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Increasingly, researchers developing statistical machine translation systems

have moved to incorporate syntactic structure in the models that they in-
duce. These researchers are motivated by the intuition that the limitations

in the finite-state translation models exemplified by IBM’s “Model 5” follow
from the inability to use phrasal and hierarchical information in the interlin-

gual mapping. What is desired is a formalism that has the substitution-based

hierarchical structure provided by context-free grammars, with the lexical re-
lationship potential of n-gram models, with processing efficiency no worse

than CFGs. Further, it should ideally allow for discontinuity in phrases, and

be synchronizable, to allow for multilinguality. Finally, in order to support
automated induction, it should allow for a probabilistic variant. We intro-

duce probabilistic synchronous tree-insertion grammars (PSTIG) as such a

formalism. In this paper, we define a restricted version of PSTIG, and provide
algorithms for parsing, parameter estimation, and translation. As a proof of

concept, we successfully apply these algorithms to a toy problem, corpus-based

induction of a statistical translator of arithmetic expressions from postfix to
partially parenthesized infix.

1. Introduction

Increasingly, researchers developing statistical machine translation systems have
moved to incorporate syntactic structure in the models that they induce. These
researchers are motivated by the intuition that the limitations in the finite-state
translation models exemplified by IBM’s “Model 5” (Brown, Pietra, Pietra, and
Mercer, 1993) follow from the inability to use phrasal and hierarchical information
in the interlingual mapping. It is suggestive that bilingual dictionaries describe
the mappings between languages in terms of constructions, not individual words.
For instance, the HarperCollins Italian College Dictionary (HCICD) translates the
English “to take advantage of” as “sfruttare”, although that word is a direct trans-
lation of neither “take” nor “advantage”.

IBM-style models can be augmented to allow multiword (in addition to single
word) mappings. Marcu and Wong (2002) use joint probability distributions over
frequently co-occurring n-grams to find multiword translations, thereby improv-
ing on the performance of IBM Model 5. Such an approach does allow multiword
relationships to be induced, but does not in any sense incorporate syntactic struc-
ture to do so. Indeed, the natural way to augment the multiword approach to
incorporate syntactic constraints is to restrict the multiword sequences to syntac-
tic constituents (as determined by a statistical parser for instance) (Yamada and
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Knight, 2002). This augmentation turns out to underperform the syntax-free vari-
ant (Koehn, Och, and Marcu, 2003).

The reason is not hard to understand: The word sequences that map well in
translation — such as the German-English example of Koehn et al. (2003) “es
gibt”/“there is” — are not themselves syntactic constituents, but rather syntactic
templates (“es gibt . . . ”/“there is . . . ”) with “holes” (marked here by ellipses) that
might be substituted for in some uniform manner. Bilingual dictionaries even make
the mapping between such holes explicit through the use of place fillers like “sb”
(“somebody”), “sth” (“something”), “qn” (“qualcuno”), etc., as in the HCICD
entry “to drive sb mad”/“far impazzire qn”. Secondarily, the phrases that are
mapped need not appear contiguously, either because the holes split the lexical
material, as in the example “drive sb mad”, or because other constituents interpose
themselves, as in the phrase “take advantage yesterday of sb”.1

This ability to substitute subparts is, of course, the hallmark of context-free
grammars. A natural approach, then, is to incorporate some sort of synchroniza-
tion of context-free structures to allow for these kinds of mappings. This idea has
a long history, starting with syntax-directed translation schemata (P. M. Lewis
and Stearns, 1968; Aho and Ullman, 1969), and most methodically developed for
natural-language processing purposes in Melamed’s work on multitext grammars
(Melamed, 2003, 2004). It appears in several variants, including inversion trans-
duction grammars (Wu, 1996, 1997) and head transducers (Alshawi, Bangalore,
and Douglas, 2000). Though the incorporation of substitution is well-motivated,
the systems manifest other problems following from the type of structures that
they synchronize. In particular, probabilistic context-free grammars (PCFG) are
well known to perform poorly as language models compared to the syntactically
stunted finite-state models; they gain the ability to substitute according to abstract
categories at the expense of stating lexical relationships directly. For the same rea-
son, synchronizing context-free grammars loses the lexical dependencies so crucial
for translation, and so well characterized by the finite-state approach.

What is desired, then, is a formalism that has the substitution-based hierarchical
structure provided by context-free grammars, with the lexical relationship potential
of n-gram models, with processing efficiency no worse than CFGs. Further, it
should ideally allow for discontinuity in phrases, and be synchronizable, to allow
for multilinguality. Finally, in order to support automated induction, it should
allow for a probabilistic variant.

Fortunately, such a formalism exists: probabilistic synchronous tree-insertion
grammars (PSTIG). In this paper, we define a version of PSTIG, and provide algo-
rithms for parsing, parameter estimation, and translation. As a proof of concept,
we successfully apply these algorithms to a toy problem, corpus-based induction of
a statistical translator of arithmetic expressions from postfix to partially parenthe-
sized infix.

We begin by reviewing synchronous grammars in general and deriving synchro-
nous tree-insertion grammar (STIG) in Section 2 motivated by the desiderata above.
We then describe a deductive parsing algorithm for a restricted version of STIG
Section 3. In Section 4, we present a probabilistic version of STIG, along with

1For example, “The US took advantage yesterday of the political and military momentum in
its Afghan campaign. . . .” is one of many Google hits on the phrase “took advantage yesterday

of”.
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Figure 1. Context-free grammar in the form of unit height trees.

versions of the inside-outside algorithm and the EM algorithm for parameter es-
timation. Finally, we present preliminary empirical results on the toy problem in
Section 5.

2. Synchronous Tree-Insertion Grammars

Synchronous grammar formalisms generalize a base formalism by pairing the
elementary structures (the productions, rules, or elementary trees) of the base for-
malism, and linking nodes between paired structures. The operations on elemen-
tary structures are then generalized to operations on pairs of elementary structures
restricted to act at linked nodes.

A simple example of the notion is synchronous context-free grammars. We view
the elementary structures of a context-free grammar not as a production (e.g.,
S → NP V P ) but rather a tree of unit height, for example, those shown in Fig-
ure 1. The primitive operation is substitution of a tree rooted in a nonterminal A
for a frontier node labeled with the same nonterminal A. (Frontier nodes subject
to substitution, substitution nodes, are marked with a diacritic “↓”. This annota-
tion ceases to be redundant in later developments.) We generalize a context-free
elementary tree t to a synchronous elementary tree pair 〈tL, tR,_〉 where the two
trees tL and tR are context-free grammar rules and _ is a set of links specifying
pairs of linked substitution nodes from tL and tR. Derivations proceed just as in
a context-free grammar except that all nodes linked by some link in _ are simul-
taneously substituted for by paired trees derived by the grammar. The grammar
fragment shown in Figure 2 gives an example of a synchronous context-free gram-
mar that could be used to parse the English and French sentences “Jean likes red
candies”/“Jean aime les bonbons rouges”. (In this figure and elsewhere, we mark
the linking relation graphically directly on the nodes rather than as a separate
element in the triple.) The formalism allows the grammar to express correspon-
dences between constituents in the two languages at a level higher than just single
words, while also expressing differences in the ordering of constituents. This follows
the intuition that constituent membership provides more useful information than a
simple word distance metric when determining which words align in a multilingual
sentence pair.2

2The parsing of string pairs according to an SCFG where the elementary trees are restricted
to Chomsky normal form can be done in O(n6) time where n is the string length. We assert this
without proof here. Informally, however, the parsing algorithm works by keeping indices of the
ends of the substring covers in each string — two for each string — as well as an index for each
string between the two endpoints on which to try to split the substring into its constituent parts,

that is, six string indices. Iteration over all possible combinations of the six indices is thus O(n6).
However, the restriction to Chomsky normal form limits the ability of SCFGs to express many
different crossing correspondences and discontinuous constituents. Allowing more nonterminal
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Figure 2. A partial synchronous CFG grammar for English and
French represented in tree form

Although SCFGs solve the substitution problem, they introduce other difficul-
ties. Primarily, they give up one of the main advantages of the IBM-style systems:
the direct expression of relationships between individual words. Consider again the
SCFG shown in Figure 2. The derivation for the sentence pair “Jean likes red sand-
wiches”/“Jean aime les sandwiches rouges” differs from that of the sentence pair
“Jean likes red candies”/“Jean aime les bonbons rouges” only in the substitution of
the particular elementary tree pair at the N -link in the fifth elementary tree pair.
Thus, any distinction in the quality of the two sentence pairs must depend only on
the nouns and not, for instance, on the lexical environment, in particular, on the
adjacent word “red”/“rouges”. This shortcoming could be remedied by lexicalizing
the grammar, that is, by requiring that each elementary tree have a lexical item
present, thereby making it possible for operations to express direct relationships
between words. In general, however, context-free grammars cannot be lexicalized
while still preserving the trees produced (Schabes and Waters, 1995). In addition,
CFGs do not cleanly model the optional modification required for phrases such as
“take advantage yesterday of” because they require additional nonterminal symbols
in each place at which an optional modification might occur.

This problem is not inherently a problem of synchronous context-free gram-
mars, but of context-free grammars in general: they cannot be lexicalized directly.
Tree-adjoining grammars (TAG), introduced in monolingual form by Joshi (1985),
and in a synchronous variant (STAG) by Shieber and Schabes (1990), are natural
choices to capture lexically-based dependencies without losing the expressivity of

symbols and unrestricted links on the right-hand side of rules can increase expressivity at the
expense of computation time. This tradeoff exists in all synchronous formalisms discussed in this
paper.
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Figure 4. An Example TAG substitution

CFGs. Tree-adjoining grammars extend context-free grammars in two ways. First,
the elementary trees are not restricted to unit height; the elementary trees can be
of arbitrary size. Second, an additional operation beyond substitution is allowed,
adjunction. Auxiliary trees are elementary trees in which the root and a distin-
guished frontier node, the foot node, are labeled with the same nonterminal. (By
convention, the foot node is marked with a diacritic “∗”. The path from root to
foot is called the spine.) The adjunction operation involves splicing an auxiliary
tree with root and designated foot node labeled with a nonterminal A at a node in
an elementary tree also labeled with nonterminal A. Figure 3 shows some examples
of elementary trees. Examples of the substitution and adjunction operations are
shown in Figures 4 and 5.

Importantly, Schabes, Abeille, and Joshi (1988) show that tree-adjoining gram-
mars can lexicalize context-free grammars without changing the trees produced.
Because each elementary tree contains a lexical item, the operations of substitution
and adjunction implicitly manifest a lexical relationship. In addition, the two op-
erations of TAG, substitution and adjunction, are exactly what is needed to handle
the noncontiguity problems exemplified above, as shown in Figures 6 and 7.

However, the TAG formalism’s additional expressivity leads to additional pro-
cessing complexity. TAG parsing requires O(n6) time; synchronous TAG parsing
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Figure 5. An Example TAG adjunction
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Figure 7. A TIG adjunction to form the construction “take ad-
vantage yesterday of”

would therefore require O(n12) time. Because training of an MT system based on
synchronous TAG would require repeated parsing of the training corpus, the time
complexity of parsing synchronous TAG is prohibitive.
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Figure 8. An STIG for an English/French version of our sample grammar

Tree-insertion grammars (TIG) are a computationally attractive alternative to
TAG (Schabes and Waters, 1993). TIGs are similar to TAGs except that restrictions
are placed on the form of elementary trees and on the adjunction operation. In
particular, the foot node of an auxiliary tree is required to be at the left or right
edge of the frontier, so that all textual material dominated by the spine will fall
to the right or left, respectively, of the foot. The auxiliary trees can thus be
classified as either right or left auxiliary trees, respectively, as determined by the
location of the non-foot material. To maintain the invariant that textual material
falls only on a single side of the spine, adjunction must be restricted so that left
auxiliary trees may not adjoin into a node on the spine of a right auxiliary tree
and vice versa. This prevents the formation of “wrapping” trees in which there
are terminal symbols on both sides of the foot node. This restriction coupled with
the requirement that all elementary auxiliary trees be non-wrapping is sufficient to
limit the formalism to context-free expressivity and O(n3) parsability. In addition,
Schabes and Waters (1993) demonstrate that TIG, like TAG, can lexicalize context-
free grammars without changing the shape of the trees produced. For further
background and discussion of TIGs and LTIGs, see the papers by Schabes and
Waters (1993, 1995) and Hwa (2001).

Synchronous TIG (STIG) extends TIG just as SCFG extends CFG, by making
elementary structures pairs of TIG trees with links between particular nodes in
those trees. An STIG is a set of triples, 〈tL, tR,_〉 where tL and tR are elementary
TIG trees and _ is a the linking relation between nodes in tL and nodes in tR
(Shieber, 1994). Derivation proceeds as in TIG except that all operations must be
paired. That is, a tree can only be substituted or adjoined at a node if its pair is
simultaneously substituted or adjoined at a linked node. Figure 8 contains a sample
English/French grammar fragment and Figure 9 shows the derivation of the paired
sentences: “Jean likes red candies” and “Jean aime les bonbons rouges”.
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likes/aime

jean/jean candies/les bonbons

1/1 2.2/2.2

red/rouges

1/2

Figure 9. The derivation of “Jean really likes candies.”/“Jean
aime les bonbons rouges.”

In support of our hypothesis about the utility of synchronous TIG in providing
the properties desired in a synchronous grammar formalism for engineering trans-
lation systems, Hwa (2001) shows that a probabilistic version of TIG can have
language modeling performance at the level of bigram models thereby capturing
lexical relationships, while also retaining the advantages of context-free grammars
in capturing syntactic structure. A synchronous TIG can easily express lexically-
based dependencies, can be parsed in O(n6) time, and can handle both the substi-
tution and adjunction requirements described above. Thus, a probabilistic version
of synchronous TIG seems to possess all of the properties that we would like as the
basis for a syntax-aware translation formalism.

In the succeeding sections, we develop parsing, parameter estimation, and trans-
lation algorithms for probabilistic synchronous TIGs. We follow the useful syn-
chronous parsing framework laid out by Melamed (2004). Following Melamed, we
distinguish multilingual parsing, in which a pair of sentences is analyzed as per
a multilingual grammar, from translation, in which a single sentence is analyzed
as per a multilingual grammar so as to determine all multilingual tuples in which
the sentence is admitted. In addition, Melamed (2004) breaks generalized parsers
into four distinct pieces, each of which may be analyzed separately: a grammar,
a logic, a semiring, and a search strategy. The grammar is the language-specific
set of rules and/or lexical items used by the parser. The logic is a set of inference
rules that determine how the items of the grammar may be combined to form a
derivation. The semiring determines what is computed by the parser as it parses;
for instance, it might determine simple acceptability of a sentence by a grammar or
it might determine the probability of the sentence being produced by the grammar.
The search strategy refers to the order in which the inference rules are applied
when more than one rule can apply. Melamed draws on previous work by Shieber,
Schabes, and Pereira (1994) for his inference-rule-based separation of logics, gram-
mars, and search strategy. He draws on previous work by Goodman (1999) for the
method of parameterizing the parser by a semiring.

In this work, we present a statistical MT system within Melamed’s framework,
the heart of which is a synchronous parser for tree-insertion grammars. We use
the parser in the context of an Expectation Maximization algorithm to iteratively
parse a corpus of sentence-aligned bilingual data and estimate the parameters of
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the synchronous grammar. The resulting grammar is used for machine translation
of new sentences.

3. Parsing Synchronous Tree-Insertion Grammars

In this section we describe the necessary logic for parsing synchronous TIG. Little
previous work has been done on multilingual parsing of (as opposed to translation
by) synchronous formalisms. Melamed and Wang give logics for several variants
of multitext grammar (Melamed, 2004). Other machine translation systems that
can be characterized in the generalized parsing framework have also tackled this
problem but with a less direct approach (Wu, 1996, 1997; Alshawi et al., 2000).
Here we give an original parsing algorithm for a restricted subset of synchronous
tree-insertion grammars. We also discuss the limitations of the algorithm, how
it could be extended to support unrestricted synchronous TIG, and the resulting
change in complexity.

3.1. Parsing TIGs. TIGs are parsable in O(n3) time. Schabes and Waters (1995)
give an Earley-style parsing algorithm for TIGs. Schabes and Waters (1993) give
a CKY-style parsing algorithm for a slight variant, lexicalized context-free gram-
mars (LCFG), which can straightforwardly be used to create a CKY-style parsing
algorithm for TIGs.

For reasons to be discussed below, the choice of parsing algorithm has significant
consequences. We have chosen to use CKY-style parsing because of the simplicity
and clarity of the algorithm. Figure 10 presents inference rules for a CKY-style
parsing algorithm for TIG. These rules can be used in conjunction with a standard
chart parsing algorithm to parse an input sentence w1 . . . wn according to a TIG.
This algorithm is an adaptation of the algorithm given in Schabes and Waters
(1993).

As all deductive parsing algorithms (Shieber et al., 1994), the algorithm works by
generating items. Each item is of the form [η, I, AdjSet], where η is a node in some
elementary tree of the grammar,3 I is an interval (i, j) between string positions
i and j characterizing the substring wi+1 · · ·wj covered by the item, and AdjSet
is a subset of {L,R} specifying which adjunctions, left or right, respectively, are
still allowed at the node. We assume that each node η in an elementary tree is
associated with a nonterminal or terminal label Label(η) and with a set of possible
adjunctions Adj(η) ⊆ {L,R} in accordance with the TIG restrictions. Root nodes
satisfy Root(η) and if η1 is the root of a tree that can substitute or left- or right-
adjoin at node η2, then Subst(η2, η1), Adjoin(η2, η1, L), and Adjoin(η2, η1, R) are
respectively satisfied. We write η0 → η1 · · · ηk to indicate that η0 dominates nodes
η1, . . . , ηk. (As is standard for CKY-style algorithms, we assume that all trees
are at most binary branching.) We make use of an interval union operation ∪x,
parameterized by the order in which the intervals abut, where x is either L or R,
defined by

(i, j) ∪L (j, k) = (i, k)
(j, k) ∪R (i, j) = (i, k) ,

and is otherwise undefined. Similar predicates and functions appear in later sets of
rules following this same pattern; they are fully described in the appendix.

3The node may be thought of as specified by the name of the tree and the Gorn address of the
node within the tree.
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String to parse: w1 · · ·wn

Item Form: [η, I, AdjSet]

Goal Item: [η, (0, n), ∅] Label(η) = StartSymbol, Root(η)

Axioms:

WordAx
[η, (i, i + 1), ∅] Label(η) = wi+1

AuxAx
[η, (i, i), ∅] Foot(η)

Inference Rules:

SibCat
[η1, I, ∅] [η2, J, ∅]

[η0, I ∪L J,AdjSet(η0)]
η0 → η1 η2

SingPar
[η1, I, ∅]

[η0, I, AdjSet(η0)]
η0 → η1

Subst
[η1, I, ∅]
[η2, I, ∅] Root(η1), Subst(η2, η1)

Adjoin
[η1, I, AdjSet + x] [η2, J, ∅]

[η1, I ∪x J,AdjSet]
Root(η2), Adjoin(η1, η2, x)

NoAdj
[η, I, AdjSet + x]

[η, I, AdjSet]

Figure 10. CKY-style inference rules for TIG parsing

Section 4 extends these rules for use with synchronous TIG (STIG), so we explain
here what each rule does.

• The first axiom (WordAx) adds items to the chart for each node labeled
with a word in the input sentence. These will be the anchors of trees
that may be either initial or auxiliary. Since they are terminal nodes, no
adjunctions are possible.

• The second axiom (AuxAx) adds items to the chart for the foot node of
each auxiliary tree in the lexicon, making each auxiliary tree available for
adjunction at each string position in the input sentence.

• The sibling concatenation (SibCat) and single parent (SingPar) rules
simply move the derivation from child node to parent node in the tree. They
only apply when all adjunction operations on the child node are completed,
as evidenced by the empty AdjSets in the antecedent items.

• The substitution rule (Subst) applies at the root node of initial trees when-
ever all adjunction operations are completed at that node. It creates new
items for each node into which the completely processed initial tree could
substitute, covering the span of the input string that the completed initial
tree covers.

• The adjunction rule (Adjoin) applies whenever a node has an adjunction
available in its adjunction set and there is an auxiliary tree that can adjoin
at that node on the specified side without violating the TIG wrapping tree
restrictions.
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Strings to parse: 〈w1 · · ·wnS
, v1 · · · vnT

〉

Item Form: 〈[ηS , I], [ηT , J ], LinkSet〉

Goal Item: 〈[ηS , (0, nS)], [ηT , (0, nT )], ∅〉
Label(ηS) = srcStartSym
Label(ηT ) = trgStartSym
RootPair(η)

Axioms:

WordAx 〈[ηS , (i, i + 1)], [ηT , (l, l + 1)], ∅〉
wi+1 = Label(ηS)
vl+1 = Label(ηT )

AuxAx 〈[ηS , (i, i)], [ηT , (l, l)], ∅〉
Foot(ηS)
Foot(ηT )

EmptyAx 〈[ηε, (i, i)], [ηε, (j, j)], {(x, y)}〉
x, y ∈ {L, R}
EmptyTree(ηε)

Inference Rules:

SibCat
〈[η1S , I1], [η1T , J1], ∅〉 〈[η2S , I2], [η2T , J2], ∅〉
〈[ηS , I1 ∪L I1], [ηT , J1 ∪x J2], LS(ηS , ηT )〉

ηS → η1S η2S

(ηT → η1T η2T and x = L or
ηT → η2T η1T and x = R)

SParSrc
〈[η1S , i, j], [ηT , l, m], ∅〉

〈[ηS , i, j], [ηT , l, m], LS(ηS , ηT )〉
ηS → η1S

NoLinks(η1S)

SParTrg
〈[ηS , i, j], [η1T , l,m], ∅〉

〈[ηS , i, j], [ηT , l, m], LS(ηS , ηT )〉
ηT → η1T

NoLinks(η1T )

Subst
〈[η1S , i, j], [η1T , l, m], ∅〉
〈[η2S , i, j], [η2T , l, m], ∅〉

RootPair(η1)
Subst(η2, η1)

Adjoin
〈[η1S , I1], [η1T , J1], LS + (x, y)〉 〈[η2S , I2], [η2T , J2], ∅〉

〈[η1S , I1 ∪x I2], [η1S , J1 ∪y J2], LS〉
Adjoin(η1, η2, x, y)
RootPair(η2)

Figure 11. Inference Rules for CKY-style STIG parsing

• The no adjunction rule (NoAdj) simply skips the next available adjunction
at a node without performing any adjunction operation.

3.2. Parsing Synchronous TIG. Our CKY-style STIG parsing algorithm is a
straightforward generalization of the TIG parsing algorithm given in Figure 10.
Since synchronized operations can only occur at linked nodes, we are able to do
away with the adjunction sets. Instead, we keep track of the set of unused links
between the two nodes in an item.4 Each time one of the links is used, it is removed
from the set. The inference rules for the CKY-style RSTIG parsing algorithm are
shown in Figure 11.

4Note that because we do not allow empty anchors for trees and because every operation

proceeds synchronously, the parsing complexity is actually only O(n4) because we can keep track

of the starting index for the source and target spans, the length of the span, and a single guess as
to where to break the span into sub-pieces. The complexity increases in the next section, when

provision is made for parsing of sentence pairs of differing lengths.
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We review the inference rules in Figure 11 in reference to the rules defined
earlier in Figure 10. Note the simplification that comes from adding links. Rather
than maintaining a set of available adjunctions at each node, that set is entirely
determined by the links at that node. Given that each item is a pair of nodes, we
do not need to consider all of the links at either node, but only the links between
the two nodes in question. For convenience, we abbreviate node pair ηS and ηT

from source and target trees, respectively, as η. We use the notation LS(η, ρ) to
indicate the set of links between nodes η and ρ. We use the predicate NoLinks(η)
to signify that η has no links to any other node, including those not in the current
item.

We are able to eliminate NoAdj rules entirely. Wherever there is no link at a
particular node, no adjunction can take place, so that case is automatically handled.
When we wish to skip a particular link, we simulate this by adjoining in a special
auxiliary tree pair consisting of trees (EmptyTree) with a single node that is both
root and foot. Thus, EmptyTrees do not change the shape of the derived tree. No
additional inference rules are needed because the adjunction rules already handle
this case. It does require the addition of an axiom to put the EmptyTree nodes into
the chart.5 This change eliminates the tricky problem of estimating no-adjunction
parameters.

3.3. Completeness of CKY Parsing of Synchronous TIGs. For the most
part, the TIG parsing rules can be extended to the synchronous case simply by
making the antecedent and consequent items into pairs of trees rather than single
trees as is shown in the previous section. However, the restrictions imposed by the
links make this generalization insufficient to handle certain cases. Intuitively, the
problem arises when inference rule A’s antecedents cannot be satisfied except by
the consequent of inference rule B and vice versa. We explore this problem in detail
below.

3.3.1. The Crossing Problem. Parsing TIGs requires only a straightforward gener-
alization of well-understood parsing algorithms such as CKY parsing or Earley’s
algorithm. However, because these algorithms encode a particular procedural or-
der for visiting the nodes in a tree to be parsed, the resulting parsers will accept
proper, overlapping but distinct subsets of the STIG languages. That is, the obvi-
ous generalization of the CKY and Earley parsing algorithms described above are
not complete for the STIG languages. The difficulty arises because the links be-
tween trees may “cross” in ways that make it impossible for the parsing algorithm
to perform operations at the ends of both links. This is most easily illustrated by
an example, such as the tree in Figure 12.

In CKY parsing, traversal of the trees proceeds from all the leaves simultaneously
up to the root of the tree. When the parsing algorithm has finished processing all
children of a node, it proceeds to the parent. Thus, in order to make use of the link
between node B and node C (in Figure 12), the parsing algorithm must first finish

5The addition of EmptyTrees breaks lexicalization of an otherwise lexicalized grammar, but

neither removes the linguistic advantages of lexicalization nor the parsing advantage that comes
from not allowing adjunctions that don’t increase the span of the item. The reason the latter

is not a problem is that an empty tree can only adjoin to a link once because the link is then

removed. Thus no spurious adjunctions are introduced. In our implementation we do not actually
add the empty tree nodes to the chart but instead just make them available in every chart cell

with no cover.
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X

w2

X*C

D

X

w1

X* A

B

Figure 12. STIG links that pose a problem for CKY parsing

with node D. However, in order to make use of the link between node A and node
D, the parser must first finish with node B. Thus, although a tree pair such as the
one in Figure 12 is permitted by the STIG formalism, the parser will rule out any
derivation that makes use of both of links in the tree pair.

In Earley’s algorithm, the nodes are parsed in a top-down, left-first order; the
left branches precede the right branches and the left sides of nodes precede the right
sides of nodes. Thus, the trees in Figure 12 would be parsable using a version of
Earley’s algorithm for STIG, because the right side of node B and the left side of
node C would both be reached before the right side of node A and the left side of
node D. Earley’s algorithm would be unable, however, to parse other combinations
of links that do not pose a problem for CKY parsing.

3.4. The Incomplete Cover Problem. Because all operations in the grammar
are synchronous, this problem can arise even with nodes that have no links between
them. That is, at each point in the derivation, a node in a tree is paired with a node
in the other tree in its tree pair. When two pairs of nodes cross each other across
the boundaries of a branch in the tree, we have the same problem. This problem is
illustrated in Figure 13. In order to perform a sibling concatenation to reach nodes
Y1 and Y2, the derivation must have reached all of the daughter nodes of both and
those daughter nodes must be paired with each other in some combination. If a
pair of nodes, such as w1 and w2, are not both daughters or descendants of Y1 and
Y2, the derivation will never be able to proceed. Note that although w1 and w2

are not explicitly linked, in order for them to be introduced into the derivation as
anchors of their respective trees, they must have been introduced as a pair using
the WordAx inference rule. Note also that as a derivation proceeds, a node may
be paired with different nodes because of the application of the SingPar inference
rules, which are our only rules that apply asynchronously in any sense. Thus the
problem persists even when the pairing is not of a daughter of Y2 with an ancestor
of Y1 but also any descendant of Y2 with an ancestor of Y1.

To formalize the problematic situation, we introduce the notion of a cover. We
say that set of nodes S covers an ancestor node X if all descendants of X that are
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X

w1 Y1

A↓ B↓

X

Y2

D↓ w2

C↓

Figure 13. Paired node configurations that pose a problem for
CKY parsing. Note that the dotted line is not a link, but just an
illustration that w1 and w2 are paired nodes.

paired nodes are contained in S.6 We prohibit tree structures in which the set of
nodes that cover a node, here Y1, are not paired with the set of nodes that cover
Y1’s paired node Y2.

The source of both this problem and the crossing problem is the limitation on the
number of indices that we keep track of in a given item. If we allow an extension
in which we keep a list of spans that an item covers, then we could extend the
algorithm to do an operation on one half of the pair while keeping track of the
obligation to do the corresponding operation when it becomes possible on the other
half of the pair. However, limiting the algorithm to only two indices for each
half of each item means that we only need to consider all sets of two spans and
how to break them each into two pieces. This requires looping over six variables
(corresponding to the ends of the spans and the dividing point we are considering
in each span). Thus the algorithm requires O(n6) time. In the presentation of rules
given before, the complexity is restricted further because the spans covered by an
item must be of equal length on both the source and target side, so we can reduce
to keeping track of only four independent quantities, making the algorithm require
a worst case of O(n4). If we allow the algorithm to keep track of arbitrarily many
spans within an item, the algorithm becomes exponential in n. Given the large
increase in worst-case complexity, we restrict ourselves to the subset of TIG that
does not exhibit these configurations of paired nodes. In the future we intend to
try modifications to the algorithm if necessary, for instance allowing a single gap
in each item.

3.4.1. Definition of Restricted Synchronous TIG. We define a restricted subset of
STIG: restricted STIG (RSTIG), for which we assert that the given CKY parsing
algorithm is complete. An RSTIG is a STIG where the linking relation in the
elementary trees obeys the following rules:

• If a particular elementary tree pair contains a link between node A and
node B, it may not also contain a link between: (a) an ancestor of A and
a descendant of B, or (b) an ancestor of B and a descendant of A.

6Note that unpaired nodes, if they existed, would not present this problem. Although our rules
currently do not allow unpaired nodes, we introduce modifications to allow them in Section 3.6.
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• If a set of nodes form a cover of an ancestor, X, then the nodes with which
those nodes are paired must form a cover of any nodes with which X may
be paired.

The following definitions apply:

• Paired. Two nodes are paired if they may form an item in the course of a
derivation.

• Cover. A set of nodes S covers an ancestor node X if all descendants of
X that are paired nodes are contained in S.

3.5. Allowing Translations of Differing Lengths. As currently written the
inference rules can only successfully recognize sentences in which there is a one-to-
one correspondence between the anchors of paired trees in the lexicon, because the
WordAx axiom always introduces a word in both the source and target derivations.
This is an unacceptable constraint since sentences that are translations of each other
will not in general have an exact one-to-one word correspondence. To remedy
this problem, we can add trees explicitly anchored by the empty string, without
losing many of the benefits we originally gained by requiring lexical anchors in the
elementary tree pairs. Rather than requiring that each tree in each language have
a non-empty anchor, we relax the restriction so that only one of the trees in any
given pair of trees in the grammar must have a non-empty anchor.

Our inference rules do not require lexicalized tree pairs to work, so the only
necessary modification to the rules is the addition of two axioms that permit tree
pairs with an ε anchor to be entered into the chart:

WordEpsAx 〈[ηS , (i, i + 1)], [ηT , (l, l)], ∅〉

wi+1 = Label(ηS), ε = Label(ηT )
Anchor(ηS , src, TP )
Anchor(ηT , trg, TP ), TP ∈ G

EpsWordAx 〈[ηS , (i, i)], [ηT , (l, l + 1)], ∅〉

vl+1 = Label(ηT ), ε = Label(ηS)
Anchor(ηS , src, TP )
Anchor(ηT , trg, TP ), TP ∈ G

This modification can as much as triple the size of the grammar, which will have
a detrimental effect on the space and time complexity of the parsing algorithm as
well as the space and time complexity of the expectation maximization algorithm
based on it. However, because each operation that combines trees (excepting the
adjunction of EmptyTrees discussed above) still increases the cover of the item
in at least one of the sentences, the time complexity of the algorithm in terms of
sentence length remains the same.

It also affects the time and space complexity of the translation process. The
translator has only the source sentence as input and it must guess if there are any
tree pairs in the parse that have a tree anchored with the empty string on the source
side. Theoretically there can be arbitrarily many such tree pairs in the translation.
We use a heuristic that limits the size of the target sentence relative to the source
sentence to prevent the parser from searching a potentially very large set of possible
translations.

The addition of ε-anchored trees on one side of tree pairs is sufficient to allow
sentence pairs in which the length of the source and target sentence differ. Thus,
it satisfies one of our desired properties for the formalism.
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3.6. Asynchronous Processing and Merge Rules. In the previous section we
modified the restrictions on the grammar to allow sentences of differing length. This
models the situation in which a word in one language translates into nothing in the
other language. Although this frequently occurs, it is not the only source of differing
length in translated sentences. For instance, there may be idiomatic phrases in one
language, such as “let the cat out of the bag” that tend to be translated to phrases
of different length in the other, such as HCICD’s “non è più un segreto”. Although
the grammar with only relaxed lexicalization may be sufficient to model this sort
of complexity, we can also address the problem more directly.

In addition, the rules given thus far restrict the shape of trees to be close to
isomorphic (modulo chains of single parent relations). Although we cannot allow
arbitrary tree pair configurations without violating the restricted STIG definition,
with rules to allow more asynchronous processing we can allow tree pairs in which
the two trees have significantly different shapes.

We will first modify the grammar to allow an elementary tree to have more than
one anchor. In addition, we allow trees to be paired with other trees with differing
number of anchors. We must then modify the parsing rules to enable them to parse
trees of this form. We can do this by addition of rules that process just one side of
a tree pair up until the point where an operation takes place at a link in the tree
pair or the tree pair is substituted or adjoined into another item.

This solution significantly expands the number of inference rules required. The
new rules fall into four categories:

• Asynchronous Rules. These rules process only one side of a tree pair. Both
antecedent and consequent items are asynchronous.

• Merge Rules. These rules take entirely asynchronous antecedents and pro-
duce a synchronous consequent item. These rules may only apply when a
merge is necessary.

• Semi-Synchronous Rules. These rules apply when only one of the an-
tecedent items is synchronous. This situation occurs when one of the an-
tecedents of the rule has merged for an earlier synchronous operation. A
merge is required when any operation combines other items with a synchro-
nous item, whether that operation is synchronous or not.

• Synchronous Rules. These rules apply when all antecedents are synchro-
nous. This includes all of the rules introduced in previous sections.

Due to the large number of merge and asynchronous rules, Figure 14 presents
only a sampling of these rules: the axiom for creating an asynchronous source item,
an asynchronous source sibling concatenation rule, the merge substitution rule, and
a semi-synchronous adjunction rule. A complete listing of the asynchronous and
merge inference rules is given in Appendix A, along with the appropriate calcula-
tions of semiring values to be discussed in Section 4.

The axiom in Figure 14 adds an asynchronous item for each lexical item with
a source tree anchored by a word in the source sentence. If the lexical item can
participate in a successful derivation it will later have to merge with its target half
to create a synchronous item. Before merging, however, it may undergo sibling
concatenation on the source side. This would occur if two asynchronous source
items corresponded to sibling nodes in the same lexical item and the derivation did
not require any substitution or adjunction operations on those nodes before moving
on to process their parent node. If the derivation reaches the root of both a source
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WordAxSrc 〈[ηS , (i, i + 1)],−, ∅〉
wi+1 = Label(ηS)
Anchor(ηS , src, TP )

SibCatSrc
〈[ηS1, I1],−, ∅〉 〈[ηS2, I2],−, ∅〉

〈[ηS , I ∪x J ],−, ∅〉

(ηS → ηS1 ηS2 and x = L or
ηS → ηS2 ηS1 and x = R)
NoLinks(ηS1), NoLinks(ηS2)

MrgSubst
〈[ηS , I],−, ∅〉 〈−, [ηT , J ], ∅〉
〈[(ρS , I], [ρT , J ], LS(ρS , ρT )〉

Subst(ρ, η), RootPair(η)
NoLinks(ηS), NoLinks(ηT )

SemiSyncAdj1
〈[ηS , I1], [ηT , J1], LS + (x, y)〉
〈[ρS , I2],−, ∅〉 〈−, [ρT , J2], ∅〉

〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS〉

RootPair(ρ)
NoLinks(ρS), NoLinks(ρT )
Adjoin(η, ρ, x, y)

Figure 14. Selected asynchronous and merge rules for CKY-style
RSTIG parsing

item and a target item that happen to be part of the same lexical item, they will
have to merge before substituting into another tree. The merge substitution rule
performs this operation. Alternatively, it may participate in an adjunction with
its asynchronous target counterpart and an already synchronous item, using the
semi-synchronous adjunction rule shown.

Asynchronous and merge rules elegantly obviate the need for pairing words in
one language with ε in the other. Rather than simulating lexical items made of
multiple, possibly non-contiguous anchor words by pairing some anchors with ε,
these rules allow us to write down these more complex, non-isomorphic tree pairs
directly. One advantage of this change is that we can augment the tree pairs we
learn with tree pairs that we harvest from another source, such as a treebank of
synchronized tree pairs or a bilingual dictionary. As long as the trees obey the TIG
restrictions and the links do not violate our restricted STIG constraints, they can
simply be added into the set of tree pairs.

4. Parsing Probabilistic RSTIG

In order to use the RSTIG parser to induce an RSTIG grammar from data,
we need to add probabilities to each item, corresponding to the inside probability
of the source and target nodes in that item covering their respective parts of the
source and target input sentences. Following the Melamed (2004) framework and
the work of Goodman (1999) on parameterizing parsers with semirings, we are able
to do this quite easily. In this section, we review the concept of a semiring and
demonstrate how several useful semirings can be applied to the RSTIG inference
rules and grammar.

4.1. Semirings. Goodman (1999) demonstrates that the quantities most com-
monly computed by parsers can all be computed using the same parsing algorithm
by simply swapping in a semiring that aids in calculating the particular quantity
desired. The basic idea is that the parsing algorithm can be written to compute a
quantity, such as acceptance or inside probability, by using a set of semiring opera-
tors in certain places. To change the quantity computed is to change the semiring
being used.
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A semiring contains two operators, a product (⊗) and sum (⊕), and two iden-
tities, 0 and 1. We require that ⊕ be associative and commutative and that ⊗
be associative and distribute over ⊕. 0 is an additive identity element and 1 is a
multiplicative identity element. We will write 〈S,⊕,⊗, 0, 1〉 for the semiring over
set S with multiplicative operator ⊗ and identity 1 and additive operator ⊕ and
identity 0.

In addition to the above, Goodman (1999) also includes a requirement that the
semiring be complete. A complete semiring also allows for infinite sums that are
associative and commutative and allows the multiplicative operator to distribute
over infinite sums. Completeness is necessary to handle parsers in which there may
be an infinite number of derivations for a particular item. This occurs when an
item can derive itself, either directly or through a series of steps. Although all the
semirings we describe here are complete, because operations can only take place at
links and links are removed after an operation occurs, there will never be an infinite
number of derivations of an item in our system.

To parameterize the parser by a semiring, each item and inference rule will
have a semiring value associated with it. The semiring value associated with the
consequent will be the product of the antecedent items’ semiring values and the
semiring value of the inference rule itself. When an item is added to the chart, if
it is not present in the chart it will be added with this computed value. If it is
already present in the chart, the new value will be its semiring value in the chart
plus the value computed by the inference rule that just generated it. Note that if
we use the Boolean semiring and give each inference rule the semiring value 1, we
yield the same results as we did with the unparameterized parsing algorithm.

In addition to replicating the recognizer previously presented, we can also use
semirings to compute inside probabilities and Viterbi derivations for the items in
the chart. The inside probability of an item is the probability of that item being
produced by the grammar starting at any point within the grammar. This proba-
bility is used in expectation maximization to induce a synchronous TIG grammar
from data. The Inside semiring is defined as 〈R∞0 ,+,×, 0, 1〉. We set the semiring
values associated with each inference rule as follows:

• The semiring value associated with all axiom rules will be 1. Since no
decisions have been made in the parse at this point, each axiom item has
probability 1 of being generated in the position in which it is inserted into
the chart.

• The semiring values associated with sibling concatenation and the single
parent rules will be 1. They are both entirely determined by the structure
of the trees themselves. There is nothing probabilistic in their application.

• The semiring value associated with substitution of item B into item A will
be the probability that B substitutes into A. Thus there will be a probability
distribution over all items that can substitute into A. This probability will
be given as part of the grammar and could be learned from a corpus.

• The semiring value associated with adjunction of item B into item A will
be the probability that B adjoins into A. Again, there will be a probabil-
ity distribution over all items that can adjoin into A given as part of the
grammar or learned from a corpus. Note that we do not need to maintain
a separate probability of no adjunction occurring because that probability
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Semiring S ⊕ ⊗ 0 1

Recognition {FALSE, TRUE} ∨ ∧ FALSE TRUE
Inside [0, 1] + × 0 1
Viterbi [0, 1] max × 0 1
Viterbi Derivation [0, 1]×D maxvit (×, ·) (0, ∅) (1, 〈〉)

Figure 15. Summary of the semirings used. The set of derivations D.

is maintained as the probability of the appropriate EmptyTree within this
distribution.

The Viterbi derivation is the derivation tree of the most probable parse for a
given input. This value will be of use when we use our induced grammar to trans-
late new sentences. The Viterbi derivation semiring is given in Figure 15 along
with the others used in the translation system. The elements of the semiring are
pairs consisting of the probability of the item and the derivation of the item. The
additive operator takes the maximum probability item and its associated deriva-
tion. Although retaining only a single derivation when multiple derivations have
the same probability destroys associativity, Goodman (1999) notes that in practice
this is not a problem.7 The multiplicative operator is just × for the probability
and concatenation for the derivations. The additive identity is 0 for the probabil-
ity and the empty set for the derivation. The multiplicative identity is 1 for the
probability and the empty derivation. Concatenation with the empty derivation is
an identity operation. The semiring values associated with the rules will use the
same probabilities as with the Inside semiring. The pairs will be filled out with the
empty derivation so that they will be identity elements when multiplied in.

4.2. RSTIG Parsing Parameterized by a Semiring. In this section, we present
inference rules for parsing RSTIG parameterized by a semiring. The semiring values
associated with the application of each inference rule are the parameters that must
be learned from the corpus. Thus we present these parameters as well. Figure 16
contains a sampling of the inference rules modified to include the calculation of the
semiring values associated with each item.

For each axiom item, the item is added with the multiplicative identity as its
semiring value. For the sibling concatenation and single parent operations, because
no decision is being made, the semiring values associated with those rules are always
the multiplicative identity.

For substitution, the semiring value of the consequent is the result of multiplying
the semiring value of the item being substituted by the semiring ring value of the
substitution site by the semiring value of the substitution rule as applied to the item
being substituted and the substitution site. The semiring value of the substitution
site is the multiplicative identity because no decisions have been made with respect
to it before this point.

For adjunction, the semiring value of the consequent is the result of multiplying
together the semiring values of the two antecedent items and the semiring value of
the adjunction rule applying to those two items.

7To maintain associativity, we just keep a forest of best derivations rather than a single best
derivation.
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Item Form: 〈[ηS , I], [ηT , J ], LinkSet, V alue〉

Goal Item:

Goal 〈[ηS , (0, nS)], [ηT , (0, nT )], ∅, p〉
Label(ηS) = srcStartSym
Label(ηT ) = trgStartSym
RootPair(η)

Axioms:

WordAx 〈[ηS , (i, i + 1)], [ηT , (l, l + 1)], ∅, 1〉
wi+1 = Label(ηS)
vl+1 = Label(ηT )

Inference Rules:

SibCat
〈[ηS1, I1], [ηT1, I2], ∅, p1〉 〈[ηS2, J1], [ηT2, J2], ∅, p2〉
〈[ηS , I1 ∪L I2], [ηT , J1 ∪x J2], LS(ηS , ηT ), p1 ⊗ p2〉

ηS → ηS1 ηS2

(ηT → ηT1 ηT2 and x = L or
ηT → ηT2 ηT1 and x = R)

Subst
〈[ηS1, I], [ηT1, J ], ∅, p〉

〈[ηS2, I], [ηT2, J ], ∅, p⊗ pSub〉
RootPair(η1)
Subst(η1, η2, pSub)

Adjoin
〈[ηS1, I1], [ηT1, J1], LS + (x, y), p1〉

〈[ηS2, I2], [ηT2, J2], ∅, p2〉
〈[ηS1, I1 ∪x I2], [ηT1, J1 ∪y J2], LS, p1 ⊗ p2 ⊗ pAdj)〉

RootPair(η2)
Adjoin(η1, η2, x, y, pAdj)

Figure 16. Selected inference rules for CKY-style RSTIG parsing
parameterized by a semiring

The semiring value calculated for the string is then the sum of the values as-
sociated with the goal items times their probability of rooting the corresponding
derivation: ∑

〈[ηS ,(0,srcLength)],[(ηT ,(0,trgLength)],∅,p〉

SP (η)⊗ p .

To make this more concrete, consider the application of the Inside semiring to
the adjunction operation. The inside probability of the consequent item is the
probability of the two items being adjoined together (p1 ⊗ p2) multiplied by the
probability (pAdj , for instance) of those two items being adjoined together.

The semiring values associated with each rule are the parameters that will be
estimated by the Expectation Maximization algorithm as described in Section 4.3.
Since the application of the semiring makes explicit the parameters that will have
to be estimated, these parameters are explained here. There are three categories of
parameters to be estimated:

(1) Adjunction Parameters. Each adjunction link has an associated prob-
ability distribution over all of the tree pairs that could adjoin at that link.
Since links specify on which side of the node the adjunction must take
place, only a subset of the total tree pairs will be represented in any ad-
junction link’s distribution. In addition, the nonterminal symbols at the
nodes linked further restrict which tree pairs may adjoin.

(2) Substitution Parameters. Each substitution link has an associated
probability distribution over all of the tree pairs that could substitute at
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that link. The nonterminal symbols at the linked nodes restrict the tree
pairs that will be represented in this distribution.

(3) Start Tree Parameter. This parameter specifies for each initial tree pair
the of its serving as the root of a derivation, and is associated with the root
nodes of the paired trees with the initial tree pairs of the grammar that
are rooted in the start symbols of the grammars. This value is represented
in the rules by a value for each pair of paired root nodes, SP (η), that is
multiplied into the semiring value of the goal item.

4.3. Inducing a Synchronous Grammar from Sentence-Aligned Text. The
synchronous parser presented above comes to life when put in the context of an
algorithm that can estimate the necessary parameters of the grammar. In this
section we review the Inside-Outside algorithm, which is a special case of the Ex-
pectation Maximization algorithm used for estimating the parameters of a grammar
(Prescher, 2001). We apply the algorithm to synchronous tree-insertion grammars
in a straightforward generalization of the algorithm presented by Hwa (2001).

4.3.1. The Inside-Outside Algorithm. The Inside-Outside algorithm was proposed
by Baker (1979) and refined by Lari and Young (1991) as a method for performing
maximum likelihood estimation for probabilistic context-free grammars. The ob-
jective of the algorithm is to estimate a probability to associate with each rule of a
grammar so that the grammar can then be used to produce the most likely parse
of unseen sentences.

In an unambiguous grammar these probabilities can be estimated directly by
parsing a training corpus and keeping track of the number of times each rule is
used. These counts can then be normalized to produce a probability to associate
with each rule of the grammar using the following formula (Jurafsky and Martin,
2000):

P (α → β | α) = Count(α→β)P
γ

Count(α→γ)
= Count(α→β)

Count(α)

However, grammars are rarely unambiguous and our initial grammar will certainly
be ambiguous. Thus, these values cannot be computed directly. Instead we must
keep track of all of the different parses for a given sentence and a weight for each of
those parses. The Inside-Outside algorithm allows us to do just this. It begins with
randomly initialized probabilities for each parameter (Initialization Step). It then
uses these rules to parse a training corpus and calculate the expected frequency
with which each rule is used (E Step). These expected frequencies are then used to
compute new probability estimates for the rules (M Step). The process continues
until the rule probabilities converge to a local maximum for the training corpus. A
high-level description of the algorithm is given in Figure 17.

In the E step we calculate the inside and outside probabilities for each of the
parameters of the grammar. In the case of PCFGs, the inside probabilities corre-
spond to the probability that a given nonterminal in the grammar derives a given
substring of the current input sentence. The outside probabilities correspond to the
probability that the entire input sentence is derived with a given nonterminal in
the grammar covering a given substring in the input sentence. These two quantities
are depicted as the grey areas in Figure 18.

In the M step we use the inside and outside probabilities calculated in the E Step
to update the parameter probabilities. When multiplied together, the inside and
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Initialize the parameters of the grammar randomly
Repeat until convergence:

E Step:
Compute the Inside and Outside probabilities for the grammar

M Step:
Update the parameters to maximize the likelihood of the training data

Figure 17. High-Level View of the Inside-Outside Algorithm

X X

0 0n ni ij j

(a) (b)

Figure 18. The (a) inside and (b) outside probability of the non-
terminal symbol X deriving the substring from i to j

outside probabilities for a particular rule and sentence give the probability that the
rule was used in the parse of the sentence. When divided by the probability of the
sentence given all possible parses, we get the updated probability for the rule.

4.3.2. The Inside-Outside Algorithm for Synchronous TIG. The biggest decision
to be made in adapting the Inside-Outside algorithm to synchronous TIG is to
determine the tree pairs that make up the grammar and over which the probability
distributions will be specified. We do not have a bank of tree pairs to draw on for
our elementary trees, so we must construct them. In addition, because we are going
to iteratively refine the parameters, we need to make sure that the initial grammar
is sufficiently general to capture any pair of input sentences. In order to do this,
we define a canonical tree form.

Following Hwa (2001), we note that the very simple tree pairs shown in Figure
19(a) allow us to simulate a bigram model. Expanding to capture some of the
benefit of tree structure, the trees can be modified to have their anchors on the
left as well as the right and to have an additional adjunction node between the
root and the anchor where both right and left trees can adjoin. This is depicted
in Figure 19(b). Note that the simple modification of allowing both left and right
trees results in four different types of tree pairs. Finally, we add an additional
adjunction node, again following Hwa’s empirical findings that two adjunction sites
were required in the monolingual TIG case to handle the variety and number of
modifiers in natural language data (Hwa, 2001). This tree form is shown in Figure
19(c). Other canonical forms may be imagined as well. In order to ensure full
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Figure 19. Possible canonical forms for synchronous TIG tree
pairs: (a) the bigram model, (b) the extended bigram model, (c)
our canonical tree pair form (showing two of the four auxiliary
trees)

coverage of the input strings we generate tree pairs for each pair of source and
target language words that appear in the source and target dictionaries.

In addition to the shape of the trees, we also have to specify the links. Since
these links determine both where and how many adjunctions may take place, their
placement is quite important. Different types of links help to express different de-
pendencies. In particular, links between two nodes on the same side express depen-
dencies where the order of the dependent with respect to the anchors are the same
in the two languages. For instance, if adjectives precede nouns in both languages
we would want LL links between noun nodes to express this dependency. Links
between two nodes on different sides would correspondingly allow us to express
dependencies where adjectives appear on different sides of the noun they modify in
the two languages. Differences in the order of modifiers of the same lexical item
can be expressed by links that change level in the tree. Links to nodes closer to
the anchor will result in the dependent words appearing closer to the anchor. This
difference could be used to express differences in the order of modifiers, for instance
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different orderings for attachment of prepositional phrases. There are many pos-
sible combinations of links, even with our restrictions on link placement. In the
experiments reported here, we use the links depicted in Figure 19(c). The canonical
form trees could be augmented with hand-coded tree pairs to help the algorithm
handle cases that prove to be difficult.

In the E step we parse all of the sentences in the training corpus while maintaining
expected counts. The inside probabilities are calculated simply by parameterizing
the parser with the Inside semiring as described above. The outside probabilities
are then calculated in a pass over the chart, this time working from the root of
the start trees down to the leaves. The intuitive idea is that we work backwards,
undoing each operation that was done to parse each sentence. That is, we work from
a consequent item back to its antecedent. The outside probability of an antecedent
item is the product of the outside probability of the consequent item, the inside
probability of the other antecedent item, and the semiring value of the operation
being undone.

In the M step we update the probabilities of all of the parameters by normalizing
the counts produced in the E step received for each parameter.

5. Preliminary Empirical Results

As an initial empirical test of the formalism and algorithms described here, we
chose a simple, artificial language problem: translation of arithmetic expressions
from postfix to infix, from ABA+* to A*(B+A) for instance.

The expression language includes constants A and B and operators + and *. This
translation problem, though contrived, has several attractive properties as a sim-
ple test of syntax-aware MT techniques. First, it exhibits the type of hierarchical
organization that we expect is difficult for non-syntax-aware translation systems.
Second, the aligned corpora are easy to automatically generate, and translation
correctness to automatically verify, even though, like natural language, there may
be multiple correct target translations (differing in parenthesization) for a given
source expression. Third, the need for extra parentheses in the target language
forces differing lengths of source and target strings, so that this aspect of the trans-
lation formalism is exercised. Fourth, correctly aligned operators can be arbitrarily
far apart in correct translations; in the terminology of IBM-style models, large dis-
tortions are manifest in translations, and these distortions are best characterized
syntactically. Finally, the languages have very small vocabularies, which makes
it possible to test the ability of our system in the absence of a fully optimized
implementation.

We generated a corpus of aligned postfix and infix arithmetic expressions using
a synchronous probabilistic expression-term-factor grammar that allows a single
postfix expression to have several distinct infix translations that differ in the number
and placement of parentheses, so long as sufficient parentheses are available to
disambiguate properly according to the standard associativity and precedence of
expressions. The inference rules used in the evaluation allow one tree in a tree pair
to be anchored by ε, as in Section 3.5, but do not contain merge and asynchronous
rules (Section 3.6). The full canonical form in Figure 19(c) was used, allowing
(initially at least) any symbol in the source language to translate as any symbol
in the target language, and, through pairing with ε anchors, any symbol in either
langauge to be inserted freely.
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Input expression STIG Model Translation

B A B + B * + B + ( A + B ) * B
A B A * + A * ( A + B * A ) * A
A B B A + A * + + A + B + ( ( B + A ) * A )
B A A + A A + + + B * (B + ( A + A ) + A + A ) * B

Figure 20. Representative examples of correct translations of
postfix arithmetic expressions to infix arithmetic expressions by
our system.

Input expressions Translation

A A A B + * + A A + * ( A * ( A + B ) + A ) * A + A
A A B B * + + A + A + ( B * B
B A A * + B B + B * + B + ( ( A + ( ( A ) ) * + B ) * B

Figure 21. The three test expressions on which our MT system
produced an incorrect result.

We trained the system on 411 aligned pairs of postfix and infix expressions with
a maximum sentence length of 8 for the postfix expressions. We then tested the
system on 90 test expressions without restriction on the length of the expressions,
although most were not longer than 12 characters. The system produced correct
infix expressions for 87 of the 90 test sentences, giving an error rate of 3.3%. Trained
on 5000 pairs of aligned expressions, the system achieved 100% accuracy on the
test set. Figure 20 shows representative examples of input expressions and their
generated translations using the system trained on the small training set.

Of the three errors made by our system, two were relatively minor: in one of them
a necessary set of parentheses around an addition is missing, the other is missing
a right parenthesis. In the third erroneous translation it appears that the trained
grammar was more seriously off track. Figure 21 shows the erroneous translations
by our system.

As a baseline, we also trained GIZA++, a widely used implementation of an
IBM-style system, on the same 411 training sentence pairs. The GIZA model
trained on the small training set correctly translated 52 of 90 test sentences for
an error rate of 42.2%. Unsurprisingly, GIZA performed quite poorly because of
its lack of syntax awareness. To verify that the problem was not merely a lack of
training data, we also trained GIZA on a training set consisting of 10,000 aligned
sentence pairs to see if the additional training data would improve its performance.
Again, the GIZA model trained on the large training set performed poorly, correctly
translating only 53 of the 90 test sentences for an error rate of 41.1%. As expected,
the GIZA models did well with the shorter, simpler sentences that did not require
significant long-distance movement of any operators or parenthesization in the infix
translation. Both models exhibited a tendency not to move constants or operators
long distances and neither ever correctly parenthesized an infix expression. Figure
22 shows the output of GIZA on some sample expressions that our system translated
correctly. Figure 23 shows the GIZA translations of the three sentences that our
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Input expression GIZA translations

small training set large training set

B A B + B * + B A + B * B ) B * ( B + A + B
A B A A A + + B * + + A + B * A * A A * ( A + A *
A B B A + A * + + A + B B A * A ) A + A * ( A + B +
B A A + A A + + + B * B A + A A + A ) * B B + A + A ) * B

Figure 22. Results of GIZA on the sample sentences correctly
translated by our system as shown in Figure 20.

Input expression GIZA translations

small training set large training set

A A A B + * + A A + * ( ( A + B * A * A ) A + A + A + A * B *
A A B B * + + ( A * B + B A + A + B * B
B A A * + B B + B * + B A * A + B + B * B ) B * ( A + B + B * B ) *

Figure 23. Translations produced by GIZA on the three sen-
tences on which the STIG model produced an incorrect result.

system translated incorrectly. In only one case did the GIZA system trained on
10,000 sentences produce a correct translation where our model erred.

Given the small size of the training set, the error rate for our system is quite
low on the test data and demonstrates that our system appropriately learned to
translate postfix arithmetic expressions to infix arithmetic expressions. Further, the
large gap in quality and accuracy of translations between our system and the GIZA
models shows that the capacity of our system to model hierarchical relationships
with substitution does help our system to correctly translate sentences that are
difficult for an IBM-style model.

The system used in these experiments used relatively aggressive thresholding.
Even so, training took an hour four 411 sentence pairs. By contrast, GIZA took
only seconds to train on the same data. Our system run without the thresholding
and optimizations achieved a similar error rate to the optimized system but took
approximately 30 hours to train. Since implementing the thresholding and other
optimizations we have been able to train our system on 5000 pairs of arithmetic
expressions. Training took approximately 12 hours. With this greater volume of
training data our system achieved 100% accuracy on the test set.

6. Related Work

Melamed (2004, 2003) groups together syntax-aware machine translation efforts
into a single framework based on generalized parsers as discussed above. His own
work focuses on the use of multitext grammars, a generalization of context-free
grammars to the multilingual case. He does not present an implementation of a
machine translation system based on synchronous MG parsing. Thus, this work
differs from his in that ours employs a different formalism for synchronous parsing
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and presents a concrete implementation of an MT system based on synchronous
parsing.

Hwa (2001) induces a tree-insertion grammar from monolingual data to learn a
grammar for a single language. Her work inspired this work and provides much of
the basis for our choice of the tree-insertion grammar formalism and our implemen-
tation of the Inside-Outside algorithm. This work can be seen as a generalization of
her work to the multilingual case with machine translation as an additional result-
ing application. Hwa’s later work on generating annotated treebanks for languages
via syntactic projection across parallel texts is similar in character to this work,
but has the different aim of generating annotated treebanks for languages that
do not have them (Hwa, Resnik, Weinberg, Cabezas, and Kolak, 2002a) or evalu-
ating when correspondences between syntactic trees can be drawn (Hwa, Resnik,
Weinberg, and Kolak, 2002b).

Wu (1997, 1996) presents inversion transduction grammars as a base formalism
for inducing a grammar over multilingual data. The normal form for inversion
transduction grammar used in this work is equivalent to a multitext grammar in
which rules are restricted to Chomsky Normal form. Thus, although the formalism
is context-free equivalent, it is not lexicalized and cannot gain the advantages of
relationships between lexical items. In addition, it cannot express discontinuous
constituents. The finite-state head transducers of Alshawi et al. (2000) are similar
and can express bilexical dependencies. However, they cannot express discontinuous
constituents.

Eisner (2003) uses synchronous tree-substitution grammars to infer the corre-
spondences between syntactic or dependency trees in two languages. Synchronous
tree-substitution grammars lack the adjunction operation but are otherwise similar
to TIGs. His method is analogous to the method used here, though the parsing al-
gorithm differs significantly. In addition, the inputs to the method are fully formed
trees. Thus only the correspondences between trees are learned, not the tree pairs
themselves.

The work perhaps most similar in motivation and technique to that reported here
is that of Chiang (2005) performing automated induction of synchronous context-
free grammars. He too notes the advantage of synchronous grammars in principle
over phrase-based finite-state translation, and in practice shows improved perfor-
mance in Chinese-English translation as compared to a state-of-the-art phrase-
based system.

Other work, such as that of Gildea (2003) and Yamada and Knight (2002), is
similar in aims to our work but differs either in the inputs expected or the structure
of the methods used. We do not review it here.

7. Conclusion

Today’s machine translation systems miss many generalizations due to their in-
ability to capture relationships between syntactic structures in the languages being
translated. In this work we presented a system for statistical machine translation
in the Melamed framework that infers syntactic structures for both the source and
target languages and learns the correspondences between them. We motivated the
choice of tree-insertion grammar because of its advantages in expressing bilexical
relationships and handling discontinuous constituents and source and target sen-
tences of differing lengths. We presented an O(n6) parsing algorithm for a restricted
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subset of synchronous TIG along with a discussion of the restrictions as well as pos-
sible extensions. We concluded with a brief discussion of the incorporation of the
parser, parameterized by various semirings, in a system for parameter estimation
for the grammar.

Although empirical evaluation of the system beyond the successful proof of con-
cept still remains, we believe synchronous TIG is a promising formalism for machine
translation. In particular, it lends itself to simple extensions that allow the addition
of hand-coded trees that can encourage the algorithm to capture generalizations it
may miss when working with unlabeled data. The Penn Treebank of synchronous
TAG elementary trees for various languages, many of which do not violate the TIG
restrictions, provides a ready source for these trees, as do bilingual dictionaries.

The way forward in machine translation is to take advantage of syntactic infor-
mation. This work is one step in that direction.
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Appendix A. Complete Asynchronous and Merge Inference Rules

Definition of Side Condition Predicates and Functions

I ∪x J : (i, j) ∪L (j, k) = (i, k)
(j, k) ∪R (i, j) = (i, k)
otherwise undefined

LS(η1, η2): The set of links between nodes η1 and η2

RootPair(η): True if nodes in node pair η are the roots of the trees in a pair
NoLinks(η1): True if the given node has no links in its linkset with any other

node
Adjoin(η, ρ, x, y, pAdj): True if tree pair rooted in the node pair ρ can adjoin into pair η

using a link (x, y). Requires that (x, y) is in the linkset of η, that
nodes in node pair ρ root auxiliary trees of sidedness that matches
(x, y), that the labels of η and ρ match, and that the adjunction
not produce a wrapping tree. pAdj is the semiring value of the
operation.

Subst(η, ρ, pS): True if tree pair rooted in the node pair ρ can substitute into pair η.
Requires that the nodes of η be linked for substitution and that the
labels of η and ρ match. pS is the semiring value of the operation.

η → η1 η2: True if η is the parent of η1 and η2, in that order.
nS , nT : The length of the input source or target sentence.
SP (η) The semiring value associated with the use of the tree pair rooted

at η to root a derivation.
src/trgSent(i, j): The words in the sentence between string positions i and j.
Foot(η, side): True if η is a foot node of a tree pair on the given side (src, trg).
Anchor(η, side, TP ): True if the label at η is the anchor of a tree pair on the given side

(src, trg).
Label(η): The label at node η.
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Inference Rules

strings to parse 〈w1 · · ·wnS
, v1 · · · vnT

〉

item form 〈[ηS , I], [ηT , J ], LinkSet, V alue〉 where I, J of form (i, j)

goal item 〈[ηS , (0, nS)], [ηT , (0, nT )], ∅, V alue〉
where the value associated with the string pair is∑
〈[ηS ,(0,srcLength)],[(ηT ,(0,trgLength)],∅,p〉 SP (η)⊗ p

Asynchronous Rules

axiom-src 〈[ηS , (i, i + 1)],−, ∅, 1〉
wi+1 = Label(ηS)
Anchor(ηS , src, TP )

axiom-trg 〈−, [ηT , (l, l + 1)], ∅, 1〉
vl+1 = Label(ηT )
Anchor(ηT , trg, TP )

aux-ax-src 〈[ηS , (i, i)],−, ∅, 1〉 Foot(ηS , src)

aux-ax-trg 〈−, [ηT , (l, l)], ∅, 1〉 Foot(ηT , trg)

sp-src
〈[ηS1, I],−, ∅, 1〉
〈[ηS , I],−, ∅, 1〉

ηS → ηS1

NoLinks(ηS1)

sp-trg
〈−, [ηT1, J ], ∅, 1〉
〈−, [ηT , J ], ∅, 1〉

ηT → ηT1

NoLinks(ηT1)

sc-src
〈[ηS1, I1],−, ∅, 1〉 〈[ηS2, I2],−, ∅, 1〉

〈[ηS , I1 ∪L I2],−, ∅, 1〉
ηS → ηS1 ηS2

NoLinks(ηS1), NoLinks(ηS2)

sc-trg
〈−, [ηT1, J1], ∅, 1〉 〈−, [ηT2, J2], ∅, 1〉

〈−, [ηT , J1 ∪L J2], ∅, 1〉
ηS → ηT1 ηT2

NoLinks(ηT1), NoLinks(ηT2)

Merge Rules

mrg-adj
〈[ηS , I1],−, ∅, 1〉 〈−, [ηT , J1], ∅, 1〉
〈[ρS , I2],−, ∅, 1〉 〈−, [ρT , J2], ∅, 1〉

〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS(ηS , ηT )− (x, y), pAdj〉

RootPair(ρ)
NoLinks(ρS), NoLinks(ρT )
Adjoin(η, ρ, x, y, pAdj)
(x, y) ∈ LS(ηS , ηT )

mrg-subst
〈[ηS , I],−, ∅, 1〉 〈−, [ηT , J ], ∅, 1〉

〈[(ρS , I], [ρT , J ], ∅, pS〉

Subst(ρ, η, pS)
RootPair(η)
NoLinks(ηS), NoLinks(ηT )
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Semi-Synchronous Merge Rules

sp-sc
〈[ηS1, I], [ηT1, J1], ∅, p〉 〈−, [ηT2, J2], ∅, 1〉
〈[ηS , I], [ηT , J1 ∪x J2], LS(ηS , ηT ), p〉

ηS → ηS1

(ηT → ηT1 ηT2 and x = L or
ηT → ηT2 ηT1 and x = R)

sc-sp
〈[ηS1, I1], [ηT1, J ], ∅, p〉 〈[ηS2, I2],−, ∅, 1〉
〈[ηS , I1 ∪x I2], [ηT , J ], LS(ηS , ηT ), p〉

(ηS → ηS1 ηS2 and x = L or
ηS → ηS2 ηS1 and x = R)
ηT → ηT1

ssm-sc-1
〈[ηS1, I1], [ηT1, J1], ∅, p〉

〈[ηS2, I2],−, ∅, 1〉 〈−, [ηT2, J2], ∅, 1〉
〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS(ηS , ηT ), p〉

(ηS → ηS1 ηS2 and x = L or
ηS → ηS2 ηS1 and x = R)
(ηT → ηT1 ηT2 and y = L or
ηT → ηT2 ηT1 and y = R)
NoLinks(ηS2), NoLinks(ηT2)

ssm-sc-2
〈[ηS1, I1],−, ∅, 1〉 〈−, [ηT1, J1], ∅, 1〉

〈[ηS2, I2], [ηT2, J2], ∅, p〉
〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS(ηS , ηT ), p〉

(ηS → ηS1 ηS2 and x = L or
ηS → ηS2 ηS1 and x = R)
(ηT → ηT1 ηT2 and y = L or
ηT → ηT2 ηT1 and y = R)
NoLinks(ηS1), NoLinks(ηT1)

ssm-adj1
〈[ηS , I1], [ηT , J1], LS + (x, y), p〉
〈[ρS , I2],−, ∅, 1〉 〈−, [ρT , J2], ∅, 1〉

〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS, p⊗ pAdj〉

RootPair(ρS , ρT )
NoLinks(ρS), NoLinks(ρT )
Adjoin(η, ρ, x, y, pAdj)

ssm-adj-2
〈[ηS , I1],−, ∅, 1〉 〈−, [ηT , J1], ∅, 1〉

〈[ρS , I2], [ρT , J2], ∅, p〉
〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS(ηS , ηT )− (x, y), p⊗ pAdj〉

RootPair(ρS , ρT )
Adjoin(η, ρ, x, y, pAdj)
(x, y) ∈ LS(ηS , ηT )

Synchronous Rules

SibCat
〈[ηS1, I1], [ηT1, J1], ∅, p1〉 〈[ηS2, I2], [ηT2, J2], ∅, p2〉
〈[ηS , I1 ∪L I2], [ηT , J1 ∪x J2], LS(ηS , ηT ), p1⊗ p2〉

ηS → ηS1 ηS2

(ηT → ηT1 ηT2 and x = L or
ηT → ηT2 ηT1 and x = R)

SPar-src
〈[η1S , I], [ηT , J ], ∅, p〉

〈[ηS , I], [ηT , J ], LS(ηS , ηT ), p〉
ηS → ηS1

NoLinks(ηS1)

SPar-trg
〈[ηS , I], [ηT1, J ], ∅, p〉

〈[ηS , I], [ηT , J ], LS(ηS , ηT ), p〉
ηT → ηT1

NoLinks(ηT1)

Subst
〈[ηS , I], [ηT , J ], ∅, p1〉

〈[ρS , I], [ρT , J ], ∅, p1⊗ p2⊗ pS〉
RootPair(ηS , ηT )
Subst(ρ, η, pS)

Adjoin
〈[ηS , I1], [ηT , J1], LS + (x, y), p1〉

〈[ρS , I2], [ρT , J2], ∅, p2〉
〈[ηS , I1 ∪x I2], [ηT , J1 ∪y J2], LS, p1⊗ p2⊗ pAdj〉

Adjoin(η, ρ, x, y, pAdj)
RootPair(ρS , ρT )
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