
which is unsuitable when the universe is large. However, almost
all the nodes in the trie correspond to the same sets. In fact,
there are only nontrivial nodes corresponding to dis-
tinct subsets. The trie can therefore be collapsed by removing
edges between nodes that correspond to the same set, leaving
only nodes, and the result is a Patricia trie. An example
of a collapsed Patricia trie is depicted in Fig. 3(a).

The second inefficiency is that each of the subsets being
compared may be arbitrarily large. It is not difficult to con-
struct Patricia tries with subsets of size . Merkle
trees [22] provide a convenient probabilistic answer to this
challenge. They provide a method for signing and comparing
large databases while allowing fast updates and identifying
differences. For our application, we can form a Merkle tree
on top of a trie by concisely representing each node’s subset
as a single value. At the leaves of the Merkle tree, the value
is obtained by applying a hash function to the singleton set
stored at the leaf of the trie. The values of internal nodes of a
Merkle tree are then obtained by applying a hash function to
the values of their children. Using this construction, the hash
value stored at a node is a function of all of the elements in its
subtree. An example of Merkle hashing applied to a Patricia
trie is depicted in Fig. 3(c) using the hash function in Fig. 3(b).
If the Merkle hashing idea is used in conjunction with tries,

the search method described before still applies, with the one
difference that hash values, instead of whole sets, are compared.
This affords constant-time comparisons, but introduces the risk
of false-positive matches due to hash collisions at any level of
the tree.

An interactive algorithm based upon this approach appeared
in [23]. During each round of the algorithm, an additional level
of the tree was traversed from any nodes detecting differences.
Unfortunately, this requires a logarithmic number of rounds,
even with randomization and balancing. A hybrid protocol
combining these ideas with the polynomial-based approach
was given in [24] and uses fewer rounds, but still a logarithmic
number of them. Relevant asymptotic performance measures
for these approaches are provided in Table I.

C. Approximate Reconciliation Trees

Bloom filters are the preferred data structures when the
working sets of the two peers have small resemblance. Bloom
filters are less efficient when the resemblance is large, in which
case, a search-based approach would seem more appropriate
computationally. We propose a new data structure, approximate
reconciliation trees (ARTs), combining the compact representa-
tion of Bloom filters with the speed of a search-based approach.

ARTs [6] build upon the Merkle tree methods of Sec-
tion VI-B. As before, each peer first builds a Patricia trie of
their set along with the associated Merkle tree values. The
message then sends to is a Bloom filter of the values from
the Merkle tree. identifies an element in the set difference
by using the simple path-traversal algorithm described earlier
on its Patricia trie . But now, is comparing nodes in its
collapsed trie against the Bloom filter representation of , i.e.,

checks the value of a node in by performing a lookup in
the Bloom filter provided by . This tests whether any node in

has that value.
Using Bloom filters to summarize the Merkle tree values, de-

picted in Fig. 3(d), has the following advantages.

• Fast search times associated with the search-based para-
digm are preserved.

• Complications associated with collapsed Patricia tries are
avoided, as no explicit bookkeeping data is transmitted.

• Hash collisions within the Merkle tree are virtually elim-
inated, since the size of hashes in the local tree does not
affect the message size.

The main disadvantage is that comparisons between nodes in
the tries now correspond to Bloom filter lookups, which are less
accurate than direct comparisons of Merkle tree values.

We now analyze this approach. First, because we are sending
a Bloom filter of the node values, we can use a large number of
bits for these values to avoid collisions (bits suf-
fices with high probability, and 64 bits covers most practical
situations). We will ignore these collisions henceforth in the
analysis. For to obtain a false positive for an element in

at depth in the ART for , there must be a false
positive for one of the node values on the path from the root to
the leaf representing in the Bloom filter. If the false-positive
rate of the Bloom filter sent by is , the probability that

identifies as a member of is . So

BYERS et al.: INFORMED CONTENT DELIVERY ACROSS ADAPTIVE OVERLAY NETWORKS 775

to achieve a constant expected accuracy, should be at most
for most elements. Since individual elements are at

depth in the tree of with high probability,
as mentioned earlier, the false-positive rate of the Bloom filter
from should be . This means that should use

bits per element in the Bloom filter. Addition-
ally, the number of hash functions must be to
minimize the false-positive rate. Using only a constant number
of hash functions requires the number of bits per element to be

. Our implementation also expects that a small
fixed number of hash functions will be universally chosen ahead
of time.

1) Improvements: ARTs as described so far combine some
of the better properties of Bloom filters and Merkle trees,
namely quicker searches for small numbers of differences
without the complications of managing the tree structures.
Unfortunately, they inherit a common weakness in tree-based
search strategies—incorrect pruning from false positives can
potentially result in large numbers of differences being over-
looked. For example, if there is a false positive when checking
the root of an ART, no differences will be found, and the
sets will be reported to be identical. Addressing this problem
requires increasing the number of bits per element and the run-
ning times by nonconstant factors. In this section, we discuss
a series of improvements over basic ARTs to remedy these
problems.

a) More Hashing: Our basic search method operates on
the Patricia trie , and hence, the running time is proportional
to the depth of . However, the worst-case depth of the Pa-
tricia trie may still be . To avoid this issue with high
probability, we hash each element initially before inserting it
into the virtual tree. The range of the hash function should be at
least to avoid collisions. For the analysis, we make
the assumption that our hash functions are truly random. Hence,
we obtain a random Patricia trie, properties of which have been
studied in the random-search tree literature, in particular [13],
[15], and [27]. Specifically, the average depth of a leaf for a bi-
nary Patricia trie with random leaf values over the interval
is , and the variance of the depth of a leaf is con-
stant. Moreover, the maximum depth is
with high probability. Hence, the distribution of the leaf depths
is very closely concentrated around .

b) Increased Branching Factor: The next improvement
is very simple: increase the maximum branching factor of
the trees. This reduces the number of internal nodes, thereby
improving the false-positive probability by allowing more bits
per node. It also decreases the height of the tree, reducing the
number of Bloom filter tests by a constant factor. The cost
is a potential increase in running time, since in searches for
elements of , all children of an internal node must
be checked when a match does not occur. This improvement
does not change the asymptotic results, only constant factors.
However, larger branching factors are an important part of a
real implementation. Branching factors that are a power of two,
say , are especially desirable, since then all trie operations
can be performed on a fixed stride length of bits.

c) Correction Levels: Our next improvement is based on
the inherent redundancy in the Merkle tree structure. In the event

that a match between internal nodes of the tree (identical sub-
sets) is caused by a false positive, it is often the case that its
children do not match, thereby revealing the discrepancy with
certainty. Therefore, we can double check a match at an internal
Merkle tree node, by verifying that its children match as well.
The one-sided error of Bloom filters ensures that this method
applies even when a filtered representation of the Merkle tree is
used. As we demonstrate experimentally, this can significantly
improve the accuracy at the expense of running time.

More generally, we change the search procedure so that it
stops searching a path for differences only when there is a match
at a node and at its immediate ancestors, where is a new
parameter we call the correction level. For , this is exactly
the same as the basic reconciliation procedure. For , the
traversal is pruned after two consecutive matches, for , the
traversal is pruned after three consecutive matches, and so on.
If the branching factor is , this slows down ’s traversal by a
factor of at most .

d) Improved Bit Allocation: One implicit assumption in
the basic ART construction is that all nodes have equal worth,
since we use the same number of bits per node. But as noted
earlier, false positives near the root of tree can lead to many or
all of the differences being missed, an effect only partially miti-
gated by use of correction levels. Merely adding a few more bits
to the root (and its close descendants) can significantly alleviate
this.

At the opposite end of the tree, false positives at the leaves
are impossible to correct. Therefore, the accuracy of ARTs is at
best as accurate as the Bloom filter tests at the leaves, regard-
less of what is done for internal nodes. This further implies that
the accuracy of an ART is no better than that of a Bloom filter
of the same size. It also suggests that schemes that can reduce
the number of bits used to represent an internal node without
compromising the accuracy would be desirable. In fact, one can
prove that a reasonable approach is to use a separate Bloom filter
for each level of the tree, whereby bits are used to repre-
sent each node at height in the tree.

e) Leveraging Random Tree Structure: A problem we
have noted previously is that if we do not use a Bloom filter to
represent nodes, then there may be difficulties in determining
correspondences between the peers’ ARTs. On the other hand,
using a Bloom filter increases the probability of an individual
false positive. If possible, it would be desirable to have both the
higher accuracy of a Merkle tree without the complications of
reconstructing the tree structure.

To enable such a hybrid, we make use of the observa-
tion that given a random Patricia trie with nodes, the first

levels are complete with high probability.
Since these top levels are complete, the values for these levels
may simply be enumerated in some fixed order. Given this
setup, can access nodes in the first
levels directly, yielding a lower false-positive rate than if Bloom
filters were used; then switches to testing nodes in the lower
levels of the tree with a Bloom filter. Even better, since there
are only of these special values at the top
of the tree, we can adopt the idea of varying numbers of bits
per elements by using large hashes of bits without
significantly affecting the number of bits available for the

776 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

leaves and other lower levels. Specifically, this hybrid approach
uses only bits, but manages to avoid false
positives in the upper levels with high probability.

2) Analysis: Using the various improvements of Sec-
tion VI-C.1 and incorporating the pieces of analysis for those
improvements, we can now prove the following theorem.

Theorem 1: There exists a one-round protocol with mes-
sage size , construction time for ,
construction time for , reconciliation time

with high probability, and constant accuracy.
Proof: constructs an ART with the following compo-

nents. First, values for the top complete
levels are explicitly sent using bits per value. Values
for the remaining internal nodes are sent in a Bloom filter using

bits and a constant number of hash functions; similarly,
the leaf nodes are sent in a separate Bloom filter using
bits and a constant number of hash functions. Without loss of
generality, we may assume that ; otherwise, the
leaf Bloom filter itself can be used to satisfy the theorem.

In the top levels of the tree with explicit hash values, the prob-
ability of a hash collision is .
Using a union bound, the probability that a hash collision ap-
pears anywhere along a path through the top levels occurs with
probability only . Searching through
these levels takes time.

For the remaining levels, uses a correction level of
. This is only suffi-

cient to guarantee a constant probability of a false positive along
a path through the first levels of the
tree, but this depth encompasses a constant fraction of the leaf
nodes, ensuring a constant accuracy. The cost of this correction
level is a slowdown of
for any fixed branching factor . Thus, searching the remaining
levels takes time.
Combining the bounds proves the theorem.

VII. EXPERIMENTAL RESULTS

We first investigate the effectiveness of collaboration using
our methods. Then in Section VII-B, we compare the perfor-
mance and accuracy of approximate reconciliation methods.

A. Collaborative Experiments

Our collaborative experiments demonstrate the benefits and
costs of using reconciliation in peer-to-peer transfers and in
parallel downloads. The simple scenarios we present are de-
signed to be illustrative and highlight the primary benefits of
our methods; the performance improvements we demonstrate
can be extrapolated onto more complex scenarios.

1) Simulation Parameters: All of our collaborative experi-
ments consider transfers of a 128-MB file. We assume that the
origin server divides this file into input symbols of 1400 bytes
each, to fit in an Ethernet packet with headers, and subsequently
encodes this file into a large set of encoding symbols. We asso-
ciate each encoding symbol with a 64-bit identifier representing
the set of input symbols used to produce it. The irregular de-
gree distribution used in the codes was generated using heuris-
tics based on the discussion in Section V and described in [12].

This degree distribution had an average degree of 11 for the en-
coding symbols and average decoding overhead of 2.3%. The
experiments used the simplifying assumption of a constant de-
coding overhead %. For recoding, we precomputed
degree distributions in the same fashion with all input parame-
ters rounded to increments of 0.05 and a maximum degree of 50.
Min-wise sketches used 180 permutations, yielding 180 entries
of 64 bits each for a total of 1440 bytes per summary. Bloom
filters used six hash functions and bits for a total of
96 kB per filter. Separate results for ARTs are omitted in this
section, since their overhead is visually indistinguishable from
Bloom filters. Bloom filters and ARTs differ primarily in terms
of accuracy and speed, the focus of Section VII-B.

2) Collaboration Methods: We compare three methods of
orchestrating collaboration in our experiments, described both
in increasing order of complexity and performance. While our
methods may be combined in other ways, these scenarios exhibit
the basic tradeoffs.

a) Uninformed Collaboration: The sending peer picks a
symbol to send at random. This is the strategy used by Swarm-
cast [31].

b) Speculative Collaboration: The sending peer uses a
min-wise sketch from the receiving peer to estimate the con-
tainment, and heuristically tune the degree distribution of re-
coded symbols which it encodes and sends. The containment
estimated from the min-wise sketch and the number of symbols
requested are used to pick a pregenerated distribution, tuned as
described earlier. Fractions used in picking pregenerated distri-
butions were rounded down to multiples of 0.05, except when
the desired fraction would be zero.

c) Reconciled Collaboration: The sending peer uses ei-
ther a Bloom filter or an ART from the receiving peer to filter
out duplicate symbols and sends a random permutation of the
differences. Random permutations of the transmitted encoding
symbols are used to minimize the likelihood that two distinct
sending peers send identical sequences of encoding symbols to
the receiving peer.

3) Scenarios and Evaluation: We begin by varying three ex-
perimental factors: the set of connections in the overlay formed
between sources and peers, the distribution of content among
collaborating peers, and the slack of the scenario, defined as fol-
lows.

Definition 2 (Slack): The slack associated with a set of
peers is , where is the working set of
peer and is the total number of input symbols.

By this definition, in a scenario of slack , there are distinct
encoding symbols in the working sets of peers in . Clearly,
when the slack is less than , the set of peers will be
unable to recover the file, even if they use an exact reconcilia-
tion algorithm, since the decoding overhead alone is . When
the slack is larger than , and if peers are using a recon-
ciliation algorithm with accuracy , then they can expect to be
able to retrieve the file if . Our methods provide
the most significant benefits over naive methods when there is
only a small amount of slack; as noted earlier, approximate rec-
onciliation is not especially difficult when the slack is large. We
use slack values of 1.1 and 1.3 for comparison between compact
scenarios with little available redundancy and looser scenarios.

BYERS et al.: INFORMED CONTENT DELIVERY ACROSS ADAPTIVE OVERLAY NETWORKS 777

Fig. 4. Overhead of peer-to-peer reconciliation.

For simplicity, we assume that each connection has the same
amount of available bandwidth; our methods apply irrespective
of this assumption. The receiving peer for whom we measure
the overhead always starts with encoding symbols from
the server. The encoding symbols known to the sending peers
are determined by the slack of the scenario and the containment
defined in Section IV.

For each technique, we measure its average overhead on a set
of trials, where an average overhead of means that
symbols need to be received on average to recover a file of

input symbols. In case of a server sending encoded content
without aid from peers with partial content, the overhead is
merely the decoding overhead, i.e., . In other scenarios,
there may be additional reception overhead arising from re-
ceiving duplicate encoded symbols or recoding overhead from
receiving useless recoded symbols. The axis of each plot is
the range of containment of the sending peers by the receiving
peer. Each data point is the average of 50 simulations.

4) Peer-to-Peer Reconciliation: The simplest scenario,
depicted in Fig. 4, consists of two peers with partial content
in which one peer sends symbols to the other. This scenario
demonstrates the feasibility of our approach, even in the worst
case, when servers with the original file are no longer available,
and reconciliation is barely possible.

For receiving peer , sending peer , with a file consisting
of input symbols and slack .
By the definition of containment, , so

. These two equations, therefore,
uniquely determine , and as functions of
the slack and the containment. Also, we need to constrain the
scenarios to cases where neither nor can recover the file
initially. This gives an upper bound on feasible values of for a
given slack , and explains the variation in values on the axes
of our plots.

Fig. 4 shows the results of our experiments for this scenario.
In each experiment, uninformed collaboration performs poorly
and degrades significantly as the containment increases. The in-
tuition is that the rate of useless symbols transmitted increases as
the number of symbols shared between peers increases. Shared
symbols increase as containment increases (and as each transfer
progresses). This can be analyzed exactly as a variant of the
well-known Coupon Collector’s problem.

Speculative collaboration is more efficient, but the overhead
still increases slowly with containment. In contrast, the over-
head of reconciled collaboration is virtually indistinguishable
from the overhead of encoding alone and does not increase with

Fig. 5. Overhead of peer-augmented downloads.

Fig. 6. Overhead of collaborating with multiple peers in parallel.

containment. The extra overhead of reconciliation is purely from
the cost of transmitting a Bloom filter or ART, or less than a per-
cent when sending eight bits for every symbol (1400 bytes).

5) Peer-Augmented Downloads: Our next scenario con-
siders a download from a server with complete content,
supplemented by a concurrent transfer from a peer, as illus-
trated in Fig. 5. The overhead of uninformed collaboration is
considerably lower than in the scenarios of Fig. 4, primarily
because a larger fraction of the content is sent directly via
fresh symbols from the server. Using our methods, speculative
collaboration performs similarly to uninformed collaboration
in this scenario, as the recoding methods used are not highly
optimized. In all cases, reconciled collaboration has overhead
slightly higher than receiving symbols directly from the server,
but the transfer time is substantially reduced, due to concurrent
downloads.

For this scenario, it is natural to consider the speedup that is
obtained by augmenting the download with an additional con-
nection, i.e., the ratio between the transfer rate of the augmented
method and the transfer rate using a single sender (incurring no
decoding overhead). Augmenting a download with a connection
of equal available bandwidth with a reconciled transfer having
0.025 overhead achieves a speedup of 1.95, while augmenting
a download with an uninformed transfer having 0.20 overhead
achieves a more modest speedup of 1.67.

6) Collaborating With Multiple Peers in Parallel: Finally,
we consider a parallel download scenario similar to those of [8].
Here, a peer is collaborating concurrently with four peers, all
with partial content, as pictured in Fig. 6. This scenario demon-
strates that given appropriate reconciliation algorithms, one can
leverage bandwidth from peers with partial content with only a
slight increase in overhead.

When encoding symbols are allocated across multiple peers,
slack and containment no longer uniquely determine the initial
distribution of symbols. We allocate the symbols as follows. As

778 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

Fig. 7. Reconciliation performance. jS j = jS j = 10000, eight bits per element. (a) Accuracy of basic approach. Branching factor 2, 100 differences.
(b) Accuracy of hybrid approach. Branching factor 4, 100 differences. (c) Speed of various approaches with varying numbers of differences.

before, the receiver is initially allocated symbols. Each of
these symbols is also given to each sending peer indepen-
dently with probability . The remaining symbols are given to a
sending peer with probability such that

. Any of these later symbols which
is not given to any peer is discarded and replaced. Each peer thus
has symbols (expected) at the beginning of the experiment.

The results of this scenario are shown in Fig. 6(a). As one
would expect, uninformed collaboration performs extremely
poorly. For low values of containment, speculative collabo-
ration performs the same as uninformed collaboration, but
dramatically improves as containment increases. In contrast
to previous experiments, reconciled collaboration has much
higher overhead than before. This arises from correlation across
multiple peers. Sending peers and may identify shared
symbol as being in and , respectively,
and then both send to receiving peer . When a symbol is
received multiple times, it directly contributes to the overhead.
For similar reasons, the performance of speculative collabora-
tion is also degraded, as the recoding algorithm is optimized
only for transfers between pairs of peers. For lack of space,
we omit results for higher slack values, but note that these
scenarios are inherently easier, given their greater similarities
to those of [8].

Given the poor performance of reconciled collaboration
when there is sharing between sending peers, we consider
the effects of periodically updating summaries. The previous
experiments performed coarse-grained reconciliation only
once initially. Fig. 6(b) shows the results of this experiment
when peers periodically exchange summaries, after receiving
each new set of symbols. Here, speculative collaboration
updates the min-wise summary and reconciled collaboration
updates the Bloom filters, and both show dramatic improve-
ments.

B. Reconciliation Experiments

Next, we compare Bloom filters to ARTs. Our experiments
focus on settings where the speed of reconciliation is the pri-
mary concern, and the achievable accuracy is of secondary im-
portance. Most of these experiments deal with sets of 10 000
random 32-bit elements. In one set of experiments, the number
of differences is fixed at 100; in another, the number of differ-
ences varies over several orders of magnitude. The total mes-
sage size is eight bits per element, while the hashes used in-

ternally use 64 bits of resolution. In all experiments, each data
point shown is the average of 1000 sample runs.

1) Accuracy Experiments: We begin with accuracy exper-
iments, in order to find good parameter settings and investi-
gate basic tradeoffs. Fig. 7(a) shows the results of using a basic
implementation in which a binary trie is used, along with two
Bloom filters, one for the internal nodes and one for the leaves.
Fig. 7(b) demonstrates the results of increasing the branching
factor combined with the hybrid approach where the complete
levels of the Merkle tree are sent explicitly. Both experiments
have the same setup. On the axis, we vary the number of
bits allocated to the leaf Bloom filters (the remaining bits of
the 80 000 available are devoted to internal nodes). On the
axis, we plot the accuracy obtained by the particular setting se-
lected. The uppermost curve in each plot is the accuracy that
can be obtained using brute-force searching through the leaf
Bloom filters, i.e., foregoing the speed advantage of using the
tree structure, but minimizing the incidence of false positives.
The remaining curves illustrate the accuracy that can be ob-
tained by various correction levels. In all cases, increasing the
correction level used by brings the accuracy closer to that of
the leaf Bloom filter. At the same time, as the correction level in-
creases, the optimal distribution of bits allocates more bits to the
leaves as correction reduces the internal false-positive rate. For
the basic binary implementation, note that using no correction
delivers rather poor accuracy, but boosting the correction level
moderately delivers accuracy comparable to that of Bloom fil-
ters alone. The full implementation achieves a dramatic increase
in accuracy for all settings. One observation we make here is that
the optimal allocation of bits between the internal node and leaf
Bloom filters is shifted in favor of the leaf Bloom filter. This is
because each of the other optimizations works to reduce the in-
ternal false-positive rate.

2) Speed Experiments: We now turn to the question of
speed, running experiments on a 1-GHz Pentium 3 with
256 MB of RAM. Based on our earlier results, all of the ARTs
use the hybrid approach with a branching factor of four and two
Bloom filters, one for leaf nodes and one for internal nodes.
For each case, we consider correction levels of zero and two,
and choose the distribution of bits across the two Bloom filters
to maximize accuracy. In all cases, we compare performance
against vanilla Bloom filters. As depicted in Fig. 7(c), we vary
the number of differences over several orders of magnitude
and compare reconciliation times, which also vary over several

BYERS et al.: INFORMED CONTENT DELIVERY ACROSS ADAPTIVE OVERLAY NETWORKS 779

orders of magnitude. To depict such wide variability, the plot is
presented on log-log scale. For small numbers of differences,
vanilla Bloom filters take significantly longer to reconcile. The
reconciliation time taken by Bloom filters is roughly constant
as the number of differences varies, but drops slightly as the
number of differences increases. (This is because in using the
Bloom filter, positive queries require evaluating all of the hash
functions, whereas negative queries may terminate once any
hash function reveals the element is not in the set.) The recon-
ciliation time for ARTs grows roughly linearly with the number
of differences and is initially very small. As with Bloom filters,
there is also a drop in the time to reconcile when nearly all the
elements are different.

When using a correction level of two, ARTs are faster if the
number of differences is fewer than 2% of . Without cor-
rection, they are faster if the number of differences is fewer than
30% of , but at the cost of significantly decreased accuracy.

VIII. OUR WORK IN CONTEXT

Since a preliminary version of this paper appeared in confer-
ence form [7], there has been considerable work complementary
to or directly relating to our findings. In particular, Bullet [17]
implements many of our ideas, and adds explicit mechanisms
for promoting diversity among working sets. Their work in-
cludes a full implementation and extensive experiments over the
Internet and in simulation, reinforcing our findings and showing
up to a factor of two improvement in throughput from using in-
formed content delivery in a variety of situations.

LT codes [18] and online codes [21] improve upon the best
published erasure codes, with the latter having the stated intent
of improving collaboration methods such as ours. Unlike other
methods, these codes produce encodings whose overhead is in-
dependent of the size of the source file. The work in [21] also
provides ideas for reconciliation that include sequential labeling
of the packets in encoding streams and exchanging sequence
number ranges to reconcile. As we have argued earlier, the com-
plexity of reconciliation using subranges of received packets
grows with transience of network conditions and topology, and
can perform as poorly as an enumeration-based approach in the
worst case. Also, this proposal relies on in-order packet delivery
via reliable connections, while ours does not.

SplitStream [10] leverages a distributed hash table topology
to maintain multiple end-system multicast trees, rooted at the
origin server. Each tree receives a distinct stream of encoded
content. Additionally, the trees have the property that each peer
is an internal node in exactly one end-system multicast tree.
This system is an ideal environment for our techniques, as the
overlay is richly connected, content among peers is diversified,
and multiple paths are used to route content to each peer.

The PRM [2] end-system multicast protocol has a motivation
similar to our work. It focuses on handling packet loss and pro-
viding high delivery rates for each packet in a session. The au-
thors of this work augment an end-system multicast tree with a
small number of random edges between nodes. In their architec-
ture, a duplicate of each received packet is also forwarded along
a random edge. Their scheme also performs localized reconcil-
iation over a small sliding window of content.

A. Other Suitable Applications

Reliable delivery of large files using erasure-resilient encod-
ings is only one representative example of content-delivery sce-
narios that can benefit from the approaches proposed in this
paper. More generally, any content-delivery application which
satisfies the following conditions may stand to benefit.

• The architecture employs a rich overlay topology poten-
tially involving multiple connections per peer.

• Peers may only have a portion of the content, with poten-
tially complex correlations among their working sets.

• Working sets of peers are drawn from a large universe of
possible symbols.

An example application which satisfies these criteria is
video-on-demand, which also involves reliable delivery of a
large file, but with additional complications due to timeliness
constraints, buffering issues, etc. Our methods can naturally be
used in conjunction with existing approaches for video-on-de-
mand, such as [20], to move from a pure client-server model
to an overlay-based model. While the methods of [20] also
advocate the use of erasure-resilient codes, informed content
delivery for video-on-demand can apply whether or not codes
are used. A similar approach can be used for near-real-time
delivery of live streams. For this application, where reliability is
not necessarily essential, collaboration may improve best-effort
performance.

Finally, our approach may be used for peer-to-peer applica-
tions running a shared virtual environment, such as distributed
interactive simulation or networked multiplayer games. Here,
peers may only be interested in reconstructing a small region of
what can be a very large-scale environment.

IX. CONCLUSION

Overlay networks offer a powerful alternative to traditional
mechanisms for content delivery, especially in terms of flex-
ibility, scalability, and deployability. In order to derive the
full benefits of the approach, some care is needed to provide
methods for representing and transmitting the content in a
manner that is as flexible and scalable as the underlying capa-
bilities of the delivery model. We argue that straightforward
approaches at first appear effective, but ultimately suffer from
similar scaling and coordination problems that have under-
mined other multipoint service models for content delivery.

In contrast, we argue that a digital fountain approach to
encoding the content affords a great deal of flexibility to end
systems performing large transfers. The main drawback of
the approach is that the large space of possible symbols in
the system means that coordination across end systems is also
needed here, in this case, to filter useful content from redundant
content. Our main contributions furnish efficient, concise rep-
resentations which sketch the relevant state at an end system in
a handful of packets, and then provide appropriate algorithmic
tools to perform well under any circumstances. With these
methods in hand, informed and effective collaboration between
end systems can be achieved, with all of the benefits of using
an encoded-content representation.

780 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

REFERENCES

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proc. ACM SOSP, Banff, AB, Canada, Oct. 2001,
pp. 131–145.

[2] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient mul-
ticast using overlays,” in Proc. ACM Sigmetrics, June 2003, pp. 102–113.

[3] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, pp. 422–426, July 1970.

[4] A. Broder, “On the resemblance and containment of documents,” in
Proc. Compression, Complexity of Sequences, Positano, Italy, June 1997,
pp. 21–29.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” J. Comput. Syst. Sci., vol. 60, no. 3, pp.
630–659, 2000.

[6] J. W. Byers, J. Considine, and M. Mitzenmacher, “Fast approximate rec-
onciliation of set differences,” Boston Univ., Boston, MA, Tech. Rep.
BUCS-TR-2002-019, July 2002.

[7] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
content delivery across adaptive overlay networks,” in Proc. ACM SIG-
COMM, Pittsburgh, PA, Aug. 2002, pp. 47–60.

[8] J. W. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror
sites in parallel: Using Tornado codes to speed up downloads,” in Proc.
IEEE INFOCOM, Mar. 1999, pp. 275–83.

[9] , “A digital fountain approach to asynchronous reliable multicast,”
IEEE J. Select. Areas Commun., vol. 20, pp. 1528–1540, Oct. 2002.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-bandwidth multicast in a cooperative
environment,” in Proc. ACM SOSP, Lake Bolton, NY, Oct. 2003, pp.
298–313.

[11] Y.-H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE J. Select. Areas Commun., vol. 20, pp. 1456–1471, Oct.
2002.

[12] J. Considine, “Generating good degree distributions for sparse
parity-check codes using Oracles,” Boston Univ., Boston, MA, Tech.
Rep. BUCS-TR 2001-019, Oct. 2001.

[13] L. Devroye, “A note on the probabilistic analysis of Patricia tries,”
Random Structures and Algorithms, vol. 3, pp. 203–214, 1992.

[14] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole, “Over-
cast: Reliable multicasting with an overlay network,” in Proc. USENIX
Symp. Operating Systems Design, Implementation, San Diego, CA, Oct.
2000, pp. 197–212.

[15] C. Knessl and W. Szpankowski, “Limit laws for heights in generalized
tries and Patricia tries,” in Proc. LATIN, 2000, pp. 298–307.

[16] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching. Reading, MA: Addison-Wesley, 1973.

[17] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High-band-
width data dissemination using an overlay mesh,” in Proc. ACM SOSP,
2003, pp. 282–297.

[18] M. Luby, “LT Codes,” in Proc. 43rd Symp. Foundations of Computer
Science, Vancouver, BC, Canada, Nov. 2002, pp. 271–282.

[19] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Effi-
cient erasure correcting codes,” IEEE Trans. Inform. Theory, vol. 47,
pp. 569–584, Feb. 2001.

[20] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel, “Scal-
able on-demand media streaming with packet loss recovery,” IEEE/ACM
Trans. Networking, vol. 11, pp. 195–209, Feb. 2003.

[21] P. Maymounkov and D. Mazieres, “Rateless codes and big downloads,”
in Proc. 2nd Int. Workshop Peer-to-Peer Systems, Feb. 2003, pp.
247–255.

[22] R. Merkle, “A digital signature based on a conventional encryption func-
tion,” in Proc. CRYPTO, Santa Barbara, CA, Aug. 1987, pp. 369–378.

[23] Y. Minsky and A. Trachtenberg, “Efficient reconciliation of unordered
databases,” Cornell Univ., Ithaca, NY, Tech. Rep. TR1999-1778, 1999.

[24] , “Scalable set reconciliation,” in Proc. 40th Annu. Allerton Conf.
Communication, Control, Computing, Oct. 2002, pp. 1607–1616.

[25] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Trans. Inform.
Theory, vol. 49, pp. 2213–2218, Sept. 2003.

[26] M. Mitzenmacher, “Compressed Bloom filters,” in IEEE/ACM Trans.
Networking, vol. 10, Oct. 2002, pp. 604–612.

[27] B. Pittel and H. Rubin, “How many random questions are necessary to
identify n distinct objects?,” J. Combinatorial Theory, ser. A 55, pp.
292–312, 1990.

[28] M. Rabin, “Efficient dispersal of information for security, load balancing
and fault tolerance,” J. ACM, vol. 38, pp. 335–348, 1989.

[29] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to repli-
cated content in the Internet,” IEEE/ACM Trans. Networking, vol. 10,
pp. 455–465, Aug. 2002.

[30] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The
end-to-end effects of Internet path selection,” in Proc. ACM SIGCOMM,
Aug. 1999, pp. 289–299.

[31] Swarmcast. [Online] http://www.opencola.org/projects/ swarmcast
[32] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.

Software, vol. 11, pp. 37–57, 1985.

John W. Byers received the Ph.D. degree in com-
puter science from the University of California at
Berkeley in 1997.

He currently is an Assistant Professor of Computer
Science at Boston University (BU), Boston, MA,
and Affiliated Scientist at Digital Fountain, Inc. Prior
to joining BU, he was a Postdoctoral Researcher
at the International Computer Science Institute,
Berkeley, CA, in 1998. His research interests include
algorithmic aspects of networking, Internet content
delivery, and network measurement. He serves on the

program committees for numerous conferences, including ACM SIGCOMM,
ACM SIGMETRICS, and IEEE INFOCOM.

Dr. Byers received a National Science Foundation CAREER Award in
2001. He is currently on the editorial board of IEEE/ACM TRANSACTIONS ON

NETWORKING, and has been a member of the ACM since 1999.

Jeffrey Considine received the B.A. and M.A.
degrees in computer science in 1999 from Boston
University, Boston, MA, where he is currently
working toward the Ph.D. degree in computer
science and performs research on randomized data
structures and overlay networking.

Michael Mitzenmacher (M’01) received the Ph.D.
degree from the University of California at Berkeley
in 1996.

He was a Research Scientist with the Digital
Systems Research Center, Palo Alto, CA, from 1996
to 1998. In 1999, he joined Harvard University,
Cambridge, MA, where he has been an Associate
Professor since 2002. He is the co-inventor on 12
issued patents and has written over 90 conference
and journal publications. His research interests in-
clude the design and analysis of algorithms, dynamic

processes, load balancing, Web algorithms, compression, error-correcting
codes, and computer-science education.

Dr. Mitzenmacher has received the NSF CAREER award and an Alfred P.
Sloan Research Fellowship. In 2002, he shared in the IEEE Information Theory
Society Best Paper Award for his work in error-correcting codes.

Stanislav Rost received the B.A. and M.A. degrees
from the Computer Science Department of Boston
University, Boston, MA, in 2001. He is currently
working toward the Ph.D. degree in computer sci-
ence at the Massachusetts Institute of Technology,
Cambridge, where he does research on routing,
content delivery, and distributed computing in
power-constrained wireless networks.

	toc
	Informed Content Delivery Across Adaptive Overlay Networks
	John W. Byers, Jeffrey Considine, Michael Mitzenmacher, Member,
	I. I NTRODUCTION

	Fig.€1. Possibilities for content delivery . Shaded content with
	II. C ONTENT D ELIVERY A CROSS O VERLAY N ETWORKS
	A. Challenges and Opportunities
	B. Limitations of Stateful Solutions
	C. Benefits of Encoded Content

	III. R ECONCILIATION AND I NFORMED D ELIVERY
	IV. C OARSE -G RAINED R ECONCILIATION
	Definition 1 (Containment and Resemblance): The containment of $

	Fig.€2. Example of min-wise summarization and estimation of rese
	V. S PECULATIVE R ECONCILIATION
	A. Sparse Parity-Check Codes
	B. Recoding Methods

	VI. F INE -G RAINED R ECONCILIATION

	TABLE I C OMPARISON OF V ARIOUS F INE -G RAINED R ECONCILIATION
	A. Enumeration-Based Approaches
	B. Search-Based Approaches

	Fig.€3. Components of the approximate reconciliation tree (ART)
	C. Approximate Reconciliation Trees
	1) Improvements: ARTs as described so far combine some of the be
	a) More Hashing: Our basic search method operates on the Patrici
	b) Increased Branching Factor: The next improvement is very simp
	c) Correction Levels: Our next improvement is based on the inher
	d) Improved Bit Allocation: One implicit assumption in the basic
	e) Leveraging Random Tree Structure: A problem we have noted pre

	2) Analysis: Using the various improvements of Section€VI-C.1 an
	Theorem 1: There exists a one-round protocol with message size $
	Proof: A constructs an ART with the following components. Firs

	VII. E XPERIMENTAL R ESULTS
	A. Collaborative Experiments
	1) Simulation Parameters: All of our collaborative experiments c
	2) Collaboration Methods: We compare three methods of orchestrat
	a) Uninformed Collaboration: The sending peer picks a symbol to
	b) Speculative Collaboration: The sending peer uses a min-wise s
	c) Reconciled Collaboration: The sending peer uses either a Bloo

	3) Scenarios and Evaluation: We begin by varying three experimen
	Definition 2 (Slack): The slack s associated with a set of pee

	Fig.€4. Overhead of peer-to-peer reconciliation.
	4) Peer-to-Peer Reconciliation: The simplest scenario, depicted

	Fig.€5. Overhead of peer-augmented downloads.
	Fig.€6. Overhead of collaborating with multiple peers in paralle
	5) Peer-Augmented Downloads: Our next scenario considers a downl
	6) Collaborating With Multiple Peers in Parallel: Finally, we co

	Fig.€7. Reconciliation performance. $\vert S_A\vert =\vert S_B\v
	B. Reconciliation Experiments
	1) Accuracy Experiments: We begin with accuracy experiments, in
	2) Speed Experiments: We now turn to the question of speed, runn

	VIII. O UR W ORK IN C ONTEXT
	A. Other Suitable Applications

	IX. C ONCLUSION
	D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resili
	S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, Resili
	B. Bloom, Space/time trade-offs in hash coding with allowable er
	A. Broder, On the resemblance and containment of documents, in P
	A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, Mi
	J. W. Byers, J. Considine, and M. Mitzenmacher, Fast approximate
	J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, Informe
	J. W. Byers, M. Luby, and M. Mitzenmacher, Accessing multiple mi
	M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
	Y.-H. Chu, S. Rao, S. Seshan, and H. Zhang, A case for end syste
	J. Considine, Generating good degree distributions for sparse pa
	L. Devroye, A note on the probabilistic analysis of Patricia tri
	J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O'Toole
	C. Knessl and W. Szpankowski, Limit laws for heights in generali
	D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting
	D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, Bullet: Hig
	M. Luby, LT Codes, in Proc. 43rd Symp. Foundations of Computer S
	M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, Effic
	A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel, S
	P. Maymounkov and D. Mazieres, Rateless codes and big downloads,
	R. Merkle, A digital signature based on a conventional encryptio
	Y. Minsky and A. Trachtenberg, Efficient reconciliation of unord
	Y. Minsky, A. Trachtenberg, and R. Zippel, Set reconciliation wi
	M. Mitzenmacher, Compressed Bloom filters, in IEEE/ACM Trans. Ne
	B. Pittel and H. Rubin, How many random questions are necessary
	M. Rabin, Efficient dispersal of information for security, load
	P. Rodriguez and E. W. Biersack, Dynamic parallel access to repl
	S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, Th

	Swarmcast . [Online] http://www.opencola.org/projects/ swarmcast
	J. S. Vitter, Random sampling with a reservoir, ACM Trans. Math.

