
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

A Lixel for every Pixel

Hamilton Y. Chong Steven J. Gortler

Harvard University

Abstract
Shadow mapping is a very useful tool for generating shadows in many real-time rendering settings and is even
used in some off-line renderers. One of the difficulties when using a shadow map is obtaining a sufficiently dense
sampling on shadowed surfaces to minimize shadow aliasing. Endlessly upping the light-image resolution is not
always a viable option. In this paper we describe a shadow mapping technique that guarantees, that over a small
number of chosen planes of interest (such as a floor and a wall), the shadow map is, in fact, perfectly sampled, ie.
for each pixel in the viewer camera, there will be exactly one lixel in the shadow map that samples the exact same
geometric point.

1. Introduction

Shadow mapping[Wil78] is a very useful tool for generating
shadows in many real-time rendering settings and is even
used in some off-line renderers. One of the difficulties when
using a shadow map is obtaining a sufficiently dense sam-
pling on shadowed surfaces to minimize shadow aliasing.
Endlessly upping the light-image resolution is not always a
viable option. There are interesting methods that minimize
the effects of aliasing [RSC87] as well as more complicated
shadowing algorithms that employ some aspects of the orig-
inal shadow mapping algorithm (see [GLY∗03] and refer-
ences therein). This paper focuses on the sampling patterns
of simple shadow mapping and can be considered orthogo-
nally to these advances.

To use a shadow map, the point-light position in 3d, l,
is specified. Depending on the light and its position in the
scene, we may be interested in all of the light rays emanat-
ing from l, or we may know that we only need to account
for some smaller solid angle (wedge) of rays. In either case
the input does not specify the 4 by 4 matrix Ml that is used
for mapping points from world coordinates to light-image
coordinates.

In their very insightful paper, “Perspective Shadow
Maps,” Stamminger and Drettakis [SD02] pointed out this
inherent freedom in shadow mapping, and described a recipe
for choosing a matrix that made more efficient use of the pix-
els in the light-image (henceforth lixels). The existence of
this inherent freedom, an almost obvious fact in retrospect,
seems to have been completely overlooked in the prior art.

In the perspective shadow mapping method, the viewer cam-
era information, specified by a 4 by 4 matrix Mv that maps
points from world coordinates to viewer-image coordinates,
is used as part of the process for determining Ml . In this
setting, the shadow map is re-rendered whenever the view
changes; this imposes no extra cost whenever one is render-
ing a scene with dynamically changing geometry.

Perspective shadow mapping tends to allocate lixels more
densely in directions pointed toward the viewer’s position.
As such, it can minimize the blockiness of shadows on ob-
jects seen up-close. However, except in very specific cam-
era/light configurations, it is hard to predict the quality of
the shadow sampling that results from their algorithm or say
that it has any guaranteed properties. In fact, in our experi-
ence, it often performs significantly worse than conventional
shadow mapping.

The question of how to optimally determine Ml given a
particular viewer camera, a light position, and scene geom-
etry is investigated in [Cho03]. Their solution involves first
performing a rendering pass that computes not colors, but
the derivative of the "viewer to world to light" mapping at
each visible fragment. This data is then read from the frame
buffer. From this data, a numerical optimization step can be
run to find the optimal Ml . The expense of the readback sug-
gests that optimal shadow mapping is not currently practical
for real time rendering.

In this paper we describe a shadow mapping technique
that guarantees that over a small number of chosen planes
of interest (such as a floor and a wall) the shadow map is, in

c© The Eurographics Association 2004.



H. Chong & S. Gortler / A Lixel for every Pixel

fact, perfectly sampled, i.e. for each pixel in the viewer cam-
era, there will be exactly one lixel in the shadow map that
samples the exact same geometric point. Our basic construc-
tion is borrowed from the “plane-stabilization” technique
used in computer vision to stabilize the view of a plane that
is imaged in a moving camera (e.g. [IA98]). On other parts
of the geometry, we have observed that our shadow sampling
is typically not worse than that obtained by normal shadow
mapping or perspective shadow mapping.

Computing our light matrices is done by solving a very
small linear system and is essentially free. But we do incur
some additional costs. First, the environment’s author must
choose the desired planes of interest. Second, the method
must compute one shadow map (requiring a geometry pass)
for each plane of interest. This is a significant expense when
vertex processing is the bottleneck. Thirdly, we are con-
strained by hardware to use rendering-frusta and shadow-
maps of rectangular shape. As a result, there is typically
some overlap in the shadow maps used for the multiple
planes, and we must allocate “wasted” lixels that are not
used in the rendering. Fourthly, even when there is only
one plane of interest, our method may require two shadow
maps in order to cover the whole scene. Finally, because our
method is indeed not optimal over the whole scene, there
may still be shadows that are significantly aliased.

2. Method

Here we describe the basic matrix construction employed by
our shadow mapping technique. We build up the construc-
tion incrementally.

Basic Idea For each frame we are given the 4 by 4 view
camera matrix Mv that transforms points from world to
viewer-image coordinates

[xvq,yvq,zvq,q]t = Mv[xw,yw,zw,1]t

where we divide by q to obtain the viewer-image coordi-
nate [xv,yv,zv,1]t . We are also given the light position l, de-
scribed in world coordinates by [xl

w,yl
w,zl

w,1]t , and a geo-
metric plane of interest P.

Our job is to come up with the matrix Ml that transforms
points from world to light-image coordinates.

[xlq,ylq,zlq,q]t = Ml [xw,yw,zw,1]t

It is well known [Fau93] that a 4 by 4 projective matrix can
be uniquely specified (up to scale) by constraining the pre
and post transform coordinates of 5 geometric points, (with
no 4 co-planar). Given these points, the matrix can be de-
termined by solving two appropriate 4 by 4 linear systems
(see [Fau93] for details). Because Ml images from the point
l, we immediately have the constraint

[0,0,1,0]t = Ml [xl
w,yl

w,zl
w,1]t (1)

To specify the rest of the matrix, We first pick 4 pixels given

light

Plane of interest

viewer Quad: Q

p4

p3

Figure 1: Rays are shot through 4 pixels of the viewer-
image. These rays are intersected with the plane of interest
P obtaining the quad Q. The light matrix is constrained to
sample the quad identically as the viewer-image did.

in viewer-image coordinates as








0
0
∗

1









,









0
h−1
∗

1









,









g−1
h−1
∗

1









,









g−1
0
∗

1









(2)

where g (resp. h) is the width (resp. height) of the viewer
image measured in pixels. The * in the third slot denotes
that we do not care about the z value.

We then shoot rays from the viewer position through these
pixels, hitting the plane P in four points pi (with i = [1..4])
denoted in world coordinates by

[xi
w,yi

w,zi
w,1]t

These 4 points bound a quad Q on P that exactly fills the
viewer-image’s sampling rectangle (see Figure 1). We now
add the following four more constraints on our Ml :

[0,0,1q,q]t = Ml [x1
w,y1

w,z1
w,1]t (3)

[0,(h−1)q,1q,q]t = Ml [x2
w,y2

w,z2
w,1]t (4)

[(g−1)q,(h−1)q,1q,q]t = Ml [x3
w,y3

w,z3
w,1]t (5)

[(g−1)q,0,1q,q]t = Ml [x4
w,y4

w,z4
w,1]t (6)

Which states that the four pi should have the same viewer-
image and light-image x,y coordinates. The ’1’ in the third
slot of the light-image coordinates has been chosen arbitrar-
ily for now. Equations (1) and (3-6) give us 5 point con-
straints on Ml . (Note that these 4 points on P are obviously
co-planar; we will fix this up before we are done).

We have four points on a plane (no three collinear) that
have the same image (x,y) coordinates in both the viewer and
light images, therefore every point on the plane must have
the same (x,y) coordinates in both images. This is because
the mapping between two pin-hole images of a plane must
be a 2d projective transformation (3 by 3 matrix), which
is fully determined by the mapping of four points [Fau93].
(The identity map is the only 2d projective map that leaves 4
generic points unchanged).

c© The Eurographics Association 2004.



H. Chong & S. Gortler / A Lixel for every Pixel

light

viewer

p4p̂4^

p4

Figure 2: To obtain non-coplanar points, one of p4 is raised
up to p̂4.

Note that to achieve proper clipping in OpenGL, Ml , must
be factored into ′Ml = GLV GLP′ an appropriate GL view-
port and canonical projection matrix.

Finally, the quad on the plane may actually straddle across
infinity (see Figure 5). This does not affect the construction
of Ml . But it is clear from this case, that one must choose the
"sign" of ′

±GLP′, determining the "direction" of the light
frustum, such that geometric points in the desired direction
have positive q values and are not clipped during rendering.

Co-planarity and light z-values As mentioned above the 4
pi are co-planar and hence cannot be used to fully constrain
Ml . This can be easily fixed up as follows (see Figure 2).
We compute a ray r4 emanating from the light position l
through the geometric point p4. We then chose any generic
point p̂4 along the r4. p̂4 is described in world coordinates
as [x̂4

w, ŷ4
w, ẑ4

w,1]t . Finally equations(3-6) are replaced by

[0,0,1q,q]t = Ml [x1
w,y1

w,z1
w,1]t (7)

[0,(h−1)q,1q,q]t = Ml [x2
w,y2

w,z2
w,1]t (8)

[(g−1)q,(h−1)q,1q,q]t = Ml [x3
w,y3

w,z3
w,1]t (9)

[(g−1)q,0,−1q,q]t = Ml [x̂4
w, ŷ4

w, ẑ4
w,1]t (10)

Where the −1 (resp. +1) in the third slot of the light-
image coordinates represents the near (resp. far) plane†. We
can now use Equations (1) and (7-10) to fully constrain the
matrix Ml . It is important to note that with this construction,
we still will exactly satisfy Equations (3-6). In particular, p4

will still have the same viewer and light image (x,y) coordi-
nates.

Geometric Intuition Matrices aside, it is useful to have a
geometric interpretation of our construction. We will start
with a description in flatland (see Figure 3). We are given
the viewer camera, a line of interest and light position. We
are also given the desired fov of the light-camera. We want
to solve for the light-camera, which is specified by a 3 by 3

† The choices of ±1 for the light z-coordinates is arbitrary. Other
choices will result in some affine transform of the z-values in post
projective light coordinates. We do not explore optimization of these
dofs in this work.

light

Plane of interest

viewer

π

Figure 3: Geometric intuition behind the light camera de-
termined by our method. From the viewer’s position, draw a
line (dotted red) parallel to the viewer’s image plane (solid
red) until it hits the line of interest at some point π. Now draw
a line (dotted blue) from π to the light position. The light-
image plane orientation (solid blue) is chosen to be parallel
to the dotted blue line.

matrix up to an arbitrary scale factor (8 dof). If we ignore
the depth values in the light-image for now, we are left with
a 2 by 3 matrix (5 dof remaining). The position of the light
in flatland locks down 2 more dof (3 dof remaining). The
(affine) viewport in the eventual light-image specifies a scale
and translation. The one remaining degree of freedom, which
is our only non-affine remaining dof, can be simply thought
of as the orientation (angle) chosen for the light-image plane.

Let us choose the light-image plane angle using the ge-
ometric construction of Figure 3 (see electronic version for
colors). From the viewer’s position, draw a line (dotted red)
parallel to the viewer’s image plane (solid red) until it hits
the line of interest at some point π. Now draw a line (dotted
blue) from π to the light position. Choose the light-image
plane orientation (solid blue) to be parallel to the dotted blue
line.

It is easy to see that with this configuration, the 1D map-
ping between the two cameras (ignoring depth values), ap-
plied only to points on the line of interest must be affine.
Formally, if a point on the line of interest has coordinates
[xw,zw,1]t , and we have the light-image and viewer image
coordinates given by

[xlq,zlq,1q]t = Ml [xw,zw,1]t

[xvq,zvq,1q]t = Mv[xw,zw,1]t

then the transformation of the image coordinate of these
points, induced by

[xlq,zl(xl)q,q]t = MlM
−1
v [xv,zv(xv),1]t

(where the z′s are the appropriate depths of points on the
plane) can be expressed as [xl ,1]t = A[xv,1]t ,where A is a

matrix of the form
[

sx tx
0 1

]

This can be proven from the following three facts: 1)
the point π has infinite coordinates in both light-image and
viewer-image coordinates. 2) the mapping between two flat-

c© The Eurographics Association 2004.



H. Chong & S. Gortler / A Lixel for every Pixel

light

Planes of interestviewer

π1

π2

Figure 4: In the miner’s lamp configuration, the same light-
image plane orientation is chosen independently of the plane
of interest.

land cameras of points constrained to lie on a line is a 1D
projective transform. 3) any projective transform that does
not map infinite points to finite points must be affine [Fau93].

Therefore, by an appropriate choice of the affine coordi-
nates for the light-image (scale and translation) we can force
the mapping A to be the identity. This (unique) combination
of light image orientation and the appropriate affine coor-
dinates in the light-image results in the Ml obtained by the
constraints of Equations (1) and (7-10).

It should be clear (and it is easily proven for-
mally [Cho03]) that for an arbitrary view-camera and light
position, two arbitrary planes of interest will require dif-
ferent light-image orientations; otherwise the affinity of A
will not be maintained. There is one special exception, the
miner’s lamp case (see Figure 4). In this case, regardless of
how we choose the plane of interest, the geometric construc-
tion results in a light-image orientation parallel to that of the
viewer. (Note that this kind of pair of cameras with parallel
image planes is equivalent to the rectified camera configura-
tion typically used in stereo vision [Fau93]). In this case, an
appropriately chosen for Ml will give us an affine mapping
Ai for each plane of interest Pi. Of course at most one of the
Ai can be the identity map, other planes will be over/under-
sampled.

It can also be shown[Cho03], that in the miner’s lamp
case, the perspective shadow mapping method of [SD02],
implicitly chooses the orientation of rectified stereo images.
When one is not in the miner configuration, it is harder to
give any concrete statements about the behavior of [SD02].
In contrast, our algorithm results in an affine (in fact the
identity) mapping on the specific plane of interest for any
camera and light configuration.

In the 3d case, we are instead solving for the 4 by 4 matrix
(up to scale) of the light camera (15 dof). If we ignore the
depth coordinates, we are left determining a 3 by 4 matrix
(11 dof). The position of the light fixes 3 more dofs (8 dofs
remaining). In this case, there are 6 affine degrees of freedom
on the image plane: scale, aspect ratio, 2 translations, one
shear, and one image twist. The remaining two degrees of
freedom can be thought of as two angles determining the
orientation of the image plane in space. The proper choice

light

viewer

p4
p3

not interested in
(hits plane 
behind viewer)

cj1

cj2

not interested in
(some other reason)

Quad: Q

Figure 5: The construction works even in Q spans infinity.
We must be careful to choose the sign of the light matrix
to specify the "forward" direction. The c j describe what the
range of rays we wish to have in our shadow map

.

original light frustum

cj1

(0,0)

(g-1, h-1)

bounding rectangle

Figure 6: As seen from the light’s image. The image of C may
include less of Q. We form the bounding box and change the
matrix to only include the needed rays.

for this orientation is again completely determined π, which
in this case is a line and not a point.

Less of the plane Thus far, we have assumed that we want
Q to exactly fill the light-image’s sampling rectangle. But
it may be the case that the viewer is not interested in all of
Q (see figure 5) . For example part of Q, may be known
to be occluded. Part may be closer to the viewer than its
near plane. If the vanishing line of the plane is visible in
the viewer camera, then part of Q will be beyond infinity (ie.
behind the viewer). If our light is a "spot-light," then some
part of Q may be known to be un-illuminated. In all of these
cases, we may want to compute shadows only on a subset of
Q, and as a result, we need fewer lixels than pixels.

So besides Mv, l and P, we also assume that we are given
C, a set of directions for which we want light rays. C is given
as a spherical polygon, with vertices c j . We require that all of
the rays of C lie within the light frustum of Ml as originally
computed above (see Figure 5 and 6).

We then alter the computed Ml as follows. We compute
the light-image coordinates for each of the vertices c j , de-
noted by [x j

l ,y
j
l ,z

j
l ,1]t . We then compute the axis aligned

rectangle in the light-image that has integer (pixel sample
position) coordinate corners and encloses the [x j

l ,y
j
l ,∗,1]t

(see Figure 6). We can then create the 2d translation ma-
trix Al that renumbers the lower-leftmost pixel as (0,0) and,
from now on, use the matrix Ml := AlMl instead. Now we

c© The Eurographics Association 2004.



H. Chong & S. Gortler / A Lixel for every Pixel

only need to allocate a sufficient number of lixels to cover
the bounding box, and clip accordingly (using the appropri-
ate viewport/projection factorization).

More generally, we may have a situation where we have
decided not to allocate one lixel per pixel. In this case, one
needs to include the appropriate 2d scale factor in the matrix
Al . This will make the lixels hitting P appear as axis aligned
rectangles of finite size in the viewer-image. In addition, we
may wish to include a 2d rotation (twist) in Al , so that the
light-image bounding rectangle more tightly bounds C. This
can give us more efficient use of the samples; but in this case
the lixels hitting P will appear as rotated rectangles in the
viewer-image ‡.

3. Implementation

We built an implementation of our shadow mapper to handle
a few planes of interest in some specific configurations. Each
shadow map was allocated a fixed number of lixels (realloca-
tion is expensive or complicated). A pixel shader was used
to determine which shadow map to use for each fragment.
Here we describe some of the details.

The extent of the shadow-casting scene geometry was
bounded by a box. We assumed (for ease of implementa-
tion) that the light had an inherently limited fov of less than
a hemisphere, specified as a bounding rectangle with respect
to some appropriate geometric plane G. We implemented the
“extent” computation described in [SD02], which defines the
3D hull H bounding the part of the scene that light-image
needs to cover. The rays from l bounding H define Ctot. With
our “less than hemisphere” assumption, Ctot, can be repre-
sented as a convex polygon on G. In addition, all of the code
to compute the 3d extent-hull can be implemented using only
2D convex-hull and convex set intersection on G.

In one of our environments we chose the "wall" and
"floor" as planes of interest. We defined Cfloor as the set
of rays with the following properties: they are a subset of
Ctot, they hit the floor plane "below" the floor/wall intesec-
tion line, and they hit the floor plane on a point within the
viewer’s frustum. Cfloor is computed using 2d calculations on
the floor and is projected onto G. Cwall is defined similarly,
but restricted to rays hitting the wall "above" the floor/wall
intersection line. A third conventional shadow map was used
to cover Cfallback = HULL(Ctot

−Cwall
−Cfloor).

We included a 2d rotation (twist) in the Afloor matrix so
that floor/wall intersection line would project as a horizontal
line in the floor’s shadow map. And any point "above" this
line would project out of bounds in the floor’s shadow map.

‡ We have also experimented with allowing the use of a set of rays
C that includes more of the plane P than the quad Q. One must be
very careful in this case. If the set C includes rays that approach the
line π (see figure 3), then size of the projected bounding box in the
light’s view approaches infinity, and almost all of the lixels will be
allocated to regions outside of Q.

In the pixel shader, we always first attempted to use the
floor shadow map. If the pixel was out of its bounds, we
would then attempt to use the wall shadow map. If the pixel
was out of these bounds, we would use the conventional fall-
back shadow map. The fallback shadow map was rarely hit,
and so we allocated to it a smaller number of lixels.

We also experimented with a table/floor configuration. In
this case Cfloor was not convex since it did not include, rays
that hit the table top. For this configuration, we would first
attempt to use the table’s shadow map. We used four ex-
plicit point line tests in the pixel shader to determine if a
ray missed the interior of the tabletop polygon. If the ray
missed the table top, we would then attempt to use the floor’s
shadow map.

4. Results

We implemented our algorithm, as well as the perspective
shadow map algorithm as described in [SD02] and the pa-
per’s web page. We also implemented a conventional shadow
map. We ran all of the algorithms on a scene with a floor,
wall and a number of bouncing bunnies. We used the same
computation (described in [SD02]), to determine Ctot for all
of the algorithms. Our algorithm used 3 shadow maps, while
the conventional and perspective shadow maps used 1. This
required us to do an extra two geometry passes. Our scenes
had fewer than 100,000 polygons. As we were fill-rate lim-
ited, these passes did not significantly impact performance.
Our shadow map was implemented in a pixel shader. During
the rendering of each view-image pixel, the shader evaluates
a set of conditionals to determine which shadow map to use.
We were easily able to run these pixel shaders using 1024 by
1024-pixel view and light images at 30fps.

In our experiments, we allocated the same total number of
lixels for each of the three algorithms. For the screen-shots
we gave the conventional and perspective shadow maps a
buffer of 512 by 512 lixels. We gave our algorithm two
buffers of 350 by 350 and one buffer of 128 by 128. The
view image was given 1024 by 1024 pixels.

To compare of the results, (see Figure 7) we did not use
any shadow antialiasing methods so that the actual sampling
behavior was not obscured. For many views, all three per-
formed comparably. When the light was moved to make the
shadows elongated, the conventional shadow map became
quite pixelated. The perspective shadow map occasionally
did better than the conventional algorithm. When the light
moves in front of the view camera, the perspective shadow
maps often deteriorated badly§. Note, that the conventional

§ This seems to be because C contains rays that cover much of the
view-camera’s near plane. In this case, C expressed in the view-
cameras post perspective space, has a huge field of view. When the
perspective shadow map is created with such a large field of view,
most of the lixels are dedicated to its extremes directions where they
are needed least.

c© The Eurographics Association 2004.



H. Chong & S. Gortler / A Lixel for every Pixel

Figure 7: Left: conventional (aka normal) shadow map. Middle: Perspective shadow map. Right our (aka plane optimal)
shadow map. Zoom up in viewer to observe details.

shadow map algorithm used here includes the hull computa-
tion described in [SD02], which may account for its compet-
itiveness with the perspective shadow map algorithm.

Our method reliably gave very high resolution shadows
for most configurations, even on objects with geometry dif-
ferent from the planes of interest (e.g., the sphere seen in the
figures). But there were some cases where we did perform
worse than conventional shadow mapping. One such case
was when the view camera was very close to the (optimized)
floor and then looked at shadows on some (not optimized)
plane perpendicular to the floor.

5. Conclusion

Inspired by the insights described in [SD02], we have pre-
sented a method to obtain high resolution shadows on a
small number of “planes of interest.” This is a very frequent
case encountered in real-time 3d applications. Our algorithm
would not be optimal in a much more “free-form” environ-
ment, where the important shadow receivers cannot be de-
scribed in this simple way. In this case, one could certainly
imagine various hybrid approaches.

Acknowledgments We would like to thank Leonard
McMillan, Peter-Pike Sloan, and Danil Kirsanov, who con-
tributed many central ideas to this work.

References
[Cho03] CHONG H.: Real-time perspective optimal shadow maps. Harvard University

Senior Thesis (April 2003). 1, 4

[Fau93] FAUGERAS O.: Three-dimensional computer vision: a geometric viewpoint.
MIT Press, 1993. 2, 4

[GLY∗03] GOVINDARAJU N., LLOYD B., YOON S., SUD A., MANOCHA D.: Interac-
tive shadow generation in complex environments. SIGGRAPH (2003). 1

[IA98] IRANI M., ANANDAN P.: A unified approach to moving object detection in
2d and 3d scenes. IEEE PAMI (1998). 2

[RSC87] REEVES W., SALESIN D., COOK R.: Rendering antialiased shadows with
depth maps. SIGGRAPH (1987). 1

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective shadow maps. SIGGRAPH
(2002). 1, 4, 5, 6

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. SIGGRAPH
(1978). 1

c© The Eurographics Association 2004.


