United States Patent

US006138098A

[19]

Shieber et al.

6,138,098
*Oct. 24, 2000

Patent Number:
Date of Patent:

(11]
[45]

[54]

[75]

(73]

—_———
L
[\S]

COMMAND PARSING AND REWRITE
SYSTEM
Inventors: Stuart M. Shieber; John Armstrong,
both of Cambridge; Rafael Jose
Baptista, Arlington, all of Mass.;
Bryan A. Bentz, Stonington, Conn.;
William F. Ganong, III, Brookline;
Donald Bryant Selesky, Westford, both
of Mass.
Assignee: Lernout & Hauspie Speech Products
N.V.,, Ypres, Belgium
Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
Appl. No.: 08/885,631
Filed: Jun. 30, 1997
Int. CL7 oo, G10L 15/18; G10L 15/22
US. Cl e 704/257; 704/275
Field of Searchc.ccovevvvneinen. 704/8, 9, 257,
704/270, 275; 395/703, 705, 707, 709,
708
References Cited
U.S. PATENT DOCUMENTS
4,829,423 5/1989 Tennant et al. ..cccoccovevvereveeceuennnne 704/8
4,984,178 1/1991 Hemphill et al. 704/255
5,349,526 9/1994 Potts, Sr. et al. . 364/419.1
5,475,588 12/1995 Schabes et al.cccoeveeevccenennnneee 704/9
5,640,576 6/1997 Kobayashi et al. ... 395/759
5,805,775 9/1998 Eberman et al. 704/257
5,819,210 10/1998 Maxwell, III et al. .. 704/9
5,835,893 11/1998 Usiodaccceeveuemeeinecreenenneunnnens 704/9
FOREIGN PATENT DOCUMENTS
0394 628 2/1990 European Pat. Off. .
SENTENCE
STRING
-42

I

CFG PARSER [—52

PARSE TREE—54

PHASE 1

REWRITER [

OTHER PUBLICATIONS

Parr, Terence J., “An Overview of Sorcerer: A Simple
Tree—Parser Generator”, Int’l Conference on Compiler Con-
struction; Edinburg, Scotland; Apr. 1994.

Unknown Author, The Free Compiler list —-BNF Subset:
“Description of Sorcerer: A Simple Tree Parser Generator”,
Web Document http://archive.inesc.pt/free—dir/
free—S—1.300.html Posting date (estimated): May 16, 1994.

Roe, David B., et al, “A Spoken Language Translator for
Restricted—Domain Context-Free Languages”, Speech
Communication II, (1992), pp. 311-319.

Wellekens, C. J., et al, “Decodage Acoustique et Analyse
Linguistique en Reconnaissance De La Parole”, F Revenue
HF, vol. 13, No. 5 (1985).

Zue, Victor, et al, “The Voyager Speech Understanding
System: Preliminary Development and Evaluation”, IEEE,
(1990), pp. 73-76.

Primary Examiner—Richemond Dorvil
Assistant Examiner—Martin Lerner
Attorney, Agent, or Firm—Bromberg & Sunstein LLP

[57] ABSTRACT

A system and method of allowing a user to control a
computer application with spoken commands, include the
steps of processing the spoken commands with a Speech
Recognition application into candidate word phrases, and
parsing at least one candidate word phrase with a Context
Free Grammar (CFG) parser, into a parse tree. A plurality of
predefined rewrite rules grouped into a plurality of phases
applied are to the parse tree, for rewriting the parse tree.
Each of the plurality of rewrite rules includes a pattern
matching portion, for matching at least a part of the parse
tree, and a rewrite component, for rewriting the matched
part. A command string is produced by traversing each
terminal node of the modified parse tree. The command
string is sent to an interpreter application or directly to the
computer application. Possible applications include word
processing and other voice-entry systems.

23 Claims, 14 Drawing Sheets

708

80A--

L

82A—PARSE TREE

798

80B—| PHASE2

i

82B-—PARSE TREE

PHASE 3

68

0
| REWRITE
RULES

80C-

Uﬁ

82C— PARSE TREE

80N—| PHASEN

|
70C

ﬂﬁ

72
EXECUTABLE
PROGRAM

'

70N

6,138,098

Sheet 1 of 14

Oct. 24, 2000

U.S. Patent

l "OId

LE
m

H3134d431NI
ANVINNOO

A4

HO33dS

AU NOILLYDITddY
NOILINDOD3YH

144

VAN
05 j h\T# o 8¢g

et —

(SINOILVYDITddY
H3HL1O0

W31SAS H31NdNOD

6,138,098

U.S. Patent Oct. 24, 2000 Sheet 2 of 14
LASSIE (NIST 1)
SYSTEM
DIAGRAM
|
SPEECH IN
(SPEECH
WAVEFORMS)
36\i
37—{CONTINUOUS
(\) 62 64 SPEECH
KVG FILE) / RECOGNIZER
WORD PAIR e
58 GRAMMAR —
56 CANDIDATE SETS
)
v 60 52|
CONTEXT FREE) »| PARSER
GRAMMAR J
PARSE TREES—54
6]8 l
70
66—]
REWRITE w -
]
76 VB PROGRAMS
J |
INTERPRETER) 78 4
SUBROUTINES) ~| VISUAL BASIC
(VISUAL BASIC > INTERPRETER
CODE) y
N |
OLE CALLS
48»l
3p—| APPLICATION
(MICROSOFT WORD)

FIG. 2

U.S. Patent Oct. 24, 2000 Sheet 3 of 14 6,138,098
SENTENCE
STRING
t—42
CFG PARSER }|—52
PARSE TREE—54
REWRITER [©°
y 70A
80A— PHASE1 |« (
i
82A— PARSE TREE
v 798
80B— PHASE2 |<+ 68
I 70
82B—PARSE TREE (REWRITE
‘ RULES
80C— PHASE3 [« (
I 70C
82C—PARSE TREE
80N— PHASEN |= [
70N
72—
EXECUTABLE
PROGRAM

'

FIG. 3

U.S. Patent Oct. 24, 2000 Sheet 4 of 14 6,138,098

SENTENC%
C VERB (NOUN-PHRASE)

)
\
(v) (o) (Coom)
o) (o)

FIG. 4

U.S. Patent Oct. 24, 2000 Sheet 5 of 14 6,138,098

REWRITE RULE

SelectNP(SelectNS) ==>
SelectNP ("THIS", SelectNS)

96a

SelectNP

SelectNP

SelectNs

—
PATTERN TREE 96b REWRITE TREE
. J \ _J
Y Y
92 94

FIG. 5

U.S. Patent Oct. 24, 2000 Sheet 6 of 14 6,138,098

BEGIN PHASE [—140

!

SELECT ROOT MODE IN INPUT TREE [—142

!

SEQUENTIALLY APPLY REWRITE RULES TO

S PRESENT NODE IN INPUT TREE UNTIL THE
PATTERN TREE OF A REWRITE RULE MATCHES

PRESENT NODE

!

BIND PATTERN NODES TO MATCHING
INPUT TREE NODES

!

COPY REWRITE TREE TO OUTPUT TREE, FOLLOWING | 148
BINDINGS (IF PRESENT) TO INPUT TREE NODES

144

— 146

150

154
NO
PHASE COMPLETE

____________ RECURSIVELY EXAMINE EACH | .,
SUBTREE NODE

ANY
SUBTREE

NODES
?

FIG. 6

6,138,098

Sheet 7 of 14

Oct. 24, 2000

U.S. Patent

28
3341 1Nd1N0O

__DEO;__

VANOE
a6 az6
AL AL
' A '
3341 3LIHM3Y 3341 NY3LLvd

coles

dNio9IeS

ANVININOD

g06

(Swosles “,SIHL.) dNeles
<== (SN198|eS)dNIo8|eS

37NY 3LIUM3H

¥8
3341 1NdNI

__DEO;:

dNO9|es

ey6 BeZ6
A A
4) 1)
3341 311dM3YH 3341 Nd3llvd
)~
B96
<==
37N 31L1IdM3YH

ANVIAWOO

eg86

U.S. Patent Oct. 24, 2000 Sheet 8 of 14 6,138,098

(COMMAND)

(BOLDV) C OBJECTNP)

AN
(o) () (ooome)

)
(o) (wom)
(o)

CFG PARSE TREE OUTPUT

FIG. 8

U.S. Patent Oct. 24, 2000 Sheet 9 of 14 6,138,098

COMMAND COMMAND

i

()
()

SelectNP

1)

SelectNP ’
SelectNs , "THIS

"WORD" ‘ "WORD" ’

OUTPUT OF OUTPUT OF
PHASE 1 PHASE 2

SelectNs

0

FIG. 9 FIG. 10

6,138,098

Sheet 10 of 14

Oct. 24, 2000

U.S. Patent

L DI

€ ISVHd
40 LNd1NO

__w_ —l—l—l__

SNI09|eS dN108|es

mw_wmtﬂmo._.o@ Q

_omoou Oom_mmv
7

\

mww:mm cwwhowow mOvaaDchowow

oa u OOwﬁmvaDchowoou mvhhm:oﬁwmowmuwcooooc_ow

6,138,098

Sheet 11 of 14

Oct. 24, 2000

U.S. Patent

«|9SJOUEIS\\,

¢l "Old

¥ ASVHd
40 1Nd1NO

__DEO;__ __I_lm<l—lw=

__Dmog__

Qm&xoomo ._.ooﬁxw Q_om_oou m od U
7

A

mwm:mm cwm:owo@ momzmua:cwgw

o@ oda U QOwﬁmuaDcwwhowoou mvtm_coywwowmuwcogoc_o@

6,138,098

Sheet 12 of 14

Oct. 24, 2000

U.S. Patent

€l 'Ol

G 3SVHd 40 LNd1NO

____/l uoneunsego oDIPI gM.

U\pJo 12
>>m® m \PIOAJOU ﬁm__v

Asﬁ% \ __ : L 1yBigpio

«\L @709 8M.

1eouon

mczmemE:mmm:otm cOU
@6 Bunepdnuseiog gm,

mc/r OC:.MUQDCOQ‘_OW.m; HXU

@fmo:omcmoam.mg__

JU\X 0106 uayy()1e10041018peSsHU| @

6,138,098

Sheet 13 of 14

Oct. 24, 2000

U.S. Patent

v "Old

S3AON ONIXTVM

-~

\\\lm___/u”co_gm::mooo._.og_vm.m_>>__ -+

|

'

-

-

—
e —

-

\\\\\\\ ‘ P __C 10 e . -
[\\-@ﬁ :;m_m_eo\s.m\@A\ h \PJOAIOH ﬁmUA; “
/
\

\
\

~o /
/III 1
II// i
~)
N\ /
/I * _ e \\
= __C/_- n_l_om m>>= - \\\\\
\ yeouo) T
// \\\\\\
. -
/// \\\\\\
~
N\ _\/ P __c/ﬂxQZQE:mom_o_‘_chWA,
) LU\0 BuepdnueaIds gm, Je-——2)
. . \\ /
\\\mc/_. Bunepdnuaaing gm .XQA\ \\\\
; e

e ——
—~—
—~—

~

)

@/r_wm‘_..—mﬁ_ ua2aldoS M. 7

mmh/x 0106 usyy()4810041019peSHU| @

6,138,098

Sheet 14 of 14

Oct. 24, 2000

U.S. Patent

GlI 'Ol
y3L3ud 334L S3ISFHLOJAH
ddV |« Odl i« "oz (] LE0S [<{ HALEMIY smmm,LA HasHvd bﬁ B TERGSY QA HSO |«{ I1dINVS [+ VdY
[[[[i
26 8v vl 2L 99 2s 4/
z%_w_@ﬁoozmm NOLLINBOO3H
STINY ILIgMIY ST1Nd 530
SNOLLONNA QF1IdNOD A3 11dINOD g9 °S0
8z g3 dNOD
\/x\m«o;m_z °SO
A
mm_<%mo>>
H31IdINOD [
H3IAVO] mm_.__as_oo (S3HOD aHom
NOLONNS | | 35t 38 930 e SNIRPAL || S3 SaNgred
TYNY31NI ST13AONW HSO
il ﬂ [+ / |
HILHIANOD
SNOILONNS | _S3Nd SQHOM FNOS YO OLENOHd 530
H31T8dHAINI | ATmad | STINE D0 | SNOLVIDNANOEd = AN Koo
o O LIX3INOO | 1
85— DM ZLX3LINOD
= AHYNOLLOIC
08¢ DM ELXAINOD OIWINOHd
TVNE3IX3

6,138,098

1

COMMAND PARSING AND REWRITE
SYSTEM

BACKGROUND

Speech recognition systems are becoming more prevalent,
due to improved techniques combined with a great need for
such systems. Speech recognition systems (SRS) and Appli-
cations (SRAs) are used in a wide range of applications
including free speech entry (Continuous Speech
Recognition) into word processing systems, speech selected
items for limited choice entry categories, such as form
completion, and verbal commands for controlling systems.

In the area of verbal commands for controlling systems,
a goal is to allow near-normal human speech to be compre-
hendible by a computer system. This field is referred to as
Natural Language Processing (NLP), an area where humans
excel but that is incredibly difficult to define in precise
mathematical terms needed for computational processing.

In free speech entry systems, such as word entry into a
word processing program, a person speaks, and the SRS
system inserts the words into the word processing program.
The person watches the words being entered by a visual
system, such as a computer monitor. There is direct feedback
to the user, who can see her thoughts recorded, and make
corrections should the SRS system misunderstand a word or
phrase. Compared to a person using a tape recorder to later
have a stenographer transcribe it, this SRS has many advan-
tages.

This direct feedback loop is even more advantageous
since the person can also edit the text entered into the word
processor. Writing is an indefinite process, often requiring
changes and restructuring. Editing and redrafting is an
integral part of writing. If a person is entering text into a
word processor using a SRS system, it is a natural extension
for the person to be able to edit and modify the text using
voice commands, instead of having to resort to keyboard
entry or pointer devices. Therefore, an SRS system for text
entry would preferably have at least two different modes,
one of free speech entry, and one of user command inter-
pretations. These modes are very different processes, but
their combination has great utility.

There are a great variety of word processing programs
available which run on general purpose computers such as
personal computers (PCs). There are also several SRA
(Speech Recognition Applications) available, some of which
allow a user to enter text into a word processing application.
The word processing application is separate from the SRA.
The word processing application normally accepts text from
a keyboard, though the text entry can take other forms. The
SRA acts as a “front end” to the user’s word processing
application.

As previously described, adding text into a word process-
ing application and allowing speech command editing are
two different concepts. To allow editing, an SRA must be
able to interpret user commands, and instruct the separate
word processing application to perform those commands.
Interpreting user commands represents a vast range of
problems, from the difficult task of NLP (Natural Language
Processing), to the problem of properly instructing a variety
of different user applications.

A NLP system for controlling a word processing appli-
cation will usually have a limited vocabulary recognition
determined by the available commands for editing and
formatting text. The NLP system must be able to interpret
the variety of commands and instruct the word processing
application to perform accordingly. The set of possible

10

15

20

25

30

35

40

45

50

55

60

65

2

commands can be very large. As an example, some com-
mands limited to VERB-NOUN pairs (in action-object
paradigms) include “delete character”, “delete word”,
“delete line”, “delete sentence”, etc. With a huge number of
possible noun objects, a mapping of all possible verb actions
(examples: “delete” “italicize”, “underline”, “bold”, “move”
etc) is enormous. Further, any additions in the form of new
commands will create a huge number of new VERB-NOUN
pairs.

Another problem is that NLP is often error prone. Many
SRAs often rely on educated guesses as to the individual
words the user said. A typical SRA has no thematic or
semantic sense of natural language. It only attempts to
identify words based on analysis of the input sound sam-
pling. This leads to several possible interpretations of what
the user requested. The NLP application has the daunting
task of attempting to interpret several possible commands
and selecting the correct interpretation. Computer process-
ing time is wasted on improper determinations, resulting in
overall slow application speed. Further, an NLP application
often cannot even determine an incorrect determination.

Some systems allowing user commands attempt to avoid
these problems by using “fill in the blank” templates. The
user is prompted with a template to complete, by first stating
a verb, and then stating an object. The choice of possible
entries into each slot of the template is severely limited. The
user can only enter a limited selection of verbs or nouns.

This approach severely limits the power of an NLP
system. This template approach is slow and user intensive.
Also, modifiers are not allowed, so a user cannot say “delete
two words”. The user must issue two “delete word” com-
mands. The goal of making application command interpre-
tation an easy and intuitive task becomes lost.

Accordingly, what is needed is a NLP system which can
accurately interpret a wide range of user commands, with
easy extensibility. The word vocabulary and command
forms must be easy to extend, without affecting the present
vocabulary. Further, improper command phrases should be
detected as quickly as possible to avoid spending computer
time processing such phrases. The system should also pro-
vide users with informative error messages when command
phrases are improper. The NLP application must be immune
from infinite loops occurring while processing commands.

The NLP command interpreting application must be
modular enough so that adapting it to command different
applications is simple. For example, the NLP application
should require minimal changes to allow commanding of
different word processing applications, each with a com-
pletely different programming or macro language. Adapting
the NLP application to other application domains, including
mail systems, spreadsheet programs, database systems,
games and communication systems should be simple.

Along with the NLLP command interpreter being adaptable
among different applications at the back end, it should also
be adaptable at the front end, for different languages such as
English or French, or to allow for other variations in speech
or dialect.

SUMMARY

The present invention includes a system for converting a
parse tree representing a word phrase into a command string
for causing a computer application to perform actions as
directed by said word phrase. A rewriting component applies
at least one of a plurality of predefined rewrite rules to the
parse tree, for rewriting the parse tree according to the
rewrite rules.

6,138,098

3

The predefined rewrite rules are divided and grouped into
a plurality of phases. The rewriting component applies all
predefined rewrite rules grouped into one of the plurality of
phases to the parse tree before applying predefined rewrite
rules grouped into another of the plurality of phases. Within
each phase, the rewrite rules are applied in a predefined
sequence to the parse tree. Each of the rewrite rules includes
a pattern matching portion, for matching at least a part of the
parse tree, and a rewriting portion, for rewriting the matched
part of the parse tree. The rewriter component applies the
rewrite rule to the parse tree by comparing the rewrite rule
pattern matching portion to at least a part of the parse tree.
If the predefined rewrite rule pattern matching portion
matches at least a part of said parse tree, the matched part of
the parse tree is rewritten according to the predefined rewrite
rule rewriting portion.

The parse tree is produced by a parser, in the preferred
embodiment a CFG (Context Free Grammar) parser in
response to the word phrase. The CFG parser includes a
predefined plurality of CFG (Context Free Grammar) rules,
and the CFG parser applies at least one of the predefined
plurality of CFG rules to the word phrase, to produce the
parse tree. The word phrase is produced by a Speech
Recognition Application in response to a user speaking the
word phrase.

The command string produced includes programming
language instructions, which are interpreted by an interpret-
ing application which causes the computer application to
perform actions as directed by the word phrase.
Alternatively, the programming language instructions are
interpreted by the computer application to cause it to per-
form actions as directed by the word phrase. An example
computer application is a word processing application.

A method of allowing a user to control a computer
application with spoken commands according to the present
invention includes the steps of converting a spoken com-
mand into electrical signals representing the spoken com-
mand. The electrical signals are processed with a Speech
Recognition application into at least one candidate word
phrase. The at least one candidate word phrase is parsed with
a Context Free Grammar (CFG) parser into a parse tree. A
plurality of predefined rewrite rules grouped into a plurality
of phases are applied to the parse tree, for rewriting the parse
tree into at least one modified parse tree.

Each of the plurality of predefined rewrite rules includes
a pattern matching portion, for matching at least a part of the
parse tree, and also includes a rewrite component, for
rewriting the matched part of the parse tree.

The method includes producing a command string by
traversing nodes of the at least one modified parse tree, and
providing the command string to an interpreter application.
The interpreter application is directed to execute the com-
mand string, for causing the interpreter application to
instruct the computer application to perform actions appro-
priate for the spoken command.

If the predefined rewrite rule pattern tree component
matches at least a part of the parse tree, the matched part of
the parse tree is rewritten according to the predefined rewrite
rule rewriting portion. If the matched part of the parse tree
includes subnodes not matched by the predefined rewrite
rule pattern tree component, the predefined rewrite rules
grouped in one of the plurality of phases are sequentially
applied to the unmatched subnodes of the parse tree. Each of
the phases includes an implicit predefined rewrite rule which
matches and rewrites one node of the parse tree, the implicit
predefined rewrite rule being applied to the parse tree if no

10

15

20

25

30

35

45

50

55

60

65

4

other predefined rewrite rules grouped in each of the phases
match the parse tree.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overview of a computer system including a
speech recognition application and command interpreting
system to control another application according to the
present invention;

FIG. 2 is a block diagram including elements of a com-
mand interpreting and rewrite system;

FIG. 3 is block diagram focusing on a rewrite system
according to the present invention;

FIG. 4 is an example parse tree produced by a CFG parser;

FIG. 5 shows an example rewrite rule;

FIG. 6 is a flowchart showing the steps performed in
rewriting parse trees according to the present invention;

FIG. 7 shows how rewrite rules are matched to nodes of
a parse tree,

FIG. 8 is an example parse tree produced by a CFG parser
for the phrase “bold this word”;

FIG. 9 is the example parse tree of FIG. 8 after completion
of a first rewrite phase with example rewrite rules;

FIG. 10 is the rewritten tree of FIG. 9 after completion of
a second rewrite phase with example rewrite rules;

FIG. 11 is the rewritten tree of FIG. 10 after completion
of a third rewrite phase with example rewrite rules;

FIG. 12 is the rewritten tree of FIG. 11 after completion
of a fourth rewrite phase with example rewrite rules;

FIG. 13 is the rewritten tree of FIG. 12 after completion
of a final rewrite phase with example rewrite rules;

FIG. 14 shows how the nodes are traversed in the example
rewrite tree of FIG. 13; and

FIG. 15 is an overview of an application system according
to one embodiment of the present invention.

DETAILED DESCRIPTION

A general purpose computing system 20 which includes
speech recognition and speech control of applications is
shown in FIG. 1. The computer system 20 is any general
purpose computer, including workstations, personal
computers, laptops, and personal information managers. In
a typical arrangement, the computing system 20 displays
output 24 on a computer monitor 22, for a user to see. The
user can type input on keyboard 26, which is input into
computer system 20 as shown by arrow 28. Other user
display and input devices are also available, including
display pointers such as a mouse etc. (not shown).

At least one application 32 is running on computer system
20, which the user normally can monitor and control using
monitor 22 and keyboard 26. Application 32 is any computer
application which can run on a computer system, including
operating systems, application specific software, etc.
Besides displaying output, applications can also control
databases, perform real-time control of robotics, and per-
form communications etc. For this description, a word
processing application will be used for exemplary purposes.
However, there is no limit on the type of applications and
systems controllable by the present invention.

For entering words and commands to an application 32, a
user speaks into a microphone 34. Microphone 34 includes
headset microphones and any other apparatus for converting
sound into corresponding electrical signals. The electrical
signals are input into SRA (Speech Recognition

6,138,098

5

Application) 37, as shown by arrow 36. The electrical
signals are typically converted into a format as necessary for
analysis by SRA 37. This includes conversion by a real-time
A/D converter (not shown), which converts the analog
electrical signals into discrete sampled data points repre-
sented as digital quantities. The digital data can also be
preprocessed using various signal processing and filtering
techniques, as is well known in the art.

SRA 37 is a speech recognition system which converts the
input data into candidate words and word phrases. SRA 37
includes Continuous Speech Recognizers (CSR) and other
varieties of discrete speech recognizers. An example SRA 37
is Voicepad, as produced by Kurzweil Applied Intelligence
Inc., of Waltham, Mass. Voicepad runs on a variety of
platforms including Microsoft® Windows Systems includ-
ing Windows 3.1, NT and Windows 95.

SRA 37 is capable of controlling application 32 using
standard interface methods 32 including IPC (inter-process
communication) such as OLE (Object Linking and
Embedding), sockets, DDE, and many other techniques.
SRA 37 is also able to monitor and obtain information 40
about application 32 using the same techniques. For the
example of word processing, SRA 37 inserts the words
spoken by the user into the word processing buffer of
application 32. The user can use the keyboard 26 or micro-
phone 34 interchangeably to enter text into the word pro-
cessing application 32.

Either separate or combined with SRA 37 is command
interpreter 46. SRA 37 can communicate fully with com-
mand interpreter 46 as shown by arrows 42, 44. Command
interpreter 46 receives candidate words or word phrases
from SRA 37, which command interpreter 46 then processes
into instructions 48 for application 32. These instructions
can be any form as needed for controlling application 32,
including macros, interpreted code, object code and other
methods as will be discussed below. Command interpreter
46 can also monitor application 32 as shown by arrow 50.

In the example of word processing applications, a user
speaks text to be entered into the word processor, which is
processed by SRA 37 and sent to application 32. The user
can also speak editing and formatting commands, which are
processed by SRA 37 and command interpreter 46, and then
sent to application 32. Some example editing commands
includes “delete word”, “move up one page”, “bold this
word”, etc. The user never has to use the keyboard 26,
although they are always free to do so. SRA 37 can distin-
guish text from editing commands using several techniques,
one of which is described in U.S. Pat. No. 5,231,670,
assigned to Kurzweil Applied Intelligence Inc., and incor-
porated herein by reference.

Command interpreter 46, FIG. 2 receives input 42 from
SRA 37 preferably in the form of candidate sets of possible
words. As previously stated, word ambiguity and speech
misinterpretation often results in several possible different
word phrases which must be analyzed. An SRA 37 can
receive information to assist in identifying possible valid
word phrases in the form of word pair grammar rules 62.
These word pair grammars are available from grammar files
56. By using the word pair grammars, SRA 37 has infor-
mation to help interpret spoken words and provide educated
guesses as to word phrases spoken by the user.

Candidate sets 42 are input into Context Free Grammar
(CFG) parser 52. CFG parser 52 accepts input 60 from
grammar file 56. The input 60 includes grammar rules for
parsing a language. Context free grammars (CFGs) are a
standard way to represent the syntactic structure of formal

10

15

20

30

40

50

55

60

65

6

languages. Highly regular sets of English sentences, such as
command sets, can also be expressed using these grammars.
In a context free grammar, each word in the language is of
a particular type, say a noun, verb or adjective. Sequences of
these types can in turn be represented by other types.
Context Free Grammar Parsers will be discussed in greater
detail below.

The output of CFG Parser 52 is a parse tree 54 represent-
ing the word phrase 42 which was input to CFG parser 52.
If several possible word phrase candidates 42 are input into
CFG parser 52, a separate parse tree 54 will be produced for
each word phrase candidate 42.

The parse tree 54 is then examined by rewriter 66.
Rewriter 66 also gets input 70 from a file 68 which contains
rewrite rules used by rewriter 66 in rewriting parse tree 54.
CFG parser 52, rewriter 66, and database files 58 comprise
the main components of command interpreter 46, FIG. 1.

The output of rewriter 66 is a command string 72 which
instructs application 32 how to perform the commands
spoken by the user. Command string 72 may be a set of
instructions to be interpreted by an interpreter 74. Interpreter
74 may access or be automatically loaded with libraries of
routines and code 76, which are available 78 to assist in
controlling and monitoring application 32. Alternatively,
command string 72 may be compiled by a compiler into
object code, as is well known in the art. Further, depending
on the application 32, command string 72 may be sent
directly to the application 32 to be executed.

If an intermediary interpreter 74 is used, the output of
interpreter 74 includes set of interprocess communication
calls 48 for controlling application 32.

CFG parser 52, FIG. 3 converts words, word phrases and
sentences into a parse tree representing the syntactic form of
input words or sentences. A parser takes an input sentence
and a grammar to determine the structure of the sentence
relative to the given grammar. For example a sequence
‘determiner noun’ can be represented by another type such
as ‘noun-phrase’. These relationships can be expressed in an
example grammar of:
noun-phrase—det noun
sentence—verb noun-phrase
noun—“ball”
noun—“box”
det—“the”
verb—“kick”

A grammar is a set of rules that define the structure
accepted and parsed by that grammar. A parser using these
grammar rules will take an input sentence and determine the
structure of the sentence relative to this grammar, if there is
one, and can reject sentences for which there is no such
structure. The parser matches components on the right side
of the grammar to components on the left, usually by
recursively scanning the sentence structure, and applying
grammar rules which match the sentence. The parsed struc-
ture can then be represented as a parse tree. For example,
with the sentence “kick the box” and the grammar above, the
parse tree as shown in FIG. 4, would be:
sentence(verb(“kick”),

noun-phrase(det(“the”), noun(“box”)))

A parse tree 54 can be represented in any convenient form
for processing. Trees are recursive data structures composed
of nodes. Any tree is a subtree of itself. Each node can have
a set of child nodes. These nodes may in turn have their own
children, nodes are divided into two classes, terminal and
non-terminal nodes. Terminal nodes in a parse tree typically
will represent words in an input sentence, or the words in the

6,138,098

7

output program. These nodes never have any children. All
other nodes are non-terminal, which have children. They are
typically used to represent the ‘phrase structure’ of a sen-
tence.

Some standard representations for parse trees include
linked nodes using pointers, data structures, arrays, tables,
and text lists, such as the above example parse tree.

In the preferred embodiment, CFG parser 52 FIG. 3 is an
implementation of the well known parsing algorithm by Jay
Earley (J. Earley, 1970, “An efficient context-free parsing
algorithm”, Comm. ACM). Alternatively, a shift reduce
parser (which is a standard CFG parser implementation
typically used in language compilers) is used. The particular
parsing technology is not important. Any parser that can
parse arbitrary context free grammars will work. The gram-
mars used may include recursion, but preferably they should
have only finite ambiguity.

At load time CFG parser 52 is loaded with a Context Free
Grammar (CFG) 56 from a file. Any suitable CFG 56 can be
used. Typically there will be at least one CFG 56 for each
application 32. The CFG 56 describes the set of commands
that can be issued to a given application 32. For example to
recognize the following small set of commands:
bold this line
bold this word
bold this sentence
delete this line
delete this word
delete this sentence
go to the end of the document
The following Context Free Grammar (CFG) 56 will work:
S—VERB OBJECT
S—*“go to the end of the document”

VERB—bold
VERB—delete
OBJECT—*“this line”
OBJECT—“this word”
OBJECT—“this sentence”

CFG 56 defines a fixed set of commands that will be
recognized against. It also determines the vocabulary size
that SRA 37 will recognize. It also constrains the number of
commands the recognizer will recognize against. As an
example, in one embodiment of the present invention, only
sequences composed of pairs of words that are possible in a
given CFG are recognized. The set of commands for which
command string programs must be generated is clearly
determined. In the above example CFG 56, there are seven
commands which programs can be generated to perform.

Rewriter 66 takes a parse tree 54 and repeatedly rewrites
it. Rewriter 66 comprises of a series of ‘phases’ 80. Each
phase 80 takes a parse tree, transforms it, and passes the
output 82 on to the next phase 80. Tree walking the final
result produces a command string 72 representing an execut-
able program.

Each phase 80 applies a set of rewrite rules 68 to the parse
tree 54, 82. Arewrite rule 90 FIG. 5, is a pair of trees, similar
to parse trees. A rewrite rule 90 includes a pattern tree 92 and
a rewrite tree 94.

The pattern tree 92 is used to match against the input parse
tree 54. If the input tree 54 matches the pattern tree 92, then
the rewrite tree 94 is used as a template to build an output
parse tree 82.

The steps performed by a rewrite phase 80 begins with the
start of a phase, step 140, FIG. 6. The matching starts with
the highest node (usually the root node) of the input tree,
step 142. The first rewrite rule of the phase is compared to
the nodes of the input tree 54. The comparison and matching

10

15

20

25

30

35

40

45

50

55

60

65

8

process will be described below. If the rewrite rule pattern

tree does not match the node, the next rule in the phase is

applied until a rule matches, step 144.

When a rewrite rule pattern tree 92 matches the input
node, the next step is to bind the matching nodes in the
pattern tree 92 to the matched nodes in the input tree, step
146. The matched input tree is rewritten by copying nodes
following the bindings, step 148.

If there are more subtree nodes on input tree 54 step 150,
then the process recurses, step 152. The recursive process
starts at step 144 with the subtree nodes as the input nodes.
All rewrite rules of the phase are applied to the subtree nodes
until a rewrite rule matches. The subtree nodes are bound
and rewritten to the output, steps 146—148. This recursive
walking of the input tree continues until there are no more
subtree nodes, as determined at step 150. The rewrite phase
is now complete, step 154.

The steps as described in FIG. 6 will now be described in
detail. To match an input tree 54 to a pattern tree 92 for step
144, the root node of each tree 54, 92 is compared. If the two
nodes match, the rewriter recursively descends the pattern
tree 92, matching the children of each node against the
appropriate nodes in the input tree 54. If all of the nodes in
the pattern tree 92 are matched against nodes in the input
tree 54 then the match is successful. This means that for each
node in the pattern tree 92 there will be at least one node in
the input tree 54 that the pattern node is “bound” to. It is
possible for the input tree 54 to have nodes that are not
“bound”.

Two nodes match if the two nodes are identical. In
addition there are four special pattern tree nodes which can
match a certain class of input tree 54 nodes:

The special wildcard node (in the preferred embodiment,
this is represented by the reserved word “#”), will match
any single node in the input tree 54.

The terminal wildcard node (represented by “?” in the
preferred embodiment), will match any single terminal
node.

The non-terminal wildcard node (represented by “__” in the
preferred embodiment), will match any single non-
terminal node.

The range wildcard node (represented by “ . . . ” in the
preferred embodiment), will match any series of nodes
which are all consecutive children of the same parent.
Both the normal nodes and the special wild card nodes can

exist in any position, with one exception. The range

wildcard, “ . . . ”, should only be used as the last child of its
parent node. This implies that the range wildcard node may
never be the root node of a tree, but that it can be the only
child of some node. This restriction exists for efficiency
reasons. If it were allowed to have siblings on its left and on
its right then determining which nodes the range wildcard
matched with would be a generalized parsing problem. It
would among other things introduce ambiguity into the

matching process. (i.e. an input tree 54 and a pattern tree 92

might have more than one set of valid bindings).

For example with an input tree of:

Bold(“bold”, ObjNP(“this”, Noun(“line”)))

and the pattern tree of

Bold (?, _(...))

The matching starts by comparing Bold in the pattern tree
92 against Bold in the input tree 54. Since the nodes are
identical, they match and the next step is to match their
children. Taking the first child of the pattern tree Bold node,
7, the next step is to try to match that against “bold” in the
input tree. Since “bold” is a terminal node it matches ?.
Since ? has no children, next go to its ‘sister’ node, .

»

6,138,098

9

Therefore, compare __ against ObjNP, since ObjNP is non-
terminal, they match. The node _ has a child node, so go on
to match it. It matches both “this” and Noun. Since each
node in the pattern tree is matched against nodes in the input
tree the two trees have matched. Note that is this example,
in the input tree the node “line” did not get bound to any
node in the pattern tree. The final bindings are:

Pattern: Input

Bold Bold

? “bold”

_ ObjNP
“this”, Noun

All of the rewrite rules in a phase 80 are in a given order
which is determined by the order of the rules in the input
rewrite rule file 68. The last rule of any phase is #—=#. If this
rule does not exist explicitly in the input rule set as the last
rule of each phase, it is added automatically. This rule is
therefore implicit to each rewrite phase 80. If none of the
rules in a given phase 80 match the input tree 54, the implicit
rule #—, # will match, thereby guaranteeing the that process
will recurse down the input tree 54.

Once the matching and binding of pattern tree 92 nodes to
input tree 54 nodes is established, the input tree 54 can be
rewritten, step 148. Just as matching binds input nodes to
pattern trees, there are bindings 96 between pattern trees 92
and rewrite trees 94. These bindings are determined at load
time by matching the pattern tree 92 and rewrite trees 94 in
a similar way. The main difference is that when bindings
between pattern and rewrite trees 92, 94 are determined, it
is not required that all the nodes in either tree are bound.
This is in contrast to matching input trees 54 and pattern
trees 92, where all the pattern tree 92 nodes must be bound.
For example in the rule:

SpellCheck(__, SelectionNP)—>SpellCheck(__, “spelling™)

The tree on the left side of the arrow is the pattern tree 92.
The tree on the right is the rewrite tree 94. The bindings are:

rewrite
Spellcheck

pattern
Spellcheck

SelectionNP in the pattern tree 92, and “spelling” in the
rewrite tree 94 are both unbound.

The rewrite tree 94 may also be null. This is represented
by a tree with a single root node *. When the rewrite tree 94
is null, no nodes are bound.

It is possible for several nodes in either the pattern or
rewrite tree that have the same name. They are kept distinct
by assigning subscripts to them:

Command(Bold/1 (#), Bold/2(#))—Command(Bold/2)

Once an input tree 54 has been matched against pattern
tree 92, there are two sets of bindings. One set that maps
nodes in the rewrite tree to nodes in the pattern tree 92, and
one set that maps every node in the pattern tree 92 to nodes
in the input tree 54.

The output tree is constructed by recursively examining
each node in the rewrite tree. If the rewrite node is unbound,
or if the rewrite node has any child nodes it is simply copied
to the output tree. If the rewrite node is bound to a node in
the pattern tree, then it is necessarily bound to a node in the
input tree. If this input tree node is not the root node of the
input tree, then the subtree of the input tree defined by this
node is rewritten by recursion in the current phase. If the

10

15

20

25

35

40

45

50

60

65

10

bound node in the input tree is the root node, then the root
node is copied to the output tree, and all the subtrees defined
by the children of the root node are rewritten, if there are
any.

If the rewrite tree 94 is null (*), then the output tree will
simply be null, that is the input is simply erased. Otherwise,
when a node (or nodes) is copied to the output tree, it is
placed in a position that corresponds to the position it was
in the rewrite tree 94. So if the rewrite node under consid-
eration is the root node, then the node copied to the output
tree will be the root node of the output tree. If it is leftmost
child of the root node, then the thing copied over will be the
leftmost child of the root node.

The same tree or subtree from the input tree 54 may be
represented many times in the rewrite tree 94. In this way it
is possible for this section of the input to be duplicated in the
output. If a section in the input is not bound at all then this
section will not be copied to the output. In this way sections
of the input tree may be deleted.

The root node of the input tree is never rewritten when it
is copied to the output. This may put limits on the theoretical
computing power of the system, but it also guarantees that
for any set of rewrite rules and any input tree 54, the
rewriting process will always terminate. It is impossible for
this system to get stuck in an infinite loop. Each recursive
rewrite call will always use a smaller section of the input tree
than previous calls. Since all trees have a finite number of
nodes, the number of recursive subcalls is always finite.
There is no need to test against infinite recursion by any
technique such as counting or cycle detecting.

As previously discussed, if an input tree does not match
any rule in a given phase, it will match against the implicit
rule

#—#. This rule will match any input tree rooted with a
non-terminal. The effect of this is to copy the root node
matched by #, and rewrite each of the children.

Another example of this rewriting process is shown in
FIG. 7. The example rewrite rules are listed in Appendix A,
under Phase 2. The top node (in this case, the root node
COMMAND), of the input tree 54 is matched against each
rewrite rule, in order. The only rule that matches the COM-
MAND node is the implicit rewrite rule #—#, 90a.
Therefore, the pattern tree 92a is bound 98a to the COM-
MAND node of input tree 54.

The rewrite tree 94b of rewrite rule 90a is written to
output tree 82, by following the bindings 96a and 98a.
Therefore the COMMAND node of input tree 54 is copied
to output tree 82.

Since the COMMAND node of input tree 54 has
subnodes, the rewrite rules are applied to the subnodes.
Here, no rewrite rule other than #—# matches the BOLD
node, so it is rewritten to the output tree 82 the same way as
the COMMAND node (not shown).

Continuing down the subnodes, the SELECTNP node
matches the first part of pattern tree 92b of the rewrite rule
906 SelectNP(SelectNS)—SelectNP (“this”, SelectNS), and
the matching process recurses to attempt to match the
remainder of pattern tree 92b to input tree 54. Here,
SELECTNS matches the subnode in the input tree 54,
therefore the pattern tree 925 fully matches and the rewrite
rule is applied. Bindings 985, 98¢ match the nodes in the
pattern tree 92b to the nodes in the input tree 54.

Next, the rewrite tree 94b is written to the output tree 82,
by following the bindings 96 and 98. The node “this” in the
rewrite tree 94b is not bound to any part of the pattern tree
92b, so it is copied directly to the output tree 82.

Finally, the rewrite rules are applied to final node “word”
in input tree 54. Again, only the rewrite rule #—# matches,

6,138,098

11

so the node is copied to the output tree 82 (not shown). Since
there are no more nodes in the input tree 54, the rewrite
phase is now complete.

Rewriting occurs in multiple phases 80. The output of one
phase is cascaded to the next phase. This makes the system
modular and extensible. In porting the present invention to
a new application 32, only one or two end phases 80 directed
towards code generation are changed. It also allows the
possibility of making branched rewrite systems that produce
two or more programs from a single command. Likewise,
the modular nature allows multiple initial stages that support
different sets of commands to produce the same programs
(for example an English command set and a French com-
mand set).

A typical rewrite system includes approximately 20
phases. The format and syntax of the rewrite rules makes it
easy for developers to understand the effects of unitary rules,
despite the fact that rules can have very complicated effects,
and can be called recursively.

Further, only a subset of the original input is used as input
of a recursive subcall, even though recursive calls are
allowed during a rewrite phase. This has the effect of
guaranteeing that all computations will terminate. There is
no need to check or ever worry about introducing sets of
rewrite rules with infinite loops. This terminating condition
does not interfere with the type of computation typically
performed by the system.

The pattern matching ability of rewriter 66 is very
powerful, allowing great flexibility in command interpreta-
tion. The matching algorithm guarantees that if two trees
match, there is only one set of valid bindings. Without this
property, a rewrite system might have more than one valid
outcome for any given input.

The output command string 72 or program can be any sort
of interpreted language or macro. It can be a series of
keystrokes to send to an application, or even an actual binary
program image. This output is then sent to an appropriate
interpreter. In the preferred embodiment the output is Visual
Basic code. A Visual Basic interpreter (or compiler) 74
either interprets complete Visual Basic programs, or the
Visual Basic interpreter is used to simulate keystrokes being
typed to the application 32. This technique is useful for
applications 32 that have no exposed programming inter-
face. Therefore, the present invention allows natural lan-
guage control over any type of application 32 from any
source. If the application 32 accepts keyboard input (or from
a pointer interface including a mouse), then the present
invention will work with it.

The interpreter 74 used for the preferred embodiment is
any available interpreter, and can be easily changed depend-
ing on the requirements and configuration of the system.
One example of an interpreter 74 is WinWrap from Polar
Engineering. The interpreter 74 is embedded in the system,
and programmed to create a Word.Basic OLE (Object Link
Embedding) Automation object giving access to a running
version of Microsoft Word through the VB function
CreateObject, and stores the object in a global variable
“WB”. Any code produced with a “WB.” header is a call to
a Microsoft Word Basic function or command, which the VB
interpreter causes Microsoft Word to execute. Therefore, the
VB interpreter allows extra functionality to be programmed
separate from the functionality (or lack thereof) in the end
application.

This rewrite system of the present invention also allows
immediate detection and control of errors. If, after rewriting
any tree or subtree, the root node is _ fail |, the rewriter 66
will abort immediately. Therefore no attempt is made to

10

15

20

25

30

35

40

45

50

55

60

65

12

match any more rules in the current phase 80, nor does the
output cascade to any later phases. The tree with the _ fail
root node returned by the current rewrite rule becomes the
output for the whole rewrite system. Computation time is not
wasted pursuing unacceptable input.

This allows the command interpreter 46 to process many
more hypotheses (word phrases or sentences recognized by
the recognizer) than the “correct” one, and efficiently reject
bad hypotheses. In the preferred embodiment, CFG parser
52 is of a type that will reject a bad input word phrase or
sentence as soon as it is theoretically possible to determine
that the given word phrase or sentence cannot be parsed by
CFG 60. Likewise in the preferred embodiment, rewriter 66
is programmed by rewrite rules to fail to rewrite parsed
sentences that are problematic. For example, sentences with
non-sensical or ill-defined containment (e.g “bold the next
word in this character”) are rejected. As soon as one of these
sentences is detected, it is rejected without further process-
ing. An informative error message is provided to the user.
The message preferably is displayed on the monitor 22 in a
“pop up” window or other means, allowing the user to
understand the problem and correct it.

Similarly, in the preferred embodiment when the com-
mand interpreter 46 rejects an SRA 37 hypothesis, SRA 47
will return its next best recognition. This allows greatly
improved performance by SRA 37 in recognition ability, due
to detection and recovery from recognition errors.
Example of Command Processing Rewriting

An example of a complete rewriting of a parse tree
according to the present invention will now be shown. The
CFG rules and rewrite rules are listed in Appendix A. The
phrase used is “bold this word”, used in the context of a user
requesting a word processing application 32 to change the
appearance of a word in a document, the word being at the
present insertion point of the word processing application.
For this example, the word processing application 32 is
Microsoft Word, running under Microsoft Windows (any
version).

Given the input sentence: “bold this word”, the parse tree
generated by the parser is:
Command(Bold(BoldV(“bold”),
ObjectNP(SelectNP(Det(“this”),
SelectNs(“word”)))))
A representation of this parse tree is shown in FIG. 8.

Phase 1 begins. The rewriter attempts to match the above
tree against each rule. Since there are no rules that have
pattern trees with a root of Command, __ or #, the default
rule #—# is applied. It matches the above tree, and the
rewriter starts rewriting the tree. Command is copied as the
root node of the output. The rewriter then rewrites the
subtrees defined by each of the children. There is only one
such sub tree:

Bold(BoldV(“bold”),
ObjectNP(SelectNP(Det(“this”),
SelectNs(“word”))))

Again it will match no rules in this phase. The rewriter
applies the default rule and proceeds to children. In this case
there are two child subtrees. The first is:

BoldV(“bold”)
This tree matches the rule:
BoldV—*

The output of this rule is null, and a null output is
returned. The rewriter proceeds with the second child of
Bold:

ObjectNP(SelectNP(Det(“this”), SelectNs(“word”)))
In this case the following rule matches:
ObjectNP (SelectNP)—SelectNP

6,138,098

13

This rule will cause several more recursive rewrite calls.
The final output is:

SelectNP (SelectNs (“word”))

This is copied to the output; and the final output of this
phase is:

Command(Bold(SelectNP(SelectNs(“word”))))

This is shown in FIG. 9. The effect of this phase has been
to greatly simplify the input tree. Many nodes that were
needed in the CFG but are not needed for the rewriter have
been eliminated.

The second rewrite phase begins. This phase has a single
rule:

SelectNP (SelectNs)—SelectNP (“this”, SelectNs)

The steps of matching and rewriting this tree were pre-
viously described in reference to FIG. 7. The effect of this
rule to insert the word “this” into the input:

Command(Bold(SelectNP(“this”, SelectNs(“word”))))

The resultant tree is shown in FIG. 10.

The result of phase 3, as shown in FIG. 11 is:

Do(DoInDocCheck, DoSetOnError, DoScreenUpdateOff,
Do (Select(SelectNP(“this”), SelectNs(“word”))

DoBold, GoToStartSelect) DoScreenupdateon,
DoScreenRefresh)

The result of phase 4, as shown in FIG. 12 is:

Do (DolnDocCheck, DoSetOnError, DoScreenUpdateOff,
Do (Do(DoGoTo(“start”, “word”), DoSelect(“word”)),
DoBold, DoGoToBookmark(“\\startofsel”)) DoScreen-

UpdateOn
DoScreenRefresh)
The results of phase 5, as shown in FIG. 13 is:

Do(“if InHeaderOrFooter() then goto X\n”,

“OnErrorResumeNext\n”, “WB.Screenupdating 0\n”,

Do(Do(“Startofwordwn”, “WB.WordRight 1, 1\n”

“WB.Bold 1\n”, Concat (“WB.EditGoTo Destination = *7,
“startofsel”, “V\n"))

“X: WB.ScreenUpdating 1\n”, “WB.ScreenRefresh\n™)

This is the final output from the rewrite system. The
terminal nodes are scanned (walked), as shown in FIG. 14,
and their contents are concatenated to produce the following
command string (script):

if inHeaderorFooter() then goto X

OnErrorResumeNext

WB.ScreenUpdating 0

StartOfWord

WB.WordRight 1, 1

WB.bold 1

WB.EditGoTo Destination :=“\startofsel”

X: WB.Screenupdating 1

WB.ScreenRefresh

This script is then executed by a VB (Visual Basic)
Interpreter, which instructs Microsoft Word to bold the
word. In this script, commands sent directly to Microsoft
Word have the “WB.” prefix. Other functions are imple-
mented in VB, for example the StartOfWord command is
implemented as:
sub startofword

while not isstartofword ()

wb.charleft 1

wend
endsub

This function instructs Microsoft Word to move the
insertion point to the left one character, and checks to see if

10

15

20

25

30

35

45

50

55

60

65

14

the insertion point is at the beginning of the word, looping
until the condition is satisfied. The VB interface allows a
powerful control interface to the end application, and also a
level of abstraction among similar types of applications 32.
For example, the VB interpreter is programmed for word
processing applications with a set of functions to allow
cursor movement, recognizing and manipulating elements
such as words, paragraphs, sentences, tables, pages etc. A
different set of applications would have a similar set of
interface functions written for the interpreter.

A production system for controlling Microsoft Word is
capable of interpreting and controlling commands in cat-
egories including:

Selection (Select, Extend, Unselect)

Navigation (GoTo, Page, Scroll)

Text Manipulation (Copy, Cut, Delete, Insert, Move, Paste)
Text Formatting (Align, Bold, ChangeColor, ChangeFont,

HideText,

InitialCap, Italicize, Lowercase, Togglecase, Unbold,

Underline,

UnhideText, Unitalicize, Ununderline, Uppercase)
Document Formatting (Columns, FilepageSetup, Tabs)
Paragraph Formatting (Borders, Bullet, Paragraph, Number,

Unbullet, Unnumber)

Program (HideGU1, Turn, UnhideGU1, ViewGUI,

ViewMode, Zoom)

Tables (TableAdd, TableColWidth, TableRowHeight,

TableToText, TextToTable)

Document (CloseFile, OpenFile, Print, Protect, SaveFile,

Unprotect)

Outline (Demote, OutlineCollapse, OutlineMove,

ShowHeadingLevel)

Miscellaneous (Endnotes, Footnotes, TOC)
Tools (GrammarCheck, MailMerge, SpellCheck,

WordCount)

Undo (Redo, Undo)
Testing (ShowVersion)

A rewrite system for interpreting the above command
categories include 14 separate passes. The rewrite passes are
directed towards:

Pass 1: Drop unneeded terms, convert nonterminals.

Pass 2-3: Synonyms and paraphrasing, and regularizing tree
structure.

Pass 4: Paraphrasing.

Pass 5: Detecting Semantic Errors.

Pass 6: Detecting Containment Errors.

Pass 7: Command blocks for checking status of document.

Pass 8-13: Command processing.

Pass 14: Code Generation.

Another feature of the rewrite system is that self-checking
of rewrite rules is easily performed by a user writing rewrite
rules. A rewrite system is composed of one or more passes
consisting of one or more rewrite rules. During each pass,
the input tree or subtree is matched against the various input
patterns in order, and a rule match causes that output pattern
to be written. However, if there is an error in an input or
output pattern in that pass, or any earlier pass, either an
incorrect rewrite tree will be passed as input, or the correct
rule will fail to fire, and in incorrect tree will be passed
through the system. There is nothing in the rewrite system
itself to detect that the output tree is invalid.

To automatically detect such an error, the rewrite system
is augmented by an additional rewrite pass whose sole
purpose is to detect errors. The pass consists of a list of
rewrite rules whose input and output patterns are the names
of expected nonterminals, followed by a rule that matches
any nonterminal and rewrites to a fail node with an error
message.

6,138,098

15

For example, the last rewrite pass looks like:

[rewrite]

Do—Do

Concat—Concat

_ —fail (“internal rewrite error”)

If any nonterminal node other than Do or Concat is
present in the final output tree, the last rule will fire, and
report an error to the rewrite system. The user can then
examine the final output tree, and quickly determine which
rewrite rule produced the faulty rewrite tree, and correct that
rewrite rule.

As various changes could be made in the above construc-
tions without departing from the scope of the invention, it
should be understood that all matter contained in the above
description or shown in the accompanying drawings shall be
interpreted as illustrative and not in a limiting sense.

Appendix A

Example CFG Grammar and Rewrite Rules

In the following CFG, symbols enclosed in curly braces are
optional. Symbols separated by vertical bars are alternates.
Pronoun represents 3 rules: NP --> “block”, NP --> Det “block”,
NP --> Pronoun)

Command --> Bold | Select

Bold -> BoldV ObjectNP

BoldV --> “bold”

Select --> SelectV SelectNP

SelectV --> “select” “highlight” “choose”

ObjectNP --> SelectionNP SelectNP

SelectionNP --> {Det} “selection” Pronoun

SelectNP --> {Det} SelectNs | {The} Next SelectNs
SelectNs --> “character”| “word” | “sentence”

Next --> “next” “previous” “following” “preceding”
Pronoun --> “it” “that” “this” “them” “those” “these

Det --> “the” “this” “that”

The --> “the”

The following Rewrite system has five phases:

K K R R R R R R R R RS 5 K o

// phase 1: drop unneeded terms

/ o sk sk ok 3k sk sk e sk ok ke ok ok ok ok ok ok ok sk sk ke sk ok ke sk ok ok ok ok ok ok sk ok sk sk sk ke sk ok sk ok ok sk ok ok sk ok sk sk sk sk ok ok ok ok sk ok sk
BoldV ==> *

Selectv ==> *

Det ==> *

Pronoun ==> *

The ==> *

objectNP (SelectionNP) ==> SelectionNP
ObjectNP (SelectNP) ===> SelectNP

Next (“following”) ==> Next (“next”)
Next (“preceding”) ==> Next (“previous™)

ko o 8 R K R R R 3K 3k

// phase 2: first phase of command processing
//***

SelectNP (SelectNs) ==> SelectNP (“this”, SelectNs)

ko K K 8 8 8 R R R R RS SR3K o5

// phase 3. first phase of command processing
/ o s 3 ok e s ok e o ok ohe ok ok ok ok ok ok ok sk ok ke ok ok ke ok ok ke ok ok ok ok sk sk ke sk sk ke sk ok she ok ok 3k ok ok sk ok sk sk sk e ok ok ok ok ok ok sk
Command (_) ==>
Do (DolnDocCheck, DoSetOnFError, DoScreenupdateoff,
DoScreenUpdateOn, DoScreenrefresh)
Bold (SelectionNp) ==> DoBold
Bold (SelectNP) =>
Do (Select (SelectNP), DoBold, GoToStartSelect)

8 K R R R R R R R R R RS K 3

// phase 4: second phase of command processing
//***
Select (SelectNP (“this”, SelectNs (#/2))) ==>

Do (DOGOTO (“start”, #2), DoSelect (#/2))
Select (SelectNP (Next (“next”), SelectNs (#/2))) ==>

Do (DoAdjNext (#12), DoSelect (#/2))
Select (SelectNP (Next (“previous”), SelectNs(#/2))) ==>

Do (DoAdjprev (*/2), DoGoTo (“previous”, #/2), DoSelect

#
GoToStartSelect ===> DoGoToBookmark (“‘\\startotsel”)

9 S KSR K S K S K KK S

10

15

20

25

30

35

50

55

60

65

16

-continued

Appendix A

// phase 5: codegen
//***
DoSetOnError ==> “On Error Resume Next\n”

DoAppActivate ==> “AppActivate \“microsoft word\"\n”
DoScreenupdateoff ==> “WB.ScreenUpdating O\n”

DoScreenupdateOn ==> “X: WB.ScreenUpdating 1\n”
DoScreenRetresh ==> “WB.ScreenRefresh\n”

DolnDocCheck ==> “if InHeaderorFooter () then goto X\n”
DoAdjNext (“character”) ==> *

DoAdj Next (“word”) ==> “AdjNextword\n”

DoAdjNext (“sentence”) ==> “AdjNextSent\n”

DoAdjprev (“character”) ==> *

DoAdjPrev (“word”) ==> “AdjPrevword\n”

DoAdjPrev (“sentence”) ==> “AdjPrevSent\n™

DoGoTo (“start”, “character”) ==> *

DoGoTo (“start”, “word”) ==> “Startofword\n™

DoGoTo (“start”, “sentence”) ==> “StartofSent\n”

DoGoTo (“previous”, “character”) ==> “PrevChar 1\n”
DoGotTo (“previous”, “word”) ===> “PrevWord 1\n”
DoGoTo (“previous”, “sentence”) ==> “PrevSent 1\n”
DoGoToBookmark (#) ==> Concat (“WB.EditGoTo Destination := *)
DoSelectionon ==> “WB.ExtendSelection\n”

Doselectionoff ==> “WB.Cancel\n”

DoBold ==> “WB.Bold 1\n”

DoSelect (“character”) ==> “WB.CharRight 1, 1\n”

DoSelect (“word”) ==> “WB.WordRight 1, 1\n”

DoSelect (“sentence™) ==> “WB.SentRight 1, 1\n”

Do ==> Do

Concat ==> Concat

__ ==> fail (“rewrite error”)
//***

// End Rewrite Rules

ko ko K 8 K8 R R R R R SR K 53

What is claimed is:

1. An enhanced speech recognition system having dicta-
tion capability and the capability of converting an
unprompted user-generated word phrase into a command
string for causing a computer application to perform actions
as directed by said word phrase comprising:

a speech recognition engine providing a dictation output

and candidate word phrases to a second output;

a command interpreter, coupled to the second output, the

command interpreter having:

(1) a parser for completely parsing a candidate word
phrase into a parse tree;

(ii) a plurality of predefined rewrite rules divided and
grouped into a plurality of phases; and

(iif) a rewriting component, for applying at least one of
said predefined rewrite rules to said parse tree, for
rewriting said parse tree according to said at least
one predefined rewrite rule so as to produce said
command string, wherein all predefined rewrite rules
grouped into one of said plurality of phases are
applied to said parse tree before applying predefined
rewrite rules grouped into another of said plurality of
phases to said parse tree.

2. The system of claim 1, wherein said plurality of
predefined rewrite rule grouped into each of said phases are
applied in a predefined sequence to said parse tree.

3. The system of claim 1 wherein each of said predefined
rewrite rules includes a pattern matching portion and a
rewriting portion.

4. The system of claim 3 wherein said rewriting compo-
nent applies at least one predefined rewrite rule to said parse
tree by comparing said predefined rewrite rule pattern
matching portion to at least a part of said parse tree.

5. The system of claim 4 wherein if said predefined
rewrite rule pattern matching portion matches at least a part
of said parse tree, said matched part of said parse tree is
rewritten according to said predefined rewrite rule rewriting
portion.

6,138,098

17

6. If The system of claim 1 wherein said parser includes
a predefined CFG (Context Free Grammar) comprising a
plurality of rules, and said CFG parser applies at least one
of said rules to said word phrase, to produce said parse tree.

7. The system of claim 6, wherein said CFG parser
includes a predefined CFG (Context Free Grammar) com-
prising a plurality of rules, and said CFG parser applies at
least one of said rules to said word phrase to produce said
parse tree.

8. The system of claim 1 wherein said command string
includes programming language instructions.

9. The system of claim 8 wherein said programming
language instructions are interpreted by an interpreting
application which causes said computer application to per-
form actions as directed by said word phrase.

10. The system of claim 8 wherein said programming
language instructions are interpreted by computer applica-
tion to cause said computer application to perform actions as
directed by said word phrase.

11. The system of claim 1 wherein said computer appli-
cation is a word processing application.

12. A method of an enhanced speech recognition system
for interpreting an unprompted user-generated word phrase
and directing a computer application to perform actions
according to said word phrase, comprising the steps of:

providing a first output having recognized dictated text,

and a separate second output having a plurality of
candidate word phrases, the first and second outputs
being mutually exclusive;

parsing said word phrase from the candidate word phrase
output into a complete parse tree representing said
candidate word phrase;

applying a plurality of predefined rewrite rules to said
parse tree, for rewriting said parse tree into at least one
modified parse tree, the plurality of predefined rewrite
rules being divided and grouped into a plurality of
phases each of said plurality of predefined rewrite rules
including a pattern matching portion, for comparison to
and matching at least a part of said parse tree, and also
including a rewriting portion, for rewriting a matched
part of said parse tree, each of the predefined rewrite
rules grouped in one of the plurality of phases being
applied before applying predefined rewrite rules
grouped into another of the plurality of phases;

producing a command string by traversing nodes of said

at least one modified parse tree; and

providing said command string to said computer applica-

tion.

13. The method of claim 12, wherein said step of applying
a plurality of predefined rewrite rules to said parse tree
includes:

comparing said predefined rewrite rule pattern matching

portion to at least a part of said parse tree.

14. The method of claim 13 wherein said step of com-
paring said predefined rewrite rule pattern matching portion
to at least a part of said parse tree further includes the step
of:

if said predefined rewrite rule pattern matching portion

matches said at least a part of said parse tree, rewriting
said matched part of said parse tree according to said
predefined rewrite rule rewriting portion.

15. The method of claim 14 further including the step of:

if said matched part of said parse tree includes subnodes

not matched by said predefined rewrite rule pattern
matching portion, sequentially applying said pre-
defined rewrite rules grouped in one of said plurality of
phases to said unmatched subnodes of said parse tree.

10

15

20

25

30

35

40

45

50

55

60

65

18

16. The method of claim 14 wherein each of said phases
includes an implicit predefined rewrite rule which matches
and rewrites one node of said parse tree, said implicit
predefined rewrite rule being applied to said parse tree if no
other predefined rewrite rules grouped in each of said phases
match said parse tree.

17. The method of claim 12 wherein said step of providing
said command string to said computer application includes
the step of:

providing said command string to an interpreting
application, said interpreting application executing said
command string and causing said computer application
to perform actions.

18. The method of claim 12 wherein said command string
is a set of instructions for causing said computer application
to perform actions.

19. The method of claim 12 wherein said command string
is a compiled program for causing said computer application
to perform actions.

20. The method of claim 12, wherein said applying a
plurality of predefined rewrite rules to said parse tree
representing a candidate word phrase includes rejecting said
parse tree, and proceeding to a next parse tree representing
a next candidate word phrase.

21. The method of claim 12 wherein said parsing said
word phrase into a parse tree representing said word phrase
includes:

parsing said word phrase with a Context Free Grammar

(CFG) parser applying a plurality of CFG parsing rules
to said word phrase.

22. The method of claim 12 wherein said computer
application is a word processing application.

23. A method of an enhanced speech recognition system
for allowing a user to control a computer application with
spoken commands, comprising the steps of:

converting an unprompted user-generated word phrase

into electrical signals representing said word phrase;

processing said electrical signals, with a Speech Recog-
nition application that produces a first output having
recognized dictated text, and a separate second output
having a plurality of candidate word phrases, the first
and second outputs being mutually exclusive;

parsing at least one candidate word phrase with a Context
Free Grammar (CFG) parser, into a complete parse
tree;

applying a plurality of predefined rewrite rules grouped
into a plurality of phases to said parse tree, for rewriting
said parse tree into at least one modified parse tree,
each of said plurality of predefined rewrite rules includ-
ing a pattern matching portion, for matching at least a
part of said parse tree, and also including a rewriting
portion, for rewriting said matched part of said parse
tree, the predefined rewrite rules grouped in one of the
plurality of phases being applied before applying pre-
defined rewrite rules in another of the plurality of
phases;

producing a command string by traversing nodes of said
at least one modified parse tree;

providing said command string to an interpreter applica-
tion; and

directing said interpreter application to execute said com-
mand string, for causing said interpreter application to
instruct said computer application to perform actions
appropriate for said spoken command.

* ok ok k%

