PREDICTING INDIVIDUAL BOOK USE FOR OFF-SITE
STORAGE USING DECISION TREES!

Craig Silverstein? and Stuart M Shieber®

We explore varlous methods for predicting libia1y book use, as measured by
arculation records Accurate prediction is invaluable when choosing titles to be
stored 1 an off-site locauon Previous researchiers in thus area concluded that
past-use 1information provides by far the most 1chable predictor of future use.
Because of the computerizanion of hibrary data, 1t 1s now possible not only to
reproduce these earlier experiments with a moie substantial data set, but also
to compare their algorithms with more sophusucated decision methods We have
found that while previous use 15 indeed an excellent predictor of future use,
1t can be improved on by combining previous-use mformation with bibliographic
informauon 1 a technique that can be customuzed for individual collections.
This has immediate applicaton for libraries that are short on storage space and
wish to denufy low-demand ntles to move to 1emote storage. For instance,
sumulations show that the best predicion method we develop, when used as
the off-site stoiage selection method for the Harvard College Library, would
have generated only a fifth as many off-site accesses as compared to a method

based on previous use

I Inwroduction

It 1s a commonplace that libraries never have enough room. For in-
stance, Widener Library, the flagship of the Harvard College Library,
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Is comprised of some 4.8 million volumes, whereas the library building
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we could clairvoyantly pick titles to be moved off-site that we know-
would not be circulated, making our decisions with full knowledge of
future circulation patterns, we would expect the hit rate would be re-
duced to 0 percent until most of the books are moved off.site. The
figure verifies this expected performance; the hit rate s 0 percent for
the clairvoyant method up until about 70 percent of the titles are stored
off-site,

In order to gauge the overall quality of a choice policy, we adopt a
measure of how much better it is than the benchmark random policy.
By calculating the relative adyan tage of the choice policy over the ran-
dom policy, averaged over all off-site percentages, we get the expected
advantage over random (EAR), which provides a measure of the quality of
a choice policy The Ear for a choice policy P can be calculated as 1 -
(number of hits using policy P)/(expected number of hits using random
policy). By definition, the Ear for the random policy itself should be
approximately 0. The ar for the clairvoyant policy is around .90, which
we will state as » percentage: 90 percent. That is, we would expect
(given no assumptions about how many titles to store off-site) that the
clairvoyant policy engenders only one tenth as many hits off-site as the
random policy.® The ear values for the two choice policies (0 and 90
Percent, respectively) are graphed in the right-hand portion of figure
1. (This portion of the figure also shows the 95 percent confidence
interval for each gar valye estimate, as described 1n Sec. H1B.) Al-
though a clairvoyant policy is not implementable—we cannot see into

to put in a depository.

A, Summary of Results

In this article, we explore the design of choice policies by examining a
large class of such policies, namely, those that can be expressed as deci-
sion trees [8), described in Section II1. Essentially all past research on
the topic of choice policies has worked with policies in this class, allowing

5 The EAR metric 15, for many purposes, too general a metric in that it averages the choce
policy’s advantage over the enure range of possible depository sizes For Instance, at
the Harvard College Library, 1t 15 known that the percentage of books stored off-site
will be n the range of 15~30 percent for many years to come Thus averaging advan-
tage aver the random policy over the full range of 0—100 percent way give a misleading
estimate of a policy’s performance. Where further information of this sort 1 available,
‘it should be taken advantage of For example, our best policy, with an overall ear of
73 percent actually exhibits an advantage over random of 90 percent at an off-site
percentage of 20 percent For the purpose of this arucle, however, we make the weakest

possible assumption, that all off-site storage percentages are equally likely, as the basis
tor our evaluation.
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us to replicate these results—albeit on a much larger scale (Sec. 1I). On
the basis of these experiments, we replicate previous results, showing
that, overall, past use is the best single predictor of future use. We
demonstrate, however, that in certain commonly occurring cases (when
only a small percentage of books are to be stored off-site), past use is
a worse predictor of future use than LC class or publication date.
However, the availability of large databases of bibliographic and circu-
lation information and the relatively more sophisticated computer re-
sources now available allow us to go well beyond the simple decision
trees previously considered. We can now examine trees with greater
orders of magnitude, using subsamples of much larger scale and variety.
On the basis of these experiments, described in Section 1V, (1) we dem-
onstrate that the use of additional critena in predicting future use can
be helpful, though care must be taken, and (2) we develop a practical
choice policy with an EARr of over 73 percent, a significant improvement
in predictive power over previous methods, with EaRs of 45—60 percent.

B. Some Methodological Caveats
Before describing our experiments, we digress to mention several limita-

tions of our study, which are shared by earlier research on the same
topic. Some technical limitations are described in Section I11B.

First, as mentioned above, we use circulation as a proxy for, and
approximation of, general use. Though circulation seems to be highly
correlated with in-house use, the large quantity of in-house use means
that any error 1n the correlation corresponds to large amounts of in-
house use for which circulation 1s a poor predictor. This observation
has been expliatly made by Robert Hayes [6, 7]. Thus, any off-site
storage method in which usage prediciion is based solely on circulation
may lead 10 a great decrease in the uulity of the on-site collection. Unfor-
tunately, we have no efficient way of collecting reliable statistics on in-
house use on the scale required for use prediction, so we must be satis-
fied with a rough predictor over none at all.

Second, we attempt to develop a methodology that, when imple-
mented on a specific collection, can help in choosing titles to move into
secondary storage and is more accurate 1n predicting future use than
methods currently used. Not everyone agrees that future use, even if
accurately predictable, is the appropnate metric on which to base such
a lacarion decision. Two main schools of thought have developed as to
how to pick titles to move off-site. One, which may be titled the “What
readers should want” school, proposes that experts in various fields pick
those titles in their field that are the least “worthy” and send them to
remote storage, Proponents of this view hope that because of the work
involved in recalling a title from the depository, casual students of a
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topic Wlll' be guided to the higher-quality titles in the main collect]
(see, for instance, [9, P 201]). The other school of thou ht, the “W;?r
readers do w:ant” school, believes the library should try tg m’inimize y
of the depository by predicting patterns of future use. In this wa ti:;sf
that will not be used often in the future can safely be lacedyi’ f(?
depository. By taking the latter approach, we are followinp in th nf ot
steps of earlier researchers in the area [3, 10, 11]. s © oo
One way to ameliorate both these problems is to combine an aut
mated procedure with manual oversight. This can be done in a v;lileO_
of ways. A manual preprocess stage could specify individual title M
classes qf titles (such as reference materials or other titles used Sfor
quently in-house) to be exempted from consideration by the automatrii-
procedure'. A manual postprocess stage could follow a computeri ed
method \A{lth expert review. For instance, a decision algorithmpco eldzf)
made to .ll.Sl more titles than need to be moved, and experts cou]ti1 i lf
the requisite number of books from the candidate list. In either -
a good prediction algorithm can ease the burden of deciding on tciatlfe,
to MOVE to remote storage when a main collection becomes too crowd ZS
even if it does not eliminate the burden entirely. owees

I1. Previous Research

In order to design a choice policy to minimize the expected use of title
§t01:e§i off-site, we must have a model that allows predicting the us ;
mdlhvxdual.n_[les. The two problems of predicting book use angd desi in
choice policies are thus closely related (but see Sec. IB for z dj sion
of some differences between the two problems). . peson
Note th.at. what is needed is a method of predicting the use of individ
ual titles; it is not sufficient for our purposes merely to predict a gate
book use (thqugh it is sufficient for other purposes, such as aigdgi;egate
source allocation). A great deal of previous research in predictin lg)orel;
use addresses. the aggregate prediction problem [6, 7, 12-18] mogdel'0
future use distributions in toto as, for instance, m,ixtures ;)f Pois o
Pprocesses, perhaps incorporating a decay factor to model book agi:(g)%

6. Model
emerpl::i the effect of agnx%l on our future predictions is, by utself, immaterial to the
we are concerned with, as we wish m,
, erely to pred: i
ey y predict usage in the near
bulllxtrzl I[J}slagti m the more dlsl;%nl future can be predicted on the hasic of cimilar madale
ol at ! aet ate; date. That is, as long as we make each prediction on the b;is;; ;E
recent data, we need nol concern ourselves with how the prediction fares

as 1t ages. : ing i
ges. However, an anaillary effect of aging 1s quite important for our purposes

:33. t’}Il‘her: 15 2 trade-o.ff between having a long window, which provides more data
eretore more reliable statstics, and having a short window, which provides data
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Such models are msufficient for our purposes for two reasons. First,
we must select individual titles for removal off-site; aggregate statistics
provide no aid in determining which books will fall in the tails of the
distribution but merely predict what the distribution will look like. Sec-
ond, aggregate models must somehow extrapolate past use as a pre-
dictor of future use. Thus, they presuppose exactly the kind of model
that we are interested 1n developing However, because the information
they must deliver 1s much coarser, theie 1s hittle or no motivation to
subdivide the books mnto subclasses for separate prediction; this would
only be useful if the combimation of the aggregate predictions for the
two classes were more accurate than the aggregate prediction for the
union of the two classes For this reason, aggregate prediction methods
can (and should) rely on relatively simple models of prediction, essen-
tially just past use. The sophistication in the models is 1n the distribution
modeling method or the combination with economic models, not in the
prediction criteria.

There is, however, a body of previous research on predicting library
book use that is applicable to designing choice policies. Almost all re-
searchers agree that some direct measuie of past use is the most signifi-
cant predictor of future use. Herman Fussler and Julian Simon, in their
serunal 1969 study, concluded that past use 1s the only good indicator
of future use [3]. Stanley Slote, in his sindy of 1971, agreed: “The most
recent use pattern as reflected by the current circulation is a strong and
valid predictor of the future use [of books]. .. The most recent shelf-
tme period should be the sole criterion tor weeding and for identifying
useful core collecuons” [21, p. 34]. Slote reports on a study by Aridaman
Jain that claims to find a single predictor that does better, but Slote
also notes that Jan does not really otter any evidence that his predictor
is better than past use

The value of past-use information 15 Iimited, however, by the fact
that many utles 1n a research library are never checked our at all and
hence have dentical past use history. In 1975, for instance, researchers
at the University of Pittsburgh determmed that 40 percent of all utles
purchased by the untversity had never been circulated [22]. Data from
Harvard’s computerized transaction database show that these results
transfer to Widener hibrary: 40 percent of all titles in Widener have
not been checked out in the last twenty years, the period for which
computerized records exist.

that have aged less and are thus more acculate Our assumption, by no means proven,
was that moie data were better, especiaily as only the checkout history data would
exhibit the ill etfecls of a 100 long window, aud this ¢ritenion outperforms even last
use mn our expermments Fully exploring this rehabiity/accuracy trade-off 1s beyond
the scope of this arucle, though dong so would be quite mteresting and a useful
adjunct to previous work on agng [15, 19, 20]
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An ot')vious method for distinguishing among these low-use titles is
to take into account bibliographic information when trying to predict
fuu_n-.e book use. Fussler and Simon did so, examining combinations of
decision criteria for predicting book use. For instance, they ranked titles
that had never been checked out on the basis of their date of acquisition
by the library. In addition, they analyzed titles in different LC classes
separately, so LC class was also an implicit decision criterion in their
study. These two criteria were used in addition to past-use statistics;
when Fussler and Simon disallowed past-use statistics as criteria the)’r
needed to combine even more criteria to obtain an adequate c’hoice
policy.

Before the advent of computerized transaction systems, research into
these more complicated decision schemes was limited by the computa-
tional difficulty of managing all the necessary information about library
books. Possible prediction methods had to be arrived at through ad hoc
mthods. and only small amounts of data could be gathered to evaluate
their efficacy. Fussler and Simon’s study, probably the largest, examined
a total of only 1,642 titles—all of them books—generating l,ﬁbl transac-
tions. Their titles were not uniformly distributed throughout the library
system, but were instead concentrated in two subject areas, Economics
and ‘Teutonic Literature. In addition, the researchers found it difficult
to estimate past-use information, since the sheet of paper containing
book-use information, stored in the rear of each volume, was replaced
after a few dozen entries. The computerization of library records, com-
bmed with computer algorithms that can be automatically trair;ed to
predict book use, makes possible a more complete examination of algo-
rithms for predicting library book use, which we describe below.
_With the availability of computerized databases of bibliographic and
circulation information and more sophisticated computer resources, we
can reproduce these previous studies using a much larger data se’t in
a more exhaustive evaluation The six decision criteria that we examine
are shown in table 1. These criteria include all those examined by Fus-
sler and Simon with the exception of acquisition date, which was not
available for the Widener data.” In addition, we consider CHECKOUT
HISTORY and COUNTRY OF PUBLICATION, which Fussler and Simon did
not. We refer to two of these criteria—cueckouT HISTORY, measuring
the number of past uses, and LAST USE, measuring the ume since the
Last.use.—af past-use criter.ia, as they rely on the book’s circulation be-
aavier im the past. In the simulation cxporiments Tepoiicd on here, we
use crculation records from July 1975 to June 1984 as the “past” for
use by these criteria. Data from July 1984 to June 1993 are not available
to the past-use statistics and are used to analyze decision trees. (See

7 We use PUBLICATION DATE as an approximate replacement for acquisition date,
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TABLE 1
CRITERIA CONSIDERED IN MODELS OF PREDICTING Book Use

Criterion Description and Example Values

CHECKOUT HISTORY  Number of times the book cuculated in the past; 0 umes,
1 ume, 9 umes, 1,898 times |90 values]

Number of months since the last use m the past; 0 months,
1 month, 108 months, never used [110 values)

LC cLass Alphabeuc prefix of the Libtaiy ot Congress call number Har-
vard Umversity keeps some utles under an older classifica-
tion scheme Such utles are given an “LC class” by prefixing
the Widener prefix with “WID”, A, PQ, WID ECON [486

LAST USE

values)
PUBLICATION DATE Date of publicauon of the bouk, 1789, 1900, 1986 [357 values]
LANGUAGE Language m which book 1s wiitten, Enghsh, Swahili, Achinese

(127 values]

Country 1 whicli the book was published, following the Li-
brary of Congress specification, in which states of the United
States and certain other subnational unuts are classified as
countries, Ausiralia, West Germany, Massachusetts [276

values)

COUNTRY

Noie —The number of values evidenced m an eighty-thousand-utle sample 1s provided in brackets 1n the second

column

Sec. I1I for a fuller description of the meihodology of evaluating deci-
sion trees.)

In figure 2 we compare the performance of various decision criteria
on an eighty-thousand-title random subsample of books in Widener Li-
brary. For comparison purposes, the figure also includes the benchmark
policies based on random and clairvoyant choice.

Consistent with previous studies, the past-use criteria definitively out-
perform other criteria. The best of these criteria, CHECKOUT HISTORY,
has an expected advantage over the random policy of 58.9 percent.
However, when few titles need to be stored off-site, the advantage of
past-use criteria is not so clear-cut. Figure 3, which details the perfor-
mance of the criteria at small off-site percentages, shows that LANGUAGE
is the best performer in this range, and both LANGUAGE and LC cLass
outperform the past-use criteria. Previous studies may not have noted
this behavior since it only holds when less than about 18 percent of all
titles need to be moved off-site; Fussler and Simon’s study, for instance,
only tested their criteria with simulations of 25, 50, and 75 percent of
titles stored off-site.

Using the same eighty-thousand-title sample, we can evaluate approx-
imations to the various multicriterion policies that Fussler and Simon
developed, and compare them to the LAST USE criterion, the best-
performing single criterion. The comparative results are shown in fig-
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ure 4. The “no use records” policy uses LANGUAGE and PUBLICATION
DATE to rank titles, while the “use records” policy uses LasT USE and
PUBLICATION DATE. Fussler and Simon did not explicitly consider LC
CLASS as a predictive criterion but did treat separately the two LC classes
they studied, so we also look at the performance of the two policies
when augmented with the LC crass criterion.
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Fic 4 —Pe1formance of choice pohcies reconuended by Fussler and Simon [3] Policies
using use records outperform those that do not i general, but not when less than 20
percent of books are m the depostory Adding LG cLass does not always improve pertor-
mance, pethaps because of overtramug

Of the first two variants, the one tuking advantage of past-use infor-
mation is again better overall, but when few titles need to be put in
the depository, it performs worse than the method based purely on
bibliographic information. This makes sense, since in this low range all
titles being considered will never have been checked out, and the LAST
USE policy will be picking titles basically at random. Surprisingly, using
LC crLass as an extra criterion can degrade performance- adding LC
cLASS to the “no use records” policies reduces the Ear from 52 to 47
percent. It is possible that adding another criterion makes the algorithm
prone to overwraining (See Sec IVC) .

In summary, past-use staustics are the best single criterion for pre-
dicung book use, although contra previous studies, other criteria domi-
nate when small percentages of books (less than about 18 percent) are
stored off-site The addition of extra criteria to past use can, to an
extent, further improve predictive power, but care must be taken, as
degradation can also 1esult.

111, The Methodology of Decision Trocs

‘The mulucriterion algorithms of Fussler and Simon can be seen as vari-
ants of a general class of methods based on decision trees. A decision
tree 1s a hierarchical structure for classitying objects, composed of nodes
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All utles
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Lccecosrnevepspqusrecsse aanst

Swahili

Enghsh

Swahili utles English atles Achinese utles

Massachuselts Austraha

Germany
Enghsh ntles English ttles English ntles
Jrom Massachusetts from West Germany Jrom Australia

F16. 5 —A simple decision tree

that correspond to primitive classification decisions. For the task at
hand, the objects to be classified are utles and we wish to classify them
in such a way thart the classes are maximally predictive of their future
use. The primitive classification decisions are simply the criteria that
are available for classifying titles, as listed in table 1.

At the top of a decision tree (called, perversely, the root; decision
trees grow down rather than up) is a node that specifies the main divid-
ing criterion for subclassifying the titles. The dividing criterion might
be, for instance, LANGUAGE. For each value of this criterion—English,
Swabhili, Achinese, and so forth—the node has a child node, which can
be thought of as classifying further all the titles with the given language
value. Associated with each node, in addition to a dividing criterion, is
a set of titles. The root node contains all the titles, while child nodes
contain those titles they inherit from their parent. In our example, the
ENcLisH child node inherits from its parent all titles written in English,
while the SwaHILI node inherits titles in Swahili, and so on.

Each of these nodes in turn can have a dividing criterion and children
of its own. In this way, the set of titles can be subclassified into finer
and finer subgroups, where the nodes at the bottom of the tree, the
leaves, constitute an exhaustive classification of all of the ttles into dis-
Jjoint classes. Figure 5 shows a simple decision tree Titles are divided
hrst on the basis ot the language they are written in. Those written in
Er;glish are further subdivided on the basis of their cou..try of publica-
tion. (For purposes of exposition, we limit attention in the figure to a
small subset of the possible values for these criteria.)

Decision policies treat each leaf as a unit, ranking each leaf on the
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basis of its expected future use—or, rather, the average expected future
use of titles in that leaf. The variation m prediction quality among deci-
sion trees comes from the choice of decision tree. The number of levels
in the tree, the methodology for detecting and weeding out ineffective
leaves, and even the order in which we choose the dividing criteria, can
all affect the quality of prediction. By way of example, we have already
seen the difference in performance using a zero-level tree (RANDOM) as
opposed to a good one-level tree (LAST USE).

A. Defimng and Evaluating Chowe Policies

A decision tree can be used as the basis of a choice policy by ordering
the leaf nodes according to which classifications are expected to have
the lowest hit rate. We calculate this expected hit rate for each node
using data from 1984-93. (Recall that data from 1975-84 are reserved
for the past-use statistics.) That is, each node is assigned a value based
on the number of times titles 1n that node were checked out in the
period 1984—93. We can, in this case, think of the dgla from 1984—.93
as the “recent past” and data used by past-use statistics as stemming
from the “distant past.”

This ordering of nodes induces a corresponding ordering on the asso-
ciated sets of titles. When we need to pick utles to place off-site, we
start taking titles (in arbitrary order) from the lowest-ranked node’s
classification, moving on to higher-ranking nodes as the earlier nod_es
are emptied. If use patterns from the recent past, which we us§d in
our ordering, hold into the future, the ordering we generate will be
the best one N

This procedure is adequate for creatng and using decision trees, but
we need some more data in order to test their efficacy. One way to do
this is to garner some “future” data and, as we move titles_to the deposi-
tory, track how many times the titles are checked out in the future.
This technique allows us to calculate the hit rate at different percentages
of off-site storage. In this way we can generate curves such as those in
the previous figures.

This method can be improved on by using a different data set of
titles to test the decision tree, which we call the testing set to distinguish
it from the training set used to construct the structure and ordering of
nodes in the decision tree This way we are sure that we are evaluating
the predictive power of the way the tree divides .tit.les in ggneral as
opposed to its predictive power un dic spedific itaining sct ttles. We
would use testing set circulation data from the recent past to calculate
past-use statistics; this is necessary so that we can determine the appro-
priate node for each title of the testing set. Then we could use the data
from the future to evaluate how well the iree predicts future use.

PREDICTING BOOK USE FOR OFF-SITE STORAGE 279

All utles

Divide on Last Use

Lecmencen wea cretmemnanest

1 month eee
0 months

Titles never Titles checked Tules checked
checked out out this month out last month

Fi6. 6 —A single-cniterion decision tree that divides on the LAST USE criterion

Unfortunately, we have no data from the future. However, since the
data in the testing set are unrelated to the data in the traiming set, it
is acceptable to move the entire time frame for the testing set backward.
Therefore we can use the distant past for past-use information and the
recent past to simulate the future. This technique will fail only if pat-
terns of use change rapidly enough to make predictions based on the
recent past (1984-93) invalid in the future. We do not expect this to
be the case.

A few examples may clarify the process. The random choice policy
is defined by a decision tree with a single node. Since no dividing goes
on, all titles in the training set are placed in that one node as a single
class. That node is the only leaf node, so that the sorting of the leaf
nodes according to their recent past use is trivial. Next the node is
cleared and replaced by titles in the testing set; again, since there is
only one node all the titles are placed in it. These titles are then chosen
in an arbitrary order to be moved to the depository. Since the books
are chosen arbitrarily from the single group, hit rate goes up linearly
with off-site percentage.

The single-criterion choice policies of figures 2 and 3 correspond to
decision trees of a single level, with a root node that divides on the
given criterion. For example, consider the LAST USE single-criterion
choice policy. The corresponding decision tree is depicted in figure 6.
The root node is the only nonleaf node of the tree. The leaf nodes are
sorted based on their performance in the recent past (undoubtedly with
more recent last-use nodes sorted ahead of less recent ones). The nodes
are then cleared of titles and replac. 3 with titles from the testing set.
The distant past behavior of the testing set titles is used to divide the
titles according to the rast uce dividing criterion. The titles from the
testing set are then selected for off-sile storage according to the sorting
order previously determined. The recent past use data for the testing
set are then used to determine the hit rate as a function of off-site
percentage.
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All ntles

Divide on Language

Achinese ®®e®

Enghisiv

Swahdh utles English ntles Achinese nitles

; Divide on Pub Date | , Divide on Pub Dute ‘ Divide on Pub Date

1994 1993 eee 1994 1993 eee 1994 1993 oo
Swahil tiles Swakili titles English niles English utles Achinee ntles Achinese ntes
from 1994 from 1993 Sfrom 1994 Jrom 1993 Sfrom 1994 from 1993

Fic 7 —One of Fussler and Sunon’s choice pohcies shown as a decision tree

The “no use records” Fussler and Sunon policy of figure 4 corre-
sponds to a decision tree where the root node divides on LANGUAGE and
the children of the root node divide on publication date. Figure 7 dis-
plays this decision tree.

B. Sampling Issues

At the time of this study, 2.2 mithon of the estimated 3.8 million Wide-
ner Library titles had been cataloged mn Harvard University's online
library computer system, having generaied a total of six million transac-
tions since July 19758 A campaign 1s 11 progress to computerize the
rest of the titles, most of which have not generated a single transaction.
The results we have obtained thus apply not to Widener as a whole but
to some “sub-Widener” that excludes many relatively unpopular titles.
However, the relative comparisons are sull valid, assuming that one
decision scheme would not benefit inordinately from the noncomputer-
ized titles. This seems probable. Once the, ongoing effort to computerize
all atles has been completed, it should be possible to tailor the decision-
making policy to the true population ot Widener.

Because of computational himitations, we do not divide the entire col-
lection 1nto two data sets of 1.1 million utles each. Instead, we make
the training and testing sets somewhat smaller, approximately eighty
thousand ttles In subsamphng the data, 1t 1s important to ascertain
that a sufficiently large subsample is bemg used. Figures 8 and 9 show
the performance of a simple LAST USE decision tree on subsamples vary-
ing in size from five thousand to eighty thousand titles Notice that the
performance of the decision tree converges rapidly as the sample size

8 Uutortunately, tor those utles that are m the system, computerized circulation records
for a paiticular eleven-month period were lost The tests repoited here presumably
suffer from some maccuracy due to this mssing data as well

PREDICTING BOOK USE FOR OFF-SITE STORAGE 28]

Last Use tree on traimng and tesung samples of vanous sizes . Simulation Vanance
100 v T T T T T 0 ——r—r——r—T
Random (EAR O%)[l] —
5,000 utles (EAR 54 61%) [2] -~ i .
10,000 titles (EAR 56 92%) [3]
£ w0 20,000 utles (EAR 5822%) [4] -~ s}
Z80r 80,000 tles (EAR 58 73%) [5] - -~ 1 ]
g 40,000 utles (EAR 38 86%) [6] - - -
] Clairvoyant (EAR 90 51%) [7
2
w60 g 60{ } { IR
g 9
= >
: 3
- - - o -
] 40 40
£
3 ~
Cl
[+ o
gl ,.--;s”‘“’y/ 1 20}
s
0 ) " R " . N : N : I S S T S
0 10 20 30 40 50 60 70 80 90 100 12 [3] 41 [51 [6] [7]
Percent of titles n the depository Decision tree

Fic 8 —Performance of LAST USE criterion with subsamples of various sizes As sample
size increases, performance improves shghtly as well, quickly converging to a standard
value
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Fic. 9 —Performa.. "= of LAsT USE criterion with subsamples of various sizes, detail

increases, indicating that the results of our experiments, which use data
sets of eighty thousand titles, should be applicable to larger and smaller
data cete as well Additional tests showed that the same trend holds for
other decision trees, including the much more complicated ones dis-
cussed in future sections. Thus, a sample size of eighty thousand titles
seems sufficient.

As another verification of the reliability of the EAr figures that we
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calculate through simulations, we calculate the maximum error for the
FAR value of each choice policy due to subsampling. Each choice policy
15 tested on eight different test sets In the left-hand portions of the
figures, a set of averaged curves is shown, one for each choice policy.
In the right-hand portion of the figure, the mean Ear value is shown
with error bars bracketing the 95 percent confidence interval. This
serves to delimit the range that, with high probability, the EAR value
would have fallen within if no subsamphing had been performed. The
right-hand policies are keyed to the left-hand legend with the bracketed
numbers. In general, the intervals are quite small and serve to confirm
the reliabiity of the differences amony the choice policies.

1V. Designing Deasion Trees

Once we characterize previous algoruluns for predicting book use—
from simple one-criterion tests to the more complicated tests developed
by Fussler and Simon—as decision trees of one or two levels, it seems
natural to look at even larger decision wrees, After all, it surely cannot
hurt to consider as much informauon about a title as possible before
deciding whether to move it off-site

Once a node in a decision tree divides on a given criterion, 1t makes
no sense to divide again lower mn the tree on that same criterion. There-
fore, \f we can consider up to n critena, a tree can include at most n
levels. Of course, we may choose to muake a deaision tree that is not so
deep. Trees of maximum depth we call tmaximal trees. Since our study
examines six different ciiteria (table 1), maximal trees have six levels
between the root and each leaf node In order to maximize the amount
of informanon used 1n making storage LllOlces we should consider max-
imal decision trees.

Indeed, the question arises as 10 why previous researchers did not
examine these more complicated methods themselves. The reason is
undoubtedly one of impracticality. Some decision trees we consider have
over forty-six thousand leaf nodes. That 15, the eighty thousand titles
have forty-six thousand distinct combinauons of values for the six divi-
ston criteria. Trees of this size are impossible to analyze without a com-
puter. Even with the use of computers, computational limitauons re-
main. Instead of creating a decision tree, which considers only a single
classthcation criterion at a time, 1t mignt be better 10 caicuiate a regres-
sion analysis on the various criteria, determining not only how each
cniterion contributes to future book use but also how combinations of
criteria contribute. Unfortunately, such analyses on data sets of greater
than five thousand titles, even when calculated using only a limited sub-
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set of the possible criteria, proved to be impossible given current tech-
nology. Nevertheless, it is certainly possible to evaluate maximal decision
trees using the current technology.

A. Randomly Selected Maximal Deciston Trees

All maximal trees differ only in the order of the dividing criteria; their
leaf nodes classify the titles into the same disjoint classes. That is, the
maximal trees have the same leaves but in a different order. Since our
evaluation technique reorders the leaf nodes (based on predicted hit
rate), all maximal trees are theoretically the same for the purposes of
evaluation. It should not matter which we choose to evaluate.

The only exception to the equivalence of maximal trees would arise
if the observed hit rate for two nodes is identical. In this case, some
method for “breaking the tie” must be instituted so as to fully order
the nodes. Unfortunately, such ties are quite common. For example, a
maximal tree for one eighty-thousand-title sample had forty-six thou-
sand leaf nodes but only 247 distinct past-use values to be used for
sorting those nodes. There tend to be many ties because each leaf con-
tains only a few titles. In contrast, a simple decision tree based only on
LAST USE might have 110 leaf nodes with ninety-three different values.
Nodes with the same value look the same to any ordering algorithm,
s0 a tie-breaking method must be invoked. An arbitrary decision here
is not necessarily appropriate: it may be that one node is superior to
the other in fact, but our sample size is too small to let us determine
1t

The hierarchical structure of the decision tree turns out to be useful
here. If two nodes are tied in the number of checkouts of their constit-
uent titles, we can compare the nodes' parents instead. The parents
have less rigorous dividing criteria and therefore contain more titles;
the more titles a node has, the less likely its average hit rate is repeated
in some other node. If another tie does arise, the remedy can be re-
peated, leau.. 7 to examination of grandparents, and so forth. Only
rarely will this technique fail to differentiate between two nodes, forcing
us to pick one over the other arbitrarily. By using the parent nodes to
perform the ordering, we can effectively increase the sample size at the
cost of some specificity.

Thus, for large trees, the ordering of the decision criteria becomes
important in determining the breaking of ties. (Order of division is also

_myww‘u when we smooth the mavimal treec ta eliminate nrohlems of

overtraining, as discussed in Sec. IVC.) This can lead 1o varying perfor-
mance among the different maximal trees.

In order to gauge the quality of maximal trees in general, rather than
a specific maximal tree, we create each maximal tree randomly, as-
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F16 10 —Performance of a maximal decision 11ce compared with choice policies recom-
mended by Fussler and Sunon [3] The maximal uiee does not perform much better than
the others despite 1ts far greater complexity

signing each node a random dividing caiegory from the set of legitimate
categories remainng 10 1t. Each of the eight testing sets uses a different,
randomly created maximal tree. This randomness explains the large
confidence interval in the exhibited performance for maximal trees.

Figure 10 presents a comparison of such random maximal trees
against the various trees proposed by Fussler and Simon. Surprisingly,
the maxmual tree 15 not the unequivocal p performer. For mstance,
Fussler and Simon’s past-use tree differennated by LC class—which di-
vides only on LC cLASS, LAST USE, and PUBLICATION DATE—is signifi-
cantly simpler than the maximal tree but performs almost as well, partc-
ularly when few titles need to be put ul the depository This does not
mean, however, that maximal trees a1¢ mherently flawed; in fact, be-
cause of the large confidence interval 1t 1s hard to tell exactly how well
maximal trees perform. We need a way of choosing the order of divid-
ing on maxmmal trees m order to tighten the confidence interval, prefer-
ably improving mean peiformance at the same time.

B ID3-Ordered Decision Trees

It is possible to use an algorithm called 1D3, developed by J. R. Quinlan
|8], to find a good dividing order roi each node, the 1D3 algorithm
uses a heurstic to calculate the mformation gam inherent in dividing on
different criterta and picks the criterion with the greatest gain. Informa-
tion gain is highest when the output values of the children of a node
are as different as possible. For instance, suppose the tiles in a node
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F1c 11 —Pertormance of ID3-ordered tree and a maximal tree The 1D3 ordered tree
outperforms the maximal tree with its dividing order picked at random In addiuon, 1t
has a smaller confidence interval, making 1t easier to analyze its ethcacy

are checked out on average 3.5 times in the recent past—the time period
used to order the nodes. If we divide the node and create two children,
one with an average checkout of 0 and the other with an average of 7,
we have gained a lot of information because 1t is easy for us to decide
."hich node to rank higher. On the other hand, if the children have
average checkouts of 3.4 and 3.6, we have gained less information. For a
mathematical description of how the ID3 algorithm decides on dividing
criteria, see the appendix.

The ID3 algorithm is not guaranteed to give improved performance.
However, we see in figure 11 that an ID3-ordered tree performs better
than a maximal tree on average. The mean EArR value for the ID3-
ordered tree lies just at the top of the 95 percent confidence interval
for maximal trees, showing that the ID3 ordering is better than the
vast majority of orderings for maximal trees. Equally important, the
ID3-ordered tree has a much smaller confidence interval.

C. Overtrarming and Smoothing

1 adddon iv 'uciug subjeci v uie ‘Lic-blc'aking provic desu ibed 11
the previous section, large decision trees are prone to overtraining: as
the tree classifies titles into finer and finer classes, the ordering of the
leaf nodes tailors itself to idiosyncrasies of the data set it is training on.
Instead of capturing trends relating criteria to future use, the tree cap-
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Fic. 12 —Performance of an ID3-ordered deasion tree when tested on the training
set and when tested on a separate testing set The far superior, almost clairvoyant, perfor-
mance of the tree in the former case 1s evidence of overtraining.

tures information specific to the parucular titles they are trained on.
As an extreme case, consider a tree so large that it has one leaf node
for every title. Then the nodes would be ordered based on the use of
each atle in the training set, capturing a lot of information about the
title itself but little about the criteria appropriate for the title. Unfortu-
nately, this specialized information is useless once the titles are replaced
with titles from the testing set.

One way to reveal that a tree is overuained, then, is to test it on the
training set. Since overtrained trees are optimized for the data set they
were trained on, they do much better when tested on their training set
than when tested on a separate testing set. This problem is inherent in
the size of the tree and cannot be solved by reordering the nodes. In
fact, we see in figure 12 that the ID3-ordered tree suffers greatly from
overtraining. Performance of the tree when tested on the training set
approaches that of the clairvoyant policy, showing that the training pro-
cess was quite successful in tuning the ordering to the training data.
The far inferior performance on separate testing data shows that much
of this training was spurious.

Overtraining can be eliminated by smoothing the tree to remove excess
leaf nodes. We smooth by combining many small nodes into a larger
node. Instead of many unrehable, “bumpy” data points from many small
nodes, we have one “smooth” data point that averages the behavior of
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the small nodes. Good smoothing methods leave many nodes where
they are needed to make fine distinctions between titles but eliminate
nodes that contribute to overtraining without making any real contribu-
tion to categorization accuracy.

We explore the use of two smoothing methods on the maximal deci-
sion tree. The first uses a heuristic to find places where the tree is more
developed than the data warrant. The heuristic looks at the variance
of the hit rates for titles in each node. Nodes with small variances are
themselves good predictors of book use and do not need to be divided
further. The algorithm looks for such nodes, choosing the node whose
variance is the smallest with respect to the average variance of its chil-
dren. It then makes that node a leaf node, deleting its children and
further descendants from the tree. The process is repeated, creating a
succession of smaller and smaller trees. Each tree is evaluated and the
tree with the best performance 1s chosen as the smoothed tree. Because
of the way children are removed, we refer to this method of smoothing
as prumng.

The second method of smoothing works in the opposite direction:
instead of pruning the children of a given node, it folds a given node
into its parent. We refer to this method as backing off. We back off a
node if we doubt the reliability of its estimate of the future hit rate for
that node. We determine reliability by looking at the number of circula-
tion events that the titles classified by the node account for. In particular,
we define a node’s size as the number of titles in the node plus the
number of past checkouts for all titles in the node. Nodes with smali
size are unreliable because their scant use history increases the variance
of their future-use information. We ignore small nodes, considering
their much larger parents in their stead. As in the pruning method, a
succession of trees is created, each formed using a different maximal
size for backing off. Again, the tree with the best performance is chosen
as the smoothed tree.

Both smoothing algorithms generate a series of trees and require us
to judge their performances. What data set can be used to make this
judgment? We cannot use the training set, because the whole point of
smoothing is to alleviate the tree’s dependence on the training set. We
cannot use the testing set for the same reason we cannot train using
the testing set: it would constitute cheating and cause the testing proce-

dure to underestimate the true hit rate. We must instead use a third

_____ ) RN N | |
uata. 3CL, WIiila Wl Wiua \,uAl the S'nCCt.hl"" Aqrq cet, Tn r‘n "]’"Q we !‘]“I"‘]P

the training data set in two, using half of it as the new training set and
the other half as the smoothing set.?

9. Another small change 15 required in our evaluation procedure. Recall that only leaf



288 THE LIBRARY QUARTERLY
ID3 1ree with vanious types ot smoothing Simulalion Vanance
100 T T T T T T —T 100 e e N
Random (EAR 08%)[l] —
ID3 tree, pruning algonthm (EAR 68 90%) [2] ----- .
ID3 tree, no smoothing (EAR 69 20%) [3]
E | 1D3 tree, backing-off algonthm (EAR 73 12%) [4]
7 80 Clairvoyant (EAR 90 51%) 5] --- 80 A
2 =
3 . 3
£
En 60 g 60 E
£ q
= >
F %
w
a0t 40 t - E
-~
=
-
(=]
§ o : 1 of :
0 e s . ) el . ol v v
0 10 20 30 40 50 60 70 80 90 100 (13 (2} {31 (4] [5)
Percent of utles tn the depository Decision tree

Fic 13 —Elfect of smoothing on perfoimance of 1D3-ordered trees The night type
of smoothing can dramaucally improve pertormance

We compare ID3-ordered trees produced by the two smoothing meth-
ods with the unsmoothed tree m figuie 13. The backed-off tree, with
an Ear of 73.1 peicent, performs the best, while the pruned tree per-
forms worse than the unpruned tree, leading us to question the efficacy
of the pruning heuristic. As shown m hgure 14, the backed-off, ID3-
ordered tree performs consistently better than trees developed by Fus-
sler and Simon and other researchers. 'l he improvement is particularly
striking when 20-40 percent of utles need to be moved off-site, a rea-
sonable range for many research collecuons In all ranges, however, the
backed-off, ID3-ordered tree is the best decision tree we have studied.

D. Further Improvement

Although our best choice policy is a sigimhcant improvement over previ-
ous proposals, 1t is stilt far from matchmg the performance of the clair-
voyant policy Various possibihties miglit be entertained to further close
this gap. First, the ID3 method has been surpassed in recent years by
other algorithms for ordering decision 1rees that apply increasingly so-
phisticated statistical tests to the data. Untor tunately, these more compli-

nodes are considered when taking utles to put w the depository With backing off,
however, some leat nodes etfectively move then utles to their parent, so some parents
of leaf nodes may include ntles that need to be considered for the depository. It 1s
not ditficult to modity om evaluaton algoitthur 1o include the appropriate nonleaf
nodes
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Fic. 14.—Performance of a backed-off, ID3-ordered tree compared to trees recom-
mended by Fussler and Simon [8] The smoothed, ID3-ordered tree 1s clearly superior
to the simpler trees

cated algorithms do not lend themselves to the large number of criterion
values found in the library data set, and they are prohibitively slow as
a result. If a more modern algorithm can be tailored to the library data,
however, it may give improved performance.

Second, one could add more decision criteria. With good smoothing
methods, it is possible to include many more than the six criteria we
considered, while not overtraining the decision tree. The problem re-
mains of finding other predictive criteria. Preliminary examination of
the type of a tutte—monograph, serial, map, and so forth—indicates
that this statistic does not improve the accuracy of prediction Other
criteria availabte in the Harvard bibliographic database, examining the
author’s name, for instance, or whether the title includes illustrations,
are even less likely to improve performance.

V. Conclusions

Given the importance of choosing a good decision tree to implement
a choice policy for off-site storage, we explored several approaches for
constructing decision trees. These allow us to say which combinations
of criteria—of the ones we studied—best predict future use.

We follow most previous studies by endorsing past use as the best
single predictor of future use. We do so, however, with reservations.
When a large percentage of a library’s collection needs to be held off-
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site, the best criterion 1s CHECKOUT HISTORY, the number of past circula-
tions. However, when only a small percentage of a collection needs to
be moved (less than 18 percent in our study), past use is less useful.
This is because a large proportion of a collection may never have been
checked out, and past-use statistics are unable to distinguish among the
books in this subpopulation. Instead, LANGUAGE OF PUBLICATION and LC
cLAss seem to be the best criteria when few titles need to be put in the
depository.

It is possible to combine the best of all worlds by using more than
one criterion to predict future book use. The logical extension of this
is to use all the criteria available in our prediction rules. Unfortunately,
this causes decision trees to be too large for the data set, causing several
problems. Tie breaking can be solved by picking the nodes of the tree
carefully; computational heuristics such as [D3 can be used to try to
pick the best ordering. Overtraining can be solved by smoothing, which
shrinks the decision tree in places where the extra granularity is not
needed. The smoothed, ID3-ordered, maximal decision tree convinc-
ingly outperforms any singte-criterion decision tree and is the best
method we have tested for predicting book use.

By way of illustrauon, if the Harvard College Library had imple-
mented a last-use policy, as recommended by Fussler and Simon, to
choose which 20 percent of its collecnon to move to the depository in
1985, they would have had to retricve volumes from the depository
about thirty-four thousand tmes per year. If they had, instead, used
the smoothed, ID3-ordered, maximal tree, there would have been less
than a fifth as many, only 6,200 hits per year. In comparison, a random
choice policy would have resulted in sixty thousand hits per year, while
a clairvoyant policy would have garnered zero hits.

Appendix
The ID3 Algorithm

The ID3 algorithm is used to choose a dividing criterion for a given
node. By applying the ID3 algorithm to the root of a one-node decision
tree we obtain a decision tree with a root and several children. The ID3
algorithm can be applied recursively to each of the children to create an
cintire decision tree, termina[ing when rhe algorithm determines there is
no appropriate dividing criterion for any leaf node of the tree. The
following formulas are taken from Quinlan’s original paper [8].
Suppose we are considering leaf node N, which has py titles. Let ¢,
be the number of titles in N that were checked out : times in the “recent
past.” The information inherent in node N, I(N), is defined to be
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4 9
INY= = Lyog, X
s g2PN

This quantity is measured in bits, since it represents the number of
computer bits needed to store the information in a node.

Suppose we tentatively choose criterion C as a dividing criterion and
divide N based on criterion C. Call the children of NN, . . . , N,, where
v is the number of values for criterion C. Let p, be the number of titles
N, inherits from N. The expected information to create the children is
defined by

EC)= ) %I(N,).
=1

The information gain in dividing node N on criterion C is therefore
gain(N, C) = I(N) — E(C).

. The use of the term “gain” is perhaps a bit misleading, because while
1t indeed measures the information gain of the children of N over N
itsetf, it does not take into account the information required to make
the division. This statistic can be expressed as

IVN,C) = = > %1%%.
=1

We wish to maximize the quantity
gain(N, C)/IV(N, C).

This gain ratio statistic has the advantage over the gain statistic in
that it does not favor criteria that splinter the data into many criteria,
which may make the gain quantity large due merely to the overwhelm-
ing magnitude of the summation limit. The gain ratio suffers from its
own problem, however, in that it may inordinately favor criteria that
have a near-zero value of IV. We therefore use a combination of the
gain and gain ratio statistics in our final decision algorithm.

Suppose that there are n possible criteria on which to divide node N.
We choose the dividing criterion for node N as follows. (1) Choose the
n/2 criteria that have above-average gain for dividing on node N. (2)
Discard those criteria that have 0 gamn. 1t no criteria remain, do not
diyide n.ode N. (8) Otherwise, output that criterion that maximizes the
gain ratio

gain(N, C)/IV(N, C).
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TABLLE Al
THE Varues Carcuratid 10r tHe 1D3 Decision
ALGORITHM WHEN Picwine v Divipineg CRITERION
FOR THE Roo1 01 \ Drcision TREE

Ciuterion Gain (bits) Gam Rauo

CHECKOU1 HISTORY 2307 1231

LAST USE 1993 0655

COUNTRY 1328 0376

LC crass lo0l 0258 __

LANGUAGE ust3 0246

DATL OF PUBLICATION 1107 0167
No1e —The algoinhm fals only m gy undue seight 1o COuN TRY

The gamns and gam ratios for each aiiterion when calculated on the

root node of a deasion tree are sunnarized in table Al. The results
predicted by the ID3 algorithin should parallel those of the one-
criterion decision trees (fig. 2). For the most part, the [D3 algorithm
does well, ranking CHECKOUT HISTORY .nd LAST USE first, but it inaccu-
rately claims COUNTRY 1s the next most useful criterion. The algorithm
1s a hewistic and is not guaranteed to give optimal results.

2
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