nernatdonal

RESEARCH ON INTERACTIVE
ACQUISITION AND USE
OF KNOWLEDGE

Final Report
Covering the Period July 3, 1980 to Nov. 30, 1983

November 1983

Principal Investigator:
Barbara J. Grosz, Program Director, Natural Language
Mark E. Stickel, Senior Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Commander Ronald B. Ohlander

SRI Project 1894

Preparation of this paper was supported by the Defense Advanced Research Pro-
jects Agency under Contract NO0O039-80-C-0575 with the Naval Electronic Sys-
tems Command

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advance Research Projects Agency or
the United States government

Approved:

Donald L. Nielson, Acting Director
Computer Science and Technology Division

4. The Formalism and Implementation of PATR-II

This section was written by Stuart Shieber, Hans Uszkorest, Fernando Pereira, Jane Robinson,

and Mabry Tyson.

4.1. The PATR-II Formalism

4.1.1 Motivation for the Formalism

The goal of natural-language processing is simple: to enable computers to participate
in dialogues with humans in their language in order to make the computers more useful to
their creators. The pursuit of this objective, however, has been a difficult task for at least two
reasons: first, the phenomenon of human language is not as well understood as is popularly
supposed; second, the tools for teaching computers what we do know about human language
are still quite primitive. The solution of these problems falls into the research domains of

linguistics and computer science, respectively.

Similar problems have previously arisen in the field of computer science. With the advent
of digital computers, the need for eflective ways of communicating with computers, other
than by means of patch panels, became quickly evident. The “black art” of programming-
language design has improved greatly over the years and much is now known about effective
communication with computers. In particular, the criteria for good programming languages are
their power, utility, and, in the case of research languages, simplicity and mathematical well-
foundedness. Note that only the first of these can be measured objectively; in fact, the power of
most current programming languages is equivalent to that of a Turing machine. However, the
basic fact is that more power is considered better. On the other hand, the other two criteria
are inherently subjective, which is why programming language design is an art rather than a

science. Utility, in fact, is usually a relative measure, relative to the purposes the language is

39

designed for. SNOBOL is a useful language for string manipulation, but awkward at best for,
say, matrix manipulation. This is because the primitives supplied by SNOBOL do not match

the common underlying operations of matrix handling.

Among the evaluation criteria for programming languages that have been assiduously
promoted in the recent past is the aforementioned criterion of simplicity. Other trends have
been in the direction of declarative languages, languages emphasizing structured programming
and modularity, and the like. The design of a grammar formalism embodies the same problems
as the design of a programming language simply because it aspires to the same goal, i.e.
cflective communication of information to a computer. Thus, the same criteria can be applied
the formalism should be as powerful as possible, should incorporate the types of primitives tha
natural-language grammar writers find they need, should be simple and mathematically well
founded. Trends from programming-language design, such as declarativeness and modularity

can also be applied to the problem of designing grammar formalisms for computers.

Theoretical linguists have been concerned with designing grammatical formalisms tha
provide the tools for expressing universal and language-specific generalizations in a concise an
transparent fashion. One of their main objectives in this task is to constrain the power ¢
their formalisms in concurrence with the cross-linguistic set of constraints upon syntactic an

semantic phenomena that are found in natural language.

A radical but widespread opinion regarding the choice of an appropriate formalism
that it should embody all nonaccidental regularities that are observed in all languages, i.c
those that belong to universal grammar. For instance, if all languages are thought to posse:
coordination, this fact should derive from the formalism. If, on the other hand, no languas
in the world has the word “famakupa,” which would be phonologically well-formed in mar
languages, we can then regard this observation as an accidental fact that will be represent:

in the set of particular grammars.

The PATR-II formalism as a tool for grammar writing does not attempt to encode most
the statements of universal grammar. It is based on the generally accepted view that sentenc

have structure, and it provides for structures that are more complex than phrase structu

40

trees. Not only do the regularities of specific languages have to be encoded by the user of the
formalism—either in the proposed rules or in stipulations with regard to usage constraints—
but so do most cross-linguistic generalizations, including constraints on generative power. The
cross-linguistic generalization and constraints can be reflected in a selected implementation or

usage notation. We shall discuss an example of such a notation later.

4.1.2 Design of the Formalism

We now describe the formalism that underlies the implementations of PATR-II. In some
sense, this is the “operational semantics” of a PATR-II grammar. Certain implementations may
make use of certain abbreviations or conventions, but the operation of such implementations
15 defined in terms of this simple underlying formalism. Thus, the formalism bears the same

relation to PATR-II implementations as, say, pure LISP does to MACLISP.

The basic operation in PATR-II is unification, an extended pattern-matching technique
that was first used in logic and theorem-proving research and has been arousing considerable
- interest of late in the linguistics community. Rather than unifying logic terms, however, PATR
unification operates on directed acyclic graphs (DAG).! DAGs can be atomic symbols or sets of
label/value pairs whose labels (also called attributes or features) are atomic symbols or other
DAGs (i.e., subDAGs). Since two labels can point 1o the same DAG, the term graph is used
rather than tree. DAGs are notated either by drawing the labeled graph structure itself or,
as in this paper, notating the sets of label/value pairs in square brackets ([]), with the labels

separated from their values by a colon (:), e.g.,

[cat: v
head: [aux: false
form: nonfinite
voice: active
trans: [pred: eat
argl: <f1134>
(1
arg2: <f£1138>

1Technically, these are rooted, unordered, directed, acyclic graphs with labeled arcs. See Appendix A for a
more formal definition of PATR-II grammars and accompanying notions.

41

(111
syncat: [first: [cat: np
bhead: [trans: <£1134>]]
rest: [first: [cat: np
head: [trans: <£1138>]]
rest: <f£1140>
lambda)
tail: <£1140>]]
Note that the re-entrant structure, where two arcs point to the same node, is notated by
labeling the DAG with an arbitrary label (in angle brackets (< >)) and then using that label

for future references to the DAG.

Associated with each lexical entry in the lexicon is a set of DAGs.2 The root of each DAG
will have an arc labeled cat whose value will be the category of the associated lexical entry.
Other arcs may encode information about the syntactic features, translation, or syntactic

subcategorization of the entry.

PATR-II grammars consist of rules with a context-free phrase structure portion and a
series of unifications on the DAGs associated with the constituents taking part in the use of the
rule. The grammar rules notate how constituents can be built up to form new constituents with
associated DAGs. The right side of the rule lists the cat values of the DAGs associated with the
child constituents; the left side, the cat of the parent. Other unifications specify equivalences
that must exist among the various DAGs and subDAGs of the parent and children. Thus, the
formalism uses only one representation (DAGs) for lexical, syntactic, and semantic information,

and just one operation (unification) on this representation.

By way of example, we present a small grammar for a fragment of English, accompanied
by a lexicon associating words with DAGs.
S — NP VP
<VP agr> = <NP agr>

VP — V NP
<VP agr> = <V agr>

o C . .
“We shall postpone until later any discussion as to how this association is encoded or implemented.

42

Uther:

<cat> = np
<agr number> = singular
<agr person> == third
Arthur:
<cat> = np
<agr number> = singular
<agr person> = third
knights:
<cat> = v
<agr number> = singular
<agr person> = third _

This grammar (plus lexicon) admits the two sentences “Uther knights Arthur” and “Arthur

knights Uther.” The phrase structure associated with the first of these is

[S [NP Uther] [VP [V knights] [NP Arthur]]]

The VP rule requires that the agr feature of the DAG associated with the VP be the
same as (unified with) the agr of the V. Thus the VP’s agr feature will have as its value the
same node as the V's agr and, hence, the same values for the person and number features.
Similarly, by the unification associated with the S rule, the NP will have the same agr value

as the VP and, consequently, the V. We have thus encoded a form of subject-verb agreement.

4.1.3 Power of the Formalism

PATR-II grammars, as just presented, are extremely powerful; in fact, they are equivalent
to Turing machines. We therefore present a straightforward constraint upon their power that
guarantees decidability, a constraint Pereira [98] calls off-line parsabslity. Ofi-line parsability
requires that there be no nonproductive recursive chains of rules in the grammar, i.e., chains
that can consume no input. Recursive chains of unary rules, or chains of rules in which all
but one nonterminal in each rule can derive the empty string, are thus eliminated. In the case

of context-free grammars, removing such rules does not change the power of the formalism.

43

PATR-1I grammars, however, are restricted by this constraint—the specific effect of which is

to render the parsing problem decidable.

Nonetheless, the power of PATR-1I grammars remains great. Appendix B presents gram-
mars for the non-context-free triple-counting language a"b"c™ and the non-indexed language
2" . It remains an open question whether there are interesting further constraints on PATR-II
and other unification-based formalisms that reduce the parsing problem significantly without

unduly constricting generative capacity. We should keep in mind that evaluation of such con-

straints requires aesthetic judgments, not scientific ones.

4.1.4 Future Research to Improve the Formalism

The formalism is broad and powerful enough to handle most—indeed, probably all—
phenomena in the syntax and semantics of natural language. It has also turned out to be well
suited for the classes of phenomena considered so far. Most of the research will have to be done
in the area of choosing appropriate strategies for application of the formalism. However, there
is a class of phenomena that might justify some extension or modification of the formalism:

the phenomena of free or variable word order.

Although the formalism is powerful enough to deal with word order variability, there is
a strong feeling on our side that it should be possible to express free variation more directly.
We plan to work out the necessary modifications in the near future and, to this end, we hope
to be able to use results of a proposed paralle] research project for studying such word order

variation.

One direction in which the formalism might be extended to allow for word order
variability is the relaxation of constraints on possible feature values. Let us assume that these
values can be nonatomic, i.e., that they can be sets or sequences. Let us furthermore regard
the permutations of verb complements as an example of order variation. By allowing structure
in the feature system, we can encode much more information about possible VP structures.
One example follows, but the possibilities are endless (literally so, since, by doing this, we move

from the realm of context-free languages to the realm of Turing computability). Suppose the

44

range R of the Syncat [see Section 4.3.4.1.] feature included atomic symbols and all sets and
sequences of elements of R. Also suppose that we define an operation & acting on compound

elements of R such that

< a)lgli"';ﬂﬂ > e'Y=< ae’fvﬂl)"‘!ﬂﬂ >
{a’ﬂlr--'lﬂﬂ}e’7=< 01@'7,{191;”-;31:} >

Now we can write a grammar as follows:

VP—-VPCOMP

Syncat(V Py) = Syncal(VP2) © Form(COMP)
VP -V

Syncat(VP) = Syncat(V)

This structuring allows us a way of expressing free word order in the subcategorizations. Thus,
if a verb subcategorizes for {< a8 > ~}, it allows argument structures of af~y and vaf but
not fa~y or ayB. Using similar techniques, ID/LP could be encoded in a & operator working
on complex structures. In fact, this is basically how the ID/LP direct parsing algorithm of

Shieber [117] works.

4.2. Some Uses of the Formalism: The Current PATR-II Grammar Design

In this section we present some ideas concerning different uses of the formalism and
describe our own current usage. Although most of the techniques presented here represent
our current use of the basic formalism, they should not be identified with the formalism itself,

which allows for quite different strategies of grammar writing.

It should be mentioned that many syntactic constructs not discussed in this introduction
to the formalism are currently handled by existing grammars for our implemented system.
Among these are S complements, active, passive, “there” insertion, extraposition, raising and
equi constructions, etc. (See Appendix D for a more complete PATR-II grammar, Appendix E

for a transcript of the parsing system using the grammar.)

Before we start explaining our use of the formalism let us emphasize once more the con-

siderable freedom it allows for writing a grammar. The only label with any special significance

45

in the formalism is the arc label cat. This is a consequence of the decision to use traditional
context-free phrase structure rules to create part of the syntactic and semantic structure.
Everyvthing else, including the appropriate category symbols, has to be designed by the gram-
mar writer. Part of the process of writing a grammar, therefore, involves deciding on a set of arc

labels (attributes, features) that are used to encode pertinent information about constituents.

4.2.1 Feature Percolation

Linguistic formalisms often provide a technique for percolating a large set of features
from a given child to its parent, for instance, by means of the head feature conventionin GPSG
or the {=] equation in LFG. Grouping of features in this way can be accomplished in PATR-II
by placing the features on a subDAG of the DAG of the child under a special attribute, say
head, and then unifying the head attribute of parent and child with a unification of the form
<parent head> = <child head>. Agreement features and case, are examples of features that
could be percolated in this way. Thus, the previous sample grammar might be extended to

allow head feature percolation as follows:
S — NP VP

<S head>
<NP head agr>

I

<VP head>
<S head agr>

!

VP — V NP
<VP head> = <YV head>

Uther:
<cal> = np
<head agr number> = singular
<head agr person> = third
Arthur:
<cat> == np
<head agr number> = singular
<head agr person> = third
knights:
<cat> = v

46

<head agr number> singular
<head agr person> = third

4.2.2 Semantics

The meaning of a constituent, a segment of logical form, needs to be recorded somewhere
in the DAG associated with it. For reasons of modularity, we would like this encoding to
be separable from the other portions of the DAG that encode syntactic information. To
encode meanings with no extra apparatus, we shall use the following encoding of logical-form
fragments. A predicate applied to several arguments, for instance— f(a, b, c)}—will be encoded
with the arcs pred and arg;, respectively. A constant will be notated with the feature ref. Thus,

the fragment above would be encoded as
[pred: f
argl: [ref: a]
arg2: [ref: bl
arg3: [ref: cl]

More evocative names for the argument positions could be used, e.g., agent, patient, goal,

though we will not use them here.

Note that the translation of a parent constituent is often associated with the translation
of a specific child constituent (with other child translations adding further information). For
instance, the translation of a VP will be identical to that of the child V, with complements
supplying translations assigned to the arguments. We can therefore make trans a head fea-
ture and allow the standard head feature mechanism to distribute it appropriately. Adding

translations to our small grammar, we get:
S — NP VP

<S head>
<NP head agr>
<SS head trans argl >

< VP head>
<S head agr>
<NP head trans>

VP — V NP

<VP head>
<VP head trans arg2>

<V head>
< NP head trans>

47

Uther:

<cat> = np
<head agr number> = singular
<head agr person> = third
<head trans i=zf> == uther
Arthur:
<cat> = np
<head agr number> = asingular
<head agr person> = third
<head trans ref> = arthur
knights:
<cat> = v
<head agr number> = singular :
<head agr person> = third
<head trans pred> = knight/

This grammar will admit the same sentences as previously, yielding the translations (in

prefix notation) knight’ (uther', arthur’), and knight' (arthur’, uther’) respectively.

4.2.3 Coordinating Syntax and Semantics

The previous grammar performs a de facto coordination of syntax and semantics by
requiring that the (syntactically) preverbal NP play the (semantic) role of first argument, and
that the postverbal complement play the role of second argument. Such a direct one-time
mapping is difficult to maintain, and various theories have solved this problem in different
ways. In general, the solution requires adding one more degree of freedom in the mapping.
GPSG obtains this degree of freedom because intensional-logic operators are able to act as
combinators, reordering arguments. These operators are introduced through metarules (though
they could have been introduced by lexical rules). LFG uses an intermediate representation
to provide the additional degree of freedom, mapping syntactic objects onto a set of arbitrary

labels—SUBJ, OBJ, OBJ2, etc.—and then mapping these in turn to argument positions.

Either of these solutions could be modeled in PATR-II, though our actual technique

(which will be presented after subcategorization is discussed) is slightly different from both.

48

We offer an example of the LFG style solution at this juncture. An LFG grammar unifies the

preverbal and postverbal NPs as the values of subject and object, respectively. If one declares

these to be head features, they will be unified with the subject and object features of the V

itself. The lexical entry for the V will then perform the second balf of the mapping, i.e., from

grammatical function to argument position.

S — NP VP

<S head>
<NP head agr>
<S head subject>

VP — V NP

<VP head>
< VP head object>

Uther:

<cat>

<head agr number >
<head agr person>
<head trans ref>

Arthur:

<cat>

<head agr number>
<head agr person>
<head trans ref>

knights:

<cat>

<head agr number>
<head agr person>

<head trans pred>

<head trans argl >

<head trans arg2>

It is now clear how a lexical rule might be written for passivization:

< VP head>
<S head agr>
<NP head>

<V head>
<NP head>

np
singular
third

uther’

np
singular

third

arthur’

v

singular

third

knight'

<subject trans>
<object trans>

it merely changes the

roles of subject and object in the lexical entry in the appropriate way. The ability to perform

such redirection of grammatical and semantic functions provides the requisite extra degree of

freedom. Before presenting an alternative solution to the degree-of-freedom problem, we must

discuss the related problems of verb phrase structure and subcategorization.

49

4.2.4 Verb Phrase Structure and Subcategorization

4.2.4.1 Nested versus Flat Structure

Various alternatives have been suggested for handling verb phrase structures in a gram-
mar for English. The proposed methods fall into two main categories: flat structure and nested
structure. The flat structure is epitomized by the treatment in GPSG. We shall start with this

technique.

Suppose we have a GPSG of the form

<1, VP - Vaoy~-o, >
<LVP -V By, >

ete.

This grammar generates flat verb-phrase structures in which the verb and all of its complements
are siblings. In GPSG we get appropriate subcategorization by associating with the rule some
distinguishing feature (in the nontechnical sense) then associating that feature with any verbs
that subcategorize for the rule. (This association acts like a virtual pointer between verbs and

rules.) The feature in the case of GPSG is the rule number.

Two points deserve mention. First, the ruie number technique in GPSG is outside the
feature system.3 But, since there is presumably only a finite number of verb phrase rules, there
is no reason that the rule number could not have status as a normal feature (in the technical
sense). A PATR-II grammar using this technique would look like this:

VP — Vap --am

<V syncat> = 1

VP — VBB

<V syncat> = 2

and so on.

3Actually, the most recent versions of GPSG have abandoned the distinction between rule numbers and features.

50

Second, rule numbers are only one way of distinguishing rules. Any other distinguishing
feature of rules could be used. In particular, if no two rules share the same right-hand side,
the right-hand sides could themselves be used as the subcategorization, as in the following
gramimar:

VP — Vay o,

<V syncat> = [ay,...,0m]

VP — Vﬂl"'ﬂn
<V syncat> = |[By,...,Ba]

Of course, we have introduced notation here that is not found in the PATR-II formalism,
pamely, lists. Before explaining this, let us be even more free with notation. We could make
the grammar still more concise by taking advantage of the fact that DAGs carry their category
“on their sleeve,” so to speak.

VP — Va; oy,

<Vsyncat> = @I ,[< a;cat >]

VP — VB fn
<V syncat> = @:_,[< Bicat >]

where €D denotes the repeated use of the list concatenation operator &5.

Note that all the unifications of the rules in this sample VP grammar are of exactly the
same form. We can take advantage of that fact in a grammar in which there is only one VP
rule by making use of a regular expression notation for the right-hand side of the rule.

VP — Vi{ayUaaU---UBm}?

<V syncat> = @;_,[< COMP; cat >]

where n is the number of constituents in the instantiation of the rule, and COM P, provides a

way of accessing the constituents.

We can now begin to clarify just how such a free-wheeling subcategorization scheme can
be implemented in strict PATR-II. First of all, the method of getting the behavior of a Kleene

star in context-free grammars is to use a recursive category, i.e., for each possible complement

51

category oy, we have a rule:
VP; and VP2 (0.3
<VPs syncat> = <ea; cat> P <VP; syncat>

We add a rule to start the recursion:
VP — V
<VP syncat> = <V syncat>

We merely require that a “full-fledged” VP is one whose syncatis the empty list A. It can
be easily proved that this grammar weakly generates the same language the previous one(s)

did. The difference, of course, is that the structure is now nested, not flat.

Finally, the question remains as to how lists and the (P operation can be encoded. Lists
can be encoded recursively as either a special symbol denoting the empty list, A, or pairs
containing a list element and a list. We shall call these two parts first and rest. The syncat arc

of a verb will then have a value something like

[first: a
rest: [first: oo
rest:

[first: a,,
rest: Al---11

The previous grammar can now be expressed as
VP, — VP o

<VPy syncat first> = <a; cat>
<VP; syncat> <VPs syncat rest>

VP — V
<VP syncat> = <V syncat>

We have seen a smooth progression from flat to nested structure to deal with the same
problem of subcategorization. The progression involved moving the information about con-
stituency from phrase structure rules to subcategorization information in the lexicon. Indeed,
any context-free grammar can undergo such a transformation to yield an equivalent PATR-II
grammar that has only one nonunary rule and preserves the weak-generative character of the

language. (See Appendix C.)In effect, we just move all the syntactic information into the lexical

52

entries, so that the same PATR-II grammar skeleton can be used to model any CF grammar.
Because the construction is local, the two methods can be combined freely. It is this aspect

that we take advantage of in the transformation of verb phrase rules.

4.2.4.2 Complex Subcategorization

By far the most important comparisons are the similarities rather than the differences
between the flat and the nested methods of handling VP structure. These are embodied in
the progression of grammars described above. The techniques encode the same information in
ways that reflect the direct isomorphisms between them. However, the nested technique for
subcategorization can be extended to allow verbs to subcategorize relative to any aspect of the
DAG associated with a complement, not just the category. The grammar above can be rewritten
as shown below to allow arbitrary information about complements to be subcategorized for by
unifying the elements of the syncat list with the whole DAG associated with the complement,
not just the cat subDAG.

VP — VP a;

<VP> syncat first>
< VP, syncat>

<a; >
<VPy syncat rest>

ol

VP — V
<VP syncat> = <V syncat>

4.2.5 Coordinating Syntax and Semantics Revisited

We now return to our discussion of the coordination of syntactic complement structure
and semantic argument structure. Our grammar so far has the complement structure of the
verb recorded in the feature syncat and the semantic structure in the feature trans. Since all
of the information for the mapping is thus available in the lexical entry, we can perform the
mapping directly by unifying the translations of the various subcategorized elements with the
various argument positions. For symmetry, we add the preverbal NP to the syncat list so that

it too can be unified into the translation. Our grammar becomes

53

S — NPVP

<S head>

<NP head agr>
< VP syncat first>
< VP syncat rest>

VP, — VP;NP

<VP; head>
<VPy syncat first>
<VP, syncat>

VP = V

<VP head>
<VP syncat>

Uther:

<cat>

<head agr number>
<head agr person>
<head trans ref>

Arthur:

<cal>

<head agr number>
<head agr person>
<head trans ref>

knights:

<cat>

<head agr number>
<head agr person>
<head trans pred>
<head trans argl >
<head trans arg2>
<syncat first cat>
<syncat rest first cat>
<syncal rest rest>

4.2.6 Auxiliaries

Handling auxiliary verbs is a related question. It seems that here a nested structure (as

I

I

[

| T

<VP head>
<S head agr>
<NP>

A

<VP2 head>
<NP>
<VP, syncat rest>

<V head>
<V syncat>

np
singular
third
uther’

np
singular

third

arthur’

v

singular

third

knsght!

<syncat rest first head trans>
<syncat first head trans>

np

np

A

54

in GPSG or PSG) is relatively well agreed upon. Thus, a rule of the form

VPl — V VP2
<VP, head> = <V head>
<V head aus> = +
<V syncat> = <VPx>
<VPy syncat> = < VP syncat>
<VP; syncat rest> = A

would suffice to handle auxiliaries for the nested-structure grammar. Here the syncat of the V
will require certain features to be obtained on the sibling VP (VP2), say that its form feature
be nonfinite. By making form a head feature, we guarantee that the form of a VP comes from
its first auxiliary, since the auxiliary is the head of its VP ancestor (VP;). Finally, all the
complements of VP2 must be attached beforeﬁpermitting auxiliaries, and the syncat feature—
now possessing information only about the preverbal constituent—passes from lower to upper

VP, that is, from VP, to VP,.

Note that the verb is required to have a + value for the auz feature. The VP — V rule

presented earlier must be augmented by the restriction that the auz feature be —.

4.2.7 Adverbial Modifiers and the Generalized Wasow Effect

Modifiers can be easily dealt with in the nested-structure framework by a single rule,

e.g.,
VP, — VPy ADVP
<VP; syncat> = < VP, syncat>

This rule allows adverbials to occur freely among the complements of a verb, embodying

the so-called Generalized Wasow Effect*, which is evident in such sentences as

1) Uther gave Lancelot on Thursday a sword.

Questions about how semantics would be affected and what head features should be

percolated are as yet unresolved.

4The phenomenon and its name were brought to our attention by Ivan Sag.

55

4.2.8 An Implementation Notation for Grammar Writing

The PATR-II formalism can be viewed as a formal language for defining natural-language
grammars. Unfortunately, as with many formal languages, the notation we have described
so far is somewhat clumsy and verbose. Furthermore, there is no way to capture certain
generalizations about the lexicon that a user might want to encode. We shall now describe a
specific implementation of a natural-language-processing system whose underlying formalism is
PATR-II and whose users are able to tailor the notation to their intended use of the formalism.
As before, the intention is not to impose any particular usage, but to allow users to design
their own mode of operation. The utilization of the formalism that has been described in this
section has benefited from the notation, but so would many other implementations based on
different strategies. The current PATR-II implementation supports the notation. Without it,

our lexicon would be much more redundant.

4.2.8.1 Templates

Lexical items often share a great deal of structure because of their intended application
or similarities in the way they function. We would like to define template DAGs that can be
combined to form the lexical items in such cases. For instance, many verbs in English will
share certain subcategorization information, such as a single noun-phrase complement that
comprises the second argument of the predicate/argument structure. We can define a template
called Transitive to encode this information:

Let Transitive be

<syncat first cat> = np
<syncat rest first cat> = np
<syncatl rest rest> = A

<head trans argl >
<head trans arg2>
<head auz>

<syncat rest first head trans>
<syncat first head trans>
false

Templates for V and $sing, respectively, can encode the fact that the word is a verb and that

it is in the third person singular form.
Let V be

56

<cat> 4

Let 3sing be

<head agr number> = singular
<head agr person> = third

The lexical entry for knights then becomes
knights:

V Transitive 3sing
<head trans pred> = knight'

4.2.8.2 Path Abbreviations

Like DAGs, path specifications can be abbreviated by using the same syntax. For

example, the path abbreviation
Let Pred be
<head trans pred>

allows the same lexical item, knights, to be encoded
knights:

V Transitive 3sing
Pred = knight

In summary, the use of templates and path abbreviations to tailor an implementation of
PATR-II to a particular intended usage allows the grammar writer to capture the generalizations
pertinent to that usage, at the same time facilitating the task of grammar writing and debugging
by partitioning the grammar writing process into modules. Lexical rules provide a similar tool

for accomplishing these objectives.

4.2.8.3 Lexical Rules

To encode the relationships among various lexical items—for instance, between the

passive and active forms of a verb—we need a notion of a lezical rule. A lexical rule takes

57

as input a single DAG and generates an output DAG by means of unifications. These DAGs

are denoted by the metavariables in and out, respectively.

As an example, we first discuss the active-passive dichotomy. Rather than generate the
active from the passive or vice versa, we generate both of them from a protoentry for the verb
whose syncat feature is exactly like the syncats presented previously, except that the final node
is not marked with a A and an arc <syncat tasl> is added pointing to the final node in the
syncat list. The Transitive template now looks like the following:

Let Transitive be

<syncat first cat>
<syncat rest first cat>
<syncat rest rest>
<head trans argl >
<head trans arg2>
<head auz>

np

np

<syncat tatl>.

<syncat first head trans>
<syncal first rest head trans>
Jalse

A lexical rule active is now defined to take a protoentry whose syncat was generated in this
form as input and to generate an entry whose <syncat tasl> is A. Passtve, on the other hand,
takes the same protoentry and moves the first element of the syncat list to the end of the list
(the tail), thus making it a postverbal complement and making the previous leftmost postverbal

complement the subject. Formally, expressed, we have

Define Active as

<out cat> = <in cat>
<out head> = <in head>
<out head voice> = active
<out syncat> = <in syncat>
<out syncat tasl> = A
Define AgentlessPassive as
<out cat> = <in cat>
<out head> = <in head>
<out head voice> = passive
<out syncat> = <in syncat rest>
<oul syncat tatl> = A
Define AgentivePassive as
<out cat> <in cat>

<out head> = <in head>

58

<out head voice> = passive
<out syncat> = <in syncat rest>
<out syncat tail first cat> = pp
<out syncat tasl first lex> = by

<out syncat tasl first head trans > <n syncat first head trans>

The operation of the three lexical rules on the protoentry for the verb knight is shown as
an example. First the protoentry:

[cat: v
head: [aux: false

form: nonfinite

trans: [pred: knight
argl: <£1134>
0 .
arg2: <f1138>
(111
syncat: [first: [cat: np
head: [trans: <f1134>]]

rest: [first: [cat: np
head: {trans: <£1138>]]
rest: <£1140>]
tail: <£1140>]]

The active form is

[cat: v
head: [aux: false
form: nonfinite
voice: active
trans: [pred: knight
argl: <f1134>
(1
arg2: <£f1138>
[11]
syncat: [first: [cat: np
head: [trans: <f£1134>]}

rest: [first: [cat: np

rTest:

head:
<f1140>
Al

[trans: <£1138>]]

tail: <£1140>1]

The agentless passive form is

[cat: v

head: f[aux: false

59

form: nonfinite
voice: passive
trans: [pred: kmight

argl: []
arg2: <£1138>
1111

syncat: [first: [cat: np
head: [trans: <f1138>]]
rest: <£1140>
Al
tail: <£1140>1)

Finally, the agentive passive:

[cat: v
head: [aux: false
form: nonfinite
voice: passive
trans: [pred: kmight
argl: <f1134>
0
arg2: <f1138>
(11}
syncat: [first: [cat: np
head: [trams: <£1138>]]
rest: [first: [cat: pp
lex: by
head: [trans: <f£1134>]]
rest: <£1140>
Al
tail: <£1140>]]

4.2.8.4 Advantages of the Notation

It has been mentioned already that the notation we have introduced, and which is

used throughout the lexicon, allows convenient abbreviations. Let us exemplify this claim by

presenting a lexical entry in both its full and abbreviated forms. Here is an entry for the verb

seem:

seem "V - TakeslntransShar Monadic Extrapos

- TakesInf RaisingtoS;

60

This entry collapses two verb entries for seem. Both entries share the category, i.e., both
forms are verbs. The dashes indicate the start of each subentry. The following two sentences
provide examples of the different syntactic environments that distinguish the two forms:

It seems that Uther sleeps.
Uther seems to sleep.

What follows are the definitions for the templates that are contained in the complex entry.

Let be be
<cat> = v
<head auz> = false i
<head trans pred> = <sense>
Let TakesIntransSbar be
<syncat first cat> = sbar

<syncal tail> <syncat rest>

Let Monadic be
<head trans argl > = <syncat first head trans>

Let TakesInf be

<syncat first cat> = np
<syncat rest first cat> = vp
<syncat rest first head form> = infinitival

I

<syncat rest rest> <syncat tail >

Let RaisingtoS be

<head trans argl> = <syncat rest first head trans>
<syncat rest first syncat first>= <syncat first>

The first subentry also contains a name of a lexical rule, Extrapos. Here is the rule:

Define Ertrapos as

<out cat> = <in cat>
<out head> = <in head>
<out head auz> = false
<out head agr per> = p8
<out syncat first cat> = np
<out syncat first lex> = it

<out syncat rest> <in syncat rest>

61

I

<in syncat tail rest>
<in syncat first>

<out syncat tail>
<in syncat tasl first>

I

Without the notational tools introduced in this section we would have to write the following

two verb entrics for the two forms of seem:

seemy !
<cat> = v
<head auz> = false
<head trans pred> = <sense>
<syncat first cal> = np

<syncat tasl>
<head trans argl>

<syncat rest rest>
<syncatl rest first head trans>

<syncat first lex> = it .
<syncatl rest first cat> = sbar
<head agr per> = p3
seemsg:
<cat> = v
<head auz> = false
<head trans pred> = <sense>
<syncat first cat> = np
<syncat rest first cat> = vp
<syncat rest first head form> = infinstival

<syncat rest rest> <syncat tail>
<head trans argl > = <syncat rest first head trans>
<syncat rest first syncat first >= <syncat first>

In fact, these entries are the structures that are built from the “short™ lexical entry when the

word seem 1s encountered in an input sentence.

But our notation does not only allow convenient abbreviations; it also plays an important
role in the linguist’s use of the formalism. The actual format of the rules and lexical entries
written by the linguist can be detached from the formalism. The grammars look more like those
to which he is accustomed. Moreover, and perhaps most importantly, grammar writers can use
the notational tools to express generalizations they could not state in the “pure” unification
notation of the formalism. The fact that the DAGs associated with a syntactically motivated
verb class like raising-to-object share some structure can be expressed in a nonredundant way,

even if the amount of structure held im common cannot be encoded in a single unification

62

statement. The linguistic observation that all English modals are finite is expressed by including

the template Finite in the definition of the template Modal.

The definition of the notational tools can also be used by the grammar writer to induce
constraints upon the form and power of the grammar. One could reserve lexical rules for certain
types of regularities such as relation-changing rules. 1t is quite conceivable that, at some point,
the rules and lexical entries of our grammars will contain nothing but justified abbreviations

of the kind introduced above.

4.2.9 Future Research on Uses of the Formalism

Clearly, the coverage of the grammar needs further expansion. But there are also more
basic questions that require closer attention than how to handle other grammatical phenomena.
The linguistic status of templates and lexical rules needs to be determined. One could adopt
a simple view and use lexical rules every time the power of pure unification with a template
does not suffice, i.e., whenever changing to the graph structure of lexical entries requires more
than the simple addition of arcs and nodes. It would be more gratifying, though, if one had
a clearer correspondence between the use of notational tools, on the one hand, and classes of

linguistic regularities, on the other.

Another set of problems arises with the planned integration of non-truth-conditional and
pragmatic information. If the truth-conditional part of the semantics of a phrase is incorporated
in the DAG, there is no obvious reason to exclude the presuppositional elements of its meaning.
The details of such a solution as well as of its interaction with discourse representations need

to be worked out in the course of further research.

4.3. The Current PATR-II Implementation

4.3.1 Overview

The development of the PATR-II implementation took place on the SRI-AI DEC 2060

63

time-sharing system operating under TOPS-20. The original implementation is written in
INTERLISP-10. In order to integrate PATR-II with the other components of KLAUS, the
prototype INTERLISP version needed to be transported to a LISP machine. This version now
runs on a SYMBOLICS 3600 in ZETALISP. A third version of PATR-II was programmed in
PROLOG. This implementation does not include all the components of the prototype. It served

mainly as a testbed for a structure-sharing unification algorithm.

The prototype implementation has five major program components: a set of top-level
functions; a component for building and handling the internal lexicon; the morphology com-
ponent; a context-free parser; a set of functions for structure unification. The grammar consists
of a set of syntactic rules, a lexicon for basic word forms, a set of affix lexicons, definitions of
lexical rules, templates and path names, and a set of finite state automata representing the

morphophonemic regularities of English.

4.3.2 Implementation of the Basic Formalism

4.3.2.1 Top Level and User Interface

The top-level component starts the program, inmitializes global variables, sets user
privileges, and runs the user interface. The main function for the user interface is
COMMANDS. It will prompt the user with “command or sentence to parse.” At this level, the
user can give commands that load and clear grammars, parse sentences, debug, trace, and edit

the grammar and lexicon, save any desired versions of ths grammar, or save the whole system.

If the user input is enclosed in parentheses, the expression will be evaluated as an
INTERLISP S-expression. If a sentence is given instead of a command, PATR-II will attempt
to parse it turning control over to the parser for this purpose. The parser activates lexical
lookup, morphological analysis, phrase structure building, and graph unification. If parses are

found, the corresponding semantic translations will be printed out.

64

4.3.2.2 The Lexicon Functions

PATR-II actually has several lexicons: a stem (or root) lexicon and several small affix
lexicons. Lexicons written in the notation described in Section 4.2.8 are stored internally as
letter trees. The lexical information of an entry in these trees is associated with its last letter.
The trees are used as discrimination networks for lexical lookup. There are functions that add,
delete, display, and change entries. Other functions build new internal lexicons from inputted

lexicon files or write out letter trees in the linguistic format.

4.3.2.3 Morphological Analysis

<

The lexicon for a language-processing system should not have to list the full morphological
paradigm for each entry when there are many indications of the productivity of morphological
rules for such processes as plural formation, conjugation, and English genitive inflection. On
the other hand, the regularities that govern these processes are quite different from those
entailed in syntactic processes and, moreever, it is impossible to separate morphological from
phonological rules. Therefore, one often speaks about the morphophonemic component of a
grammar. The design of PATR-II takes the special status of morphophonemic processes into

account by assigning them to a separate component of the system: the morphological analyzer.

Our morphological analyzer is based on a recent implementation of Kimmo Koskenniemi's
“bi-level model” for morphological analysis and synthesis [64]. This implementation was
developed in INTERLISP as a course project at the University of Texas under the direction of

Lauri Karttunen [57].

Two-level rules do not describe transformations of segment sequences in the same way
as do rules of generative phonology. They are simply descriptions of correspondences between
lexical and surface forms. In this respect the model resembles old-fashioned structural phonol-
ogy, although it also differs from the letter in several important ways. Just as in structural
phonology, in the two-level model there are no rule interactions, no relationships such as the
bleeding or feeding that result from the sequential application of rules, so that subsequent rules

apply to the output of earlier ones.

65

Like the other parts of the PATR-II processor, the morphological component is language-

independent.

Morphological rules are represented in the processor as automata—more specifically,
as finite-state transducers. There is a one-to-one correspondence between the rules and the
automata. The idea of compiling rules into finite-state machines comes originally from Martin
lkay and Ronald Kaplan [55]. In addition to the functions that analyze morphological forms by
running the finite-state automata there are functions that compile and merge these automata

from sets of phonological rules.

4.3.2.4 The Parser

The parser of the INTERLISP prototype PATR-II is a context-free, bottom-up chart
parser without lookahead. It was inspired by the Bear-Karttunen PSG parser , which in turn
is based on Dan Chester’s implementation of the Cocke, Kasami, Younger algorithm (refer to

[8] for a description of the parser and algorithm).

Before a new constituent is added to the chart, the DAGs of parent and children nodes
are selectively unified by the graph unification component according to the unifications listed
in the body of the applied rule. The completed edges of the chart of the PATR-II parser include

pointers to the DAGs associated with the nodes.

The treatment of long-distance gap-filler dependencies is based on the opinion that the
phenomenon is so general that the processor and not the grammar should be responsible for
introducing and percolating gaps. Consequently, no grammar rules have to be duplicated to
account for gap production. The current solution resembles the one in the PSG parser: the
parser simply “assumes” a trace between every two adjacent words in the input. These traces
can stand for NPs or PPs. Their agreement features are carried up the tree and are unified in

the end with the filler's agreement features.

We intend to replace the parser with a “smarter,” more predictive one later, that will

recognize potential gaps only at places where they can really occur. We also want to investigate

66

how a phrase-linking solution of the type proposed by Peters and Ritchie [100] could be

implemented in the PATR-II formalism.

4.3.2.5 Graph Unification

As described before, a PATR-1I grammar is a set of context-free rules annoted with DAG
unifications. It is useful to approach the problem of constructing a parser for PATR-II by
determining which extensions should be made of a context-free parser to enforce the constraints
specified by unifications. However, some parsing strategies that are reasonable for context-free
grammars are not applicable or are just too inefficient for the extended parser. This is especially
the case with parsers that require the context-free grammar to be rewritten into some normal

form, because, in general, an annoted grammar cannot be rewritten this way.

The prototype PATR-II parser is a pure bottom-up context-free parser that applies all
unifications associated with a rule when the latter is used to build a new phrase (parent) from its
subphrases (children). When unifications are applied, both the parent phrase and the children
may become more specified (more “instantiated”). Because of local or global ambiguities in the
grammar, a given phrase may appear as the child of more than one parent phrase by virtue of
rule applications that instantiate the child in different ways. For the parser to work properly,
these alternative instantiations of the DAG associated with a phrase must be segregated. The
prototype achieves this segregation by copying all the child phrases and their DAGs before

trying to apply a rule (even if the rule application may eventually fail because of contradictory

unifications or values).

The copying method used in the prototype is easy to implement, which is the main reason
it was chosen. However, the wholesale copying of DAGs with each rule application requires far
more space (and time) than the “structure sharing” method we are now considering. A further
problem with the prototype parser is that the pure bottom-up strategy has difficulty in dealing

with missing constituents (gaps) in a general manner.

The structure-sharing method of DAG representation and unification is closely modeled

on the technique of the same name used in automatic theorem provers. This connection between

67

PATR-II parsers and theorem provers is more than coincidental, as it derives from the very

close inherent relationship between PATR-II grammars and first-order theories.

Using structure sharing, the DAG associated with a phrase is represented by a pair of
items: its “skeleton” —a DAG derived by compile-time application of all the unifications of a
single rule; its “index,” a number identifying the particular rule application that created this
DAG. The index of a DAG is used to tag records (“bindings”) that describe additions made
to the DAG through unification. Bindings are stored in “binding environments.” Although
each alternative partial analysis of the input has its own binding environment, most of these
environments share information because they have been derived (through alternative rule

applications) from earlier partial analyses.

The standard structure-sharing technique, invented by Boyer and Moore [11], requires
an amount of searching for the bindings of a DAG that, at worst, can be proportional to
the size of the preceding analysis. Instead of this scheme, we have in our experiments with
structure sharing adopted a “logarithmic tree” representation of binding environments and a
parsing strategy that make binding lookup at worst logarithmic with respect to the size of
the analysis. The parsing strategy used, which is a variation of the Earley parsing technique,
has the further advantage of allowing gap-introducing rules with full generality. However,
to achieve the logarithmic time bound forces us to copy new complete phrases as they are
created, although partial analyses are still fully structure-shared. Since the trade-offs between
this method and the standard structure-sharing one are difficult to identify theoretically, we
plan to implement another version of the structure sharing PATR-II parser, using the standard

Boyer and Moore method.

The Prolog implementation of PATR-II is based on an experimental structure-sharing

parser of the kind described above.

4.3.3 PROLOG Implementation

Besides the INTERLISP and the LISP machine implementations of PATR-II, there exists
also a PROLOG implementation of the basic formalism on the DEC-2060. It is based on the

68

experimental structure-sharing PATR-II parser described in Section 4.3.2.5. The Prolog pro-
gram has run successfully with various PATR-II grammars, with an efficiency similar to that of
the copying parser. Prolog has been useful for rapid “throw away” testing of alternative parsing
mechanisms. The advaptages of a structure-sharing parser are expected to dominate perfor-
mance for larger grammars than our current ones, at which point 1t will become worthwhile to

reimplement the parser using more efficient low-level coding on the LISP machines.

4.3.4 LISP Machine Implementation

For the integration of PATR-II with the other components of KLAUS, the prototype
PATR-II implementation that had been developed in INTERLISP on a DEC 2060 had to be
transported to a Symbolics 3600 LISP machine.

The transfer of PATR to the 3600 was done in such a fashion that further development
could be done on the 2060 and, at the same time, make it relatively easy to retransport to the
3600. An initial effort to translate the INTERLISP-10 code into ZETALISP code directly by
using the INTERLISP TRANSOR translator revealed a number of problems.

An alternative method was tried. Symbolics offers an INTERLISP Compatibility Package
(ILCP) consisting of a translator that runs under INTERLISP and a run time package that
runs on the 3600. The translator on the INTERLISP end mainly checks for upper/lower-
case problems, handles comments, and other syntactic features of INTERLISP. The run time
package on the 3600 provides a simulated INTERLISP environment. That is, many of the
INTERLISP functions are defined to work as they do in INTERLISP. For instance, MAP
takes its arguments in the order used by INTERLISP rather than the opposite order used by
ZETALISP,

The disadvantage of this method is that the ILCP is a rather large set of software that
is still being developed. It was necessary to rewrite all the INTERLISP I/O functions, as the
supplied definitions did not cover PATR’s particular usage of those functions. At present, this

software package must be loaded each time the PATR code is loaded. However, it was decided

69

that running with the ILCP was easier and more reliable than using a special translator for

the PATR code.

Some functions required by PATR, e.g., ASKUSER, were not available. This function

was coded directly in ZETALISP to use normal mouse selection when possible.

Whep the PATR code was run on the 3600 under the ILCP, several coding problems were
discovered. Most of these were avoidable (i.e., taking the CAR of an atom) and a patch was

made on both the INTERLISP and ZETALISP versions of PATR.

The only serious difference between these two versions is in the treatment of case distinc-
tion. ZETALISP is indiscriminate; it translates all normal input into upper-case. INTERLISP-

10, on the other hand, leaves all input in its original case.

PATR made extensive use of the lower/upper-case distinction, but, fortunately, most of
this selectivity was aesthetic rather than essential. We were able to modify the code so that,
in almost all cases, the program works regardless of whether or not lower and upper case are
merged. In one or two places, where the difference could not be compensated for by coding,

the code had to be hand-patched when translated from INTERLISP-10 to ZETALISP.

The above describe the differences in the running code of the two systems. Other
differences are found in the user interface. Some of the utilities provided by the INTERLISP-
10 system are moot on the ZETALISP system, e.g., EXIT and SAVE. Others, such as EDIT,
were not directly available on the ZETALISP system. EDIT was coded to be as much like
the INTERLISP-10 system as possible. DRIBBLE was a feature that could not be provided

without a substantial coding effort.

The section of code for the user interface needed to be redone. As a result, a menu of
the available commands is now permanently displayed on the screen. To choose a command,
the user simply points the mouse and clicks one of the buttons (usually the left) on the mouse.
In a few cases, clicking the middle or right button provides for different options of the basic

command. For instance, clicking right on FASTLOAD allows the user to specify the system

name first.

70

As PATR outputs text to the screen, it specifies to the 3600 for certain items of text
what type of item is being displayed. For instance, when it outputs the name of a DAG, it
informs the 3600 that it is outputting a DAG. If PATR later asks for the name of a DAG, the
user may either type in a DAG or point the mouse to one of the printed DAG names. When
he points to this DAG, a box appears around it, indicating that it is a possible answer. If he

then clicks a button on the mouse, that DAG name is inputted.

Almost all of these user interface changes are in the top-level routine that takes commands
from the user. Therefore, it can be just loaded in place of the INTERLISP-10 command
interface. Any new commands can be easily added. A few changes were necessary in the body
of the system where output is done so that, for instance, the 3600 is told when a DAG name

is printed. These changes were also added to the INTERLISP-10 version.

The utilization of the display and user interface features of the 3600 have created a
superior working environment. The menu-driven top-level functions, together with the multi-
window display improve grammar and program development. New debugging and editing
facilities that utilize the available ZETALISP function packages are still being added to the

system.

4.3.5 Future Research on the Implementation

Among the related projects we want to undertake next are the implementation of the
structure-sharing unification algorithm on the LISP machine, the development of a phrase
structure parser with more predictive power, and a phrase-linking solution to unbounded

dependencies [100].

4.4. Conclusion

Major parts of our implementation are a grammar formalism and an implementation
notation designed to serve as a “programming language for linguists.” That is, it is a powerful

grammar-writing system that allows the encoding of many analyses of linguistic phenomena.

71

In the sense that the formalism does not attempt to characterize all and only the grammars of
natural languages (though a more constrained theory might use the formalism as its “semantics”
so to speak), it does not embody a linguistic theory. Instead, it is a tool linguists can use to

express linguistic apalyses formally; its implementation is a tool for testing such expressions.

The formalism and the notation for grammar writing proved to be adequate and con-
venient devices for writing grammars that cover the grammatical phenomena we have dealt
with so far. The notation has also shown itself to be useful as a conceptual aid in the formula-

tion of linguistic-research problems.

Our modular implementation, consisting of a top level, a parser, a unification component,

and a morphological analyzer, makes it easy toreplace any individual component.

The current implementation was designed as a research tool. This means that the
advantages modularity and the convenience of modifying grammars as well as implementation
had priority over efficiency. Nevertheless, the process of parsing and translating sentences of

different degrees of complexity is performed at reasonable speed.

72

Appendix A. A Formal Definition of the Formalism

Definition 4.1. DAG:

A DAG defined over a finite set of labels A is either
e an atomic label | € A, or

e a possibly empty set s of pairs < l,v > where | € A and v is a DAG and s does not
cover s. (Covering is defined recursively as follows: for all < l,v >€ s, s covers v and
s covers anything covered by v. The atomic label ! covers only itself.)

[is called the attribute or feature and v the value of the attribute.

Definition 4.2. Path:

A pathis a sequence < n,1;,...,l, > (hereafter notated without commas so as to avoid
confusion with other sequences) where n is a DAG and the [; are atomic labels. Such a path

denotes the node n,, where < l; n; >€n;_y.

Definition 4.3. Grammar:

A PATR-1I grammar is a sextuple < N,T,A,R,L,S > where

N is a finite nonempty set of nonterminals,

e T is a nonempty set of terminals,

A is a finite set of labels, (usually a superset of N U T),

R is a finite set of grammar rules (see below),
Lis arelation in 7 X D, where D is the set of DAGs definable over A, and
S € D is the start DAG.

Definition 4.4. Grammar rule:

A grammar rule has two parts:

e a context-free phrase structure rule with uniquely identified nonterminals, notated, e.g.,
VP—-YV NP, NP,

e a set of unifications, notated as m = n where m and n are DAGs or path specifications
with nonterminal labels instead of DAGs as the first elements, e.g., < VP l; lo > =
<Vig>.

73

Definition 4.5. Admissibility:

A rule iy — l}---l,, with unifications U admits a sequence of DAGs < ng,ny,...,n, >

e if; €T, then < l;,;n; >€ L, and
e if [; € N, then the path < n; cat > denotes l; (minus any subscripts), and

e for all p; = p2 in U the node denoted by p; is the same as that denoted by ps. A path
< li ki --kg > denotes a node n if and only if the path < n; ky---k; > denotes n.

Definition 4.8. Derivation:

A DAG ng derives a sequence of DAGs < ny,...,n,, > if there is a rule r € R such
that r admits < ng,n,,...,n,, >. This is'notated ng = ny---n,,. The symmetric transitive
closure of = is notated =".

Definition 4.7. Language:
The language of a PATR-1l grammar G =< N,T,R,L,S > is the set {w € T* | S ="
w}
Definition 4.8. Unification:
The unification of two DAGs n; and n2 is a DAG n where
e if ny = ny, then n = ny,
e if n; is atomic and ne = {}, then n = ny, and similarly with n; and n; interchanged,

e if peither ny nor ng is atomic, then for all { such that < l,v; >€ ny, and < Ljve >€

nz, < l,unify(vy,v2) >€ n and for all ! such that < L,v >€ (n; U n2) — (n; N n2).
<l,v >€n.

74

Appendix B. Some Grammars for Hard Languages

The following grammar accepts the non-context-free language a™b"¢c":
S — As Bs Cs

<As>
<Bs>

<Bs>
<Cs>

A.B] - A82A
<As) suce> = <Aso >
As — ¢
<num> = 0
Bal b d B.92 B -
<Bs; succ> = <Bs;>
Bs — ¢
<Bs> = 0
CS] — 032 C
<Csy suce> = <Csp>

Cs — ¢

<Cs> = 0
a:

<cat> = @
b:

<cat> = b
c:

<cat> = ¢

The following grammar accepts the non-indexed language "

S — A

 = <Am>
<An> =0
<Ap> = <A q>

75

16

Appendix C. Conversion to Normal-Form PATR-II Grammars

In Section 4.2.4.1 we state that any context-free gramma:r can be converted to a PATR-II
grammar with only one nonunary rule. The construction is as follows: Given a context-free
grammar < N, T, R, S >, we construct a PATR-II grammar with the following rules:

s 8

<S'syncat> = X\

S'— 5 S

<S'syncat>
<SS syncat first>

<S5y syncat rest>
<S cat> '

For every rule a — 8,---8, € R, add the rule ~

S = a
<SS syncat first> = f
<S syncat rest first> = fs

etc.,

and, for every A,, add the rule
S = g

77

Appendix D. Sample Rules of the PATR-II Grammar

The LISP machine screen below displays three editing windows with samples of definitions
(one template and one lexical rule) in the upper window, of syntactic rules in the middle window,

and of lexical entries in the lower window.

<head trans arg2> = <(syncat rest rest first head trans>
<syncat rest rest first syncat first head> =
<syncat rest first head>.

Met RaisingtoS be
<head trans argl> = <syncat rest first head trans>
<syncat rest first syncat first> = <syncat firstd.

Define Passive as «
<out head form> = passprt
<out cat> = <in cat>
<out head> = <in head>
<out syncat> = <in syncat rest>
<out syncat tail> = <in syncat tail>
<out syncat tail> = lambda.
DEMOGRAM.defs >patr B:

S + NP UP:
<§ head> = <UP head>
<UP syncat first> = <NP>
<UP syncat rest> = !|ambda
<S head agr> = <NP head agr>.

§ » Sbar UP:
<S head> = <UP head>
<UP syncat first> = <Sbar>
<\UP syncat rest> = iambda
<S head form> = finite
<S head agr> = <Sbar head agr>.

DEMOGRAM.gram Jpatr B:

ask v TakesSfor Dyadic,
Bive V (Past gave) (PastPrt given)
TakesNPNP Triadic,
persuade UV TakesNPInf Triadic ObjectControt, \
promi se \! TakesNPInf Triadic SuojectControi NoPass,
believe UV - TakesSthat Dyadic

- TakesNPInf RaisingtoO,

seem U - TakesIntransSbar Monadic Extrapos
- TakesInf Raisingto§,

DEMOGRAM. lex >patr B:

ZMACS iPHTR; DEMOGRAM.gram >patr B: (1)

11,2283 11:54:11 PEREIR PATR: wi Conscle idie 3 ninutes

78

Appendix E. A Sample Dialog with PATR-II

The right-hand-side window (interaction window) of the following LISP machine freeze
frame contains a three-sentence sample dialog with KLAUS. The left-hand-side window can
be used for displaying the chart, DAGs, words, and rules that were built or used during the
parsing of a sentence. There is a mouse-operated menu window on top of this display window.
In the freeze frame, the DAG associated by the parser with the last sentence is displayed 1n
the display window. Display window and interaction window are seperated by another menu

window which represents the user’s options at the top level of KLAUS.

For each of the sentences in the short dialog, the parser found exactly one parse but
multiple scopings of quantifiers and tense operators. The selection of the desired scoping was
performed in a temporary menu window using the mouse. Assertions as the first two sentences
are accepted by KLAUS if they do not contradict with already known propositions. Possible
responses to alternative questions are “YES”, “NO”, or ‘I DON'T KNOW”, The answer to the
third input sentence, which is an alternative question, is based on the knowledge the system

gained through the first two input sentences.

‘%{NONLEDGE EFEHRNING %&ND ‘!-HSING SYSTEH

Chart Arc Word KLAUS>some knight ioves gwen
firc: NE3RS
Reparse One parse found: arc NBG2!
arc: N@@35 rule number: SENTENCE + U § Edit pres{iovel (<some %8025 Knight{x@825)>, gwen))
category: SENTENCE covers: DID SOME KNIGHT STORM A CASTLE
2 scopings found:
[INTERROBATIVE: TRUE Trace
CAT: SENTENCE Untrace some (%0025, knight(x@825), pres(!ovel(xB825, gwen)))
HEAD: [AUX. TRUE
FORM: FINITE Lisp Del
TRANS: [PRED: PRAST Del Trying to prove assertion
ARG1: [PRED: STORMI Trying to prove negated assertion
X ARGL. [RESTRICT. [VAR: <D@@52> toad | %
Xev45
PRED: KNIGHT System |KLAUS>every knight stormed a castie
ARG1: [REF: <D@@52>]] | Glear
QUANT : SOME One parse found: arc NOG31
REF: <D@852>] Hardcopy
ARG2: [OUANT: SOME past{storml{ (every xB035 knight(x@B835)>, <some xB836 c
RESTRICT: [UAR: <DQBS3> Profile 31! 5(x@836)>))
X0ee46
PRED: CASTLE 6 scopings found:
ARG!: [REF: <DBB53¥]1]
REF: <D@@53>1111] WFFs every(x@035, Knight(x0835), past(some(x0036, castie(x@
. 036), stormi(xB835, =B8@36))))
Reset
Trying to prove assertion
PATR B;ylng to prove negated assertion

KLAUS>did some Knight storm a castie

One parse found: arc N@B35

stle(x0846)%))

6 scopings found:

46), storm!(x0845, xBB46))))

- _—e Jeylng.to-prove. query ...

past(storml(<some x8845 knight(x8845)>, ¢some xQ846 ca

some(x0845, knlght(x8845), past(some{xPB46, castle(xP0

Yes.

