Easily Searched Encodings for Number Partitioning

Stuart M. Shieber
Division of Applied Sciences
Harvard University

(joint work with Wheeler Ruml, Tom Ngo, and Joe Marks)

Number Partitioning

Instance: A sequence $A = (a_1, \ldots, a_n)$ of positive rational numbers.

Problem: Find a corresponding sequence $S = (s_1, \ldots, S_n)$ of signs (-1 or +1) such that the $residu^e u$ is minimized.

$$u \equiv \left| \sum_{i=1}^{n} s_i a_i \right|$$

6	5	4	4	3	u	Remark
+	+	_	_		0	Optimal solution
+	_	+		_	2	KK solution

Number Partitioning (continued)

- The Number Partitioning problem:
 - is NP-hard
 - poses problems for local optimization
 - has an extremely effective deterministic heuristic, the Karmarkar- $Karp\ algorithm\ (KK)$
- Applications in scheduling, perhaps cryptography

The Conventional Wisdom

• Johnson et al.:

[T]raditional local optimization algorithms are not competitive with other techniques for [Number Partitioning], in particular the "differencing" algorithm of Karmarkar and Karp. Consequently, it seems unlikely that simulated annealing, which in essence is a method for improving local optimization, can offer enough of an improvement to bridge the gap.

• Karmarkar et al.:

[The KK algorithm] was a great improvement over other results . . . It would be very interesting, though quite possibly very difficult, to improve upon that algorithm.

Conclusions

- Stochastic optimization can be successfully applied to number partitioning.
- Problem representation is crucial; search method is essentially unimportant.
- General principles can be adduced.

The KK Algorithm

• for i = 1 to |A| - 1 $j \leftarrow \text{ the index of the largest element of } A$ $k \leftarrow \text{ the index of the}$ second largest element of A $a_j \leftarrow a_j - a_k$ $a_k \leftarrow 0$

end for

- 2-color based on differencing steps to get a partition
- KK expected difference is $O(\frac{1}{n^{\alpha \log n}})$, but expected optimum is $O(\frac{\sqrt{n}}{2^n})$

Repeated differencing

Stocha^{stic} Optimization

 ${f Search}$ a space of ${f representations}$ of solutions by stochastically generating candidate solutions.

- Random generate-and-test (RGT)
- Hill climbing (HC)
- Simulated annealing (SA)
- Parallel hill climbing (PHC)
- Genetic algorithm (GA)

The Direct Representation

- The representation of the solution a sign sequence S is the sign sequence itself.
- The operators for generating solutions are
 - moving
 - swapping

The Direct Representation: Performance

$$\hat{u} = u/u_{KK}$$

Parallel Hill Climbing

- Initialize a population P of random candidate solutions
- For some number of iterations do:
 - Randomly select an operator o
 - Randomly select a solution $s \in P$ (Better solutions are selected with higher probability.)
 - Add s' = o(s) to P
 - Rank solutions in P and lete the lowest-ranking solution
- Return the best solution in P

How to Generate a Good Representation

- 1. Select an existing greedy heuristic for the optimization problem in question.
- 2. Modify the heuristic so that its operation is not fully determined.
- 3. Choose, for every underdeterminedecision point in the heuristic, a parameter whose value willetermine the decision. The set of such parameters will be the independent variables of the encoding.

How to Parameterize a Greedy Heuristic

Parameterized arbitration: Representation selects among arbitrary decisions made by heuristic.

Parameterized constraint: Representation specifies external constraints respectedly the heuristic.

Parameterized greediness: Representation specifies degree of greediness of eachecision.

Number Purtitioning

February 28, 1005

The Greedy Decoder Representation

- A candidate solution is represented a permutation G of the numbers in A. The solution generation operator is random swapping.
- The sign sequence is generatedy a greedy decoder (parameterized arbitration):

 $Number\ Partitioning$

February 28, 1005

Parameterizing the KK Algorithm

Index-based differencing: Choose the largest and r_i -th largest element to difference at each iteration i. ($p^{arameterized}$ greediness)

Prepartitioning: Let KK operate over predefined partitions of elements. $(p^{arameterized\ constraint})$

Index-Based Differencing

- A candidate solution is represented a list R of indices. The solution generation operator is random replacement of the elements of R.
- A KK decoder is used to generate the sign sequence from R:

16

The Prepartitioning Representation

- A candidate solution is represented a partition P of the elements, an assignment to each element of a partition number. The solution generation operator is random perturbation of the partition numbers in P.
- The KK algorithm is used to generate the sign sequence from P:

Performance of the Representations (+ PHC)

Performance for Other Search Engines

• Choice of representation is *much* more important than choice of search engine.

Empirical Analysis

- Three hypotheses to explain the effective performance of local search:
 - 1. Neighborhood structure
 - 2. A priori distribution of solutions
 - 3. "Gravitation" about KK solution

Neighborhood Structure

• Neighborhood structure exists in the direct encoding...

• but not where it counts:

• Same result for other encodings

A Priori Distribution

- Big differences among the encodings, but doesn't predict
 - The superiority of search over RGT
 - The benefits of seeding

Gravitation

• A different kind of neighborhood structure:

Additional Improvements

• Use gravitation to our advantage: restrict search space to the K neighborhood

Remaining Opportunities

• Performance of RGT/index (max_step = 4) vs. probable optimum:

The General Recipe

Given an NP-hard optimization problem:

- Find a good deterministic constructive heuristic solution method.
- Figure out how to parameterize the construction using:
 - Parameterized arbitration
 - Parameterized constraint
 - Parameterized greediness
- Apply stochastic search techniques to the parameterized heuristis.
- Take an empirical approach to refining and analyzing the resulting algorithms.