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Abstract

Helmholtz stereopsis has been introduced recently as a sur-
face reconstruction technique that does not assume a model
of surface reflectance. In the reported formulation, corre-
spondence was established using a rank constraint, neces-
sitating at least three viewpoints and three pairs of images.
Here, it is revealed that the fundamental Helmholtz stereop-
sis constraint defines a nonlinear partial differential equa-
tion, which can be solved using only two images. It is shown
that, unlike conventional stereo, binocular Helmholtz stere-
opsis is able to establish correspondence (and thereby re-
cover surface depth) for objects having an arbitrary and
unknown BRDF and in textureless regions (i.e., regions of
constant or slowly varying BRDF). An implementation and
experimental results validate the method for specular sur-
faces with and without texture.

1 Introduction

Helmholtz stereopsis has recently been introduced as a
multi-view technique for estimating surface shape without
requiring an assumed model of reflectance. Thus, unlike
most existing methods, it enables the dense reconstruc-
tion of scenes that contain surfaces with unknown, spatially
varying, and arbitrary reflectance functions (BRDFs). In
Helmholtz stereopsis, this is accomplished through the use
of images that are collected in reciprocal pairs [21]. The
first image in a reciprocal pair is acquired under a single
point light source, and the second image is acquired after in-
terchanging the camera and light source positions. Figure 1
shows a reciprocal pair, and Fig. 2 illustrates the acquisi-
tion geometry. Reciprocal pairs have the unique property
that the relation between intensities at corresponding image
points depends only on surface shape and is independent of
reflectance. This property follows directly from the symme-
try of every bidirectional reflectance distribution function
(BRDF) and is known as Helmholtz reciprocity [9, 15]. So
while specular highlights generally move over the surface

Figure 1. Two rectified images of a painted, plastic
mannequin head acquired as a Helmholtz reciprocal
pair. Note the prominent specularities.

for changes of viewpoint under fixed lighting, in recipro-
cal pairs they correspond to the projection of fixed surface
points and essentially become features for determining cor-
respondence.

As originally formulated in [14, 21], stereo correspon-
dence is established using a rank constraint that requires at
least three reciprocal image pairs, and in turn this implies
at least three camera locations and six images. (In fact, 36
images were used to great effect in [21].) Once correspon-
dence is established, the same constraints can be used to
estimate the normal field of the surface without the need for
differentiation.

In this paper, we re-examine the constraint arising from
a single reciprocal pair of images and reveal that it defines a
partial differential equation (PDE). We show that this PDE
can be solved to provide an accurate reconstruction of sur-
face shape. This new reconstruction technique, binocular
Helmholtz stereopsis, offers the following two significant
advantages over conventional stereopsis.

1. Binocular Helmholtz stereopsis is able to reconstruct
surfaces with arbitrary and unknown BRDF’s (in-
cluding very specular surfaces), whereas conventional
dense stereo correspondence is predicated on a con-



stant brightness assumption (i.e., that the BRDF is
Lambertian).

2. Binocular Helmholtz stereopsis is able to establish cor-
respondence in textureless regions, whereas conven-
tional stereo can only “guess” correspondence in such
regions using a regularization or smoothing process.

The skeptical reader might turn to the reconstructions in
Figures 5–7 of a specular mannequin shown in Fig. 1 and
notice the lack of texture on the forehead.

Additionally, by using only two images, binocular
Helmholtz stereopsis is faster, simpler, and cheaper to im-
plement than the multinocular Helmholtz stereo technique
reported in [21], and so it may be possible to apply this new
binocular technique within a much broader range of appli-
cations.

Helmholtz stereopsis in general is related to a small set of
fairly recent reconstruction techniques (others are [13, 14])
that use both changing viewpoint and illumination to re-
construct surfaces with arbitrary and unknown BRDF. Lu
and Little [13] used the term photogeometric to describe
their technique, which seems like an appropriate term for
the entire class of methods. Helmholtz stereopsis differs
from these methods, however, in that it both provides di-
rect surface normal estimates and can handle a BRDF that
varies over the surface. Conventional photometric stereo
can also be applied to surfaces with a non-Lambertian
BRDF [10], and it is possible to reconstruct a surface from
only two images [17]. However, the reflectance map (i.e.,
BRDF) must be known a priori or be of a known parametric
form [11, 19]. On the other hand, conventional stereo has
been augmented to handle specularities treating them as an
outlier process or using more than two views [3, 5].

In the next section, we show how the Helmholtz con-
straint arising from a reciprocal pair leads to a differential
equation that, given some initial correspondence, can be in-
tegrated across corresponding epipolar lines. (See also the
recent work of Tu and Mendonca [20].) In Sec. 3, binoc-
ular Helmholtz stereo is recast using a functional that does
not require initial conditions; this functional is optimized
using a multipass, dynamic programming algorithm. Ex-
perimental results shown in Sections 2 and 3 demonstrate
that accurate reconstruction is possible for non-Lambertian
surfaces. Conclusions and future directions are considered
in Sec. 4.

2 A PDE for Helmholtz Stereopsis
Consider the imaging geometry shown in the left half of
Fig. 2 in which a scene is illuminated by an isotropic point
source and observed by a perspective camera. Let ol and
or denote the positions of the camera and light source, re-
spectively. We also denote by p and n̂ a point on the sur-
face and its associated unit normal vector. The unit vectors

n̂ n̂

ol or ol or

l̂v vr̂ vl̂ vr̂

p p

Figure 2. The binocular Helmholtz stereo setup.
First an image is acquired with the scene illuminated
by a single point source as shown on the left. Then,
a second image is acquired after the positions of the
camera and light source are exchanged as shown on
the right.

v̂l = 1
|ol−p|(ol−p) and v̂r = 1

|or−p|(or−p) denote the di-
rections from p to the camera and light source, respectively.
Given this system, the image irradiance at the projection of
p is

el = fr(v̂r, v̂l)
n̂ · v̂r

|or − p|2
(1)

where n̂ · v̂r gives the cosine of the angle between the di-
rection to the light source and the surface normal, 1

|or−p|2

is the 1/r2 fall-off from a unit-strength, isotropic point light
source, and fr is the BRDF.

Now, consider the reciprocal case shown on the right of
Fig. 2 in which the light source is positioned at ol, and the
camera observes p from or. Because of Helmholtz reci-
procity, we have that fr(v̂r, v̂l) = fr(v̂l, v̂r). This allows
us to eliminate the BRDF, and obtain the Helmholtz stereo
constraint first introduced in [14]:

(

el
v̂l(p)

|ol − p|2
− er

v̂r(p)

|or − p|2

)

· n̂ = 0 (2)

Note that Eq. 2 is a first order, nonlinear partial differen-
tial equation in the point coordinates p and their derivatives
as expressed through the normal n̂. To solve this, we will
first consider an imaging situation in which the PDE is sim-
pler and for which the results are more transparent, and then
we will impose the epipolar geometry.

Let the distances of the light source and camera to the
scene be large with respect to the relief of the scene, and
let the camera field of view be narrow. Under these condi-
tions, the cameras can be modeled by scaled orthographic
projection, and the vectors v̂l(p) and v̂r(p) can be taken as
constant over the scene. As well, the denominators |ol−p|2

and |or − p|2 can each be taken as constant over the scene.
The ratio |ol−p|

|or−p| can be easily determined when calibrating
a Helmholtz stereo rig, and here we take this ratio to be 1.
Under these assumptions, Eq. 2 reduces to



(elv̂l − erv̂r) · n̂ = 0, (3)

where v̂l and v̂r are constants determined during calibra-
tion.

We now impose the epipolar constraint to provide a so-
lution to Eq. 3. Without loss of generality, establish a co-
ordinate system for the left camera with a rotation matrix
that is the identity, so that v̂l = (0, 0,−1). Let the coordi-
nates of points in the world be expressed in this system as
(x, y, z) where (x, y) are the image coordinates, and z is the
depth. We will consider the surface to be the graph of a C1

function z(x, y). Furthermore, consider the pair of images
to be rectified, so that the second camera’s orientation can
be expressed as

Rr = [wrurvr]
T =





wr,1 0 wr,3

0 1 0
vr,1 0 vr,3



 . (4)

So, a point (x, y, z) will project to (x, y) in the left im-
age and to (wr,1x + wr,3z, y) in the right image (i.e., the
scan lines are epipolar lines). The disparity is then given by
wr,1x + wr,3z(x, y) − x.

Expressing the depth as z(x, y) and noting that the un-
normalized surface normal is ( ∂z

∂x
, ∂z

∂y
,−1), we can write

the constraint as

el(x, y) − er(xr, y)(vr,1
∂z

∂x
− vr,3) = 0 (5)

where xr = wr,1x + wr,3z(x, y), and this holds for all y.
Rewriting this, we have

∂z

∂x
= −

el(x, y) + er(xr, y)vr,3

vr,1er(xr, y)
(6)

This can be numerically integrated as

z(x, y) =

∫ x

x0

∂z

∂x
dx + z(x0, y). (7)

In other words, for each epipolar line y, this integral can
be independently evaluated to provide the depth across the
epipolar line. Note that there is no search for correspon-
dence over some disparity space, as correspondence is de-
termined as a byproduct of integration. The only open issue
is: “For each epipolar line y, what is the boundary condi-
tion z(x0, y)?” There are two ways to look at this issue.
On the one hand, knowing z(x0, y) for some (x0, y) on
each epipolar line amounts to having the means to deter-
mine the depth or establish correspondence for one point
on each epipolar line. Alternatively, one can view Eq. 7
as defining a one-parameter family of reconstructed curves
along each epipolar line; elements of the family are indexed
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Figure 3. A family of reconstructions for one epipo-
lar line of the specular cylinder shown in the bottom
row of Fig. 4. The family arises from different initial
conditions z(x0, y) when integrating Eq. 7. The thick
(red) curve is the member of this family with the cor-
rect geometry, and is redrawn with a different scaling
in the lower right of Fig. 4.

by different depth values at (x0, y). In Sec. 3, we will in-
troduce a method for selecting a member of this family for
each epipolar line.

We have implemented this method in Matlab using
Runge-Kutta integration and empirically validated its effec-
tiveness in the following experiment. We gathered recipro-
cal pairs of images of three cylinders made of a Lamber-
tian material, a rough non-Lambertian material [18], and a
specular plastic material. Images were acquired with a Ko-
dak DCS 760 digital camera, and the scene was illuminated
with a 150W halogen bulb. The camera system was geo-
metrically calibrated, and the distance from the camera to
the object was about two meters which satisfies the approx-
imation needed in deriving Eq. 3. Figure 4 shows for each
cylinder a pair of rectified images and a plot of the image
intensity across a pair of central epipolar lines. Note that
these curves are characteristic of these three material types.

For the epipolar line, a family of reconstructions can be
obtained for a discrete set of initial depths (disparities), and
Fig. 3 shows such a family for the specular cylinder. Since
z(x, y) must be C1, the integration cannot cross the occlud-
ing contour where there is a depth (zeroth-order) discon-
tinuity. Within this family lies the correct reconstruction,
which could be selected from a single correspondence or
some other means (e.g., smoothness, a shape prior, the dy-
namic programming method introduced in Sec. 3, etc.). The
last column of Fig. 4 shows the reconstructed depth across
one epipolar line overlaid on a circular cross section. In
this experiment, the initial conditions were chosen manu-
ally. The RMS errors between the reconstructed curve and



overlaid circle as a percentage of the cylinder’s radius are
0.11%, 1.7%, and 0.94% respectively for the Lambertian,
generalized Lambertian, and specular cylinders. Note that
the reconstructed curve for the Lambertian cylinder is indis-
tinguishable from the ground truth circle whereas there is a
slight deviation for the specular cylinder.

3 Surface Reconstruction
As discussed in the previous section, we can solve the
binocular Helmholtz PDE by integrating along correspond-
ing epipolar lines. The recovery of the correct solution,
however, requires a correct initial correspondence for start-
ing the integration. This requirement may seem like a dif-
ficult obstacle for the method; yet, we show in this section
that this can be easily overcome by applying a matching
constraint common to traditional stereo algorithms.

Recall that traditional dense stereo algorithms must de-
termine the correspondence for all points along correspond-
ing epipolar lines in the left and right images. In contrast,
binocular Helmholtz stereo needs only – in theory at least –
to determine the correspondence of a single pair of points.
This correspondence provides an initial condition which can
then be integrated to the left and right along the epipolar line
to determine all correspondences and establish depth for all
points.

One could develop an algorithm that first identified the
most prominent/salient feature (e.g., edges) for each pair of
epipolar lines and then assigned correspondence between
these features as way of creating anchor points for the in-
tegration described above. Even for surfaces with arbi-
trary BRDF, there will generically exist image intensity dis-
continuities (edges) corresponding to discontinuities in the
albedo or BRDF across the surface, discontinuities in the
surface normal (creases), and discontinuities in depth at oc-
clusion boundaries [4]. Consider more closely the two im-
ages of the mannequin in Fig. 1. While the specular high-
lights clearly indicate that this surface is far from Lamber-
tian, there are also BRDF discontinuities arising from the
eyes, eyebrows, and lips which can be used as features.

While coupling a feature-based stereo algorithm with the
integration method of Sec. 2 might work, it would rely on
the identification of feature points and would break down
ungracefully when the initial correspondences were incor-
rectly assigned. Instead, we set up the problem of depth
recovery along epipolar lines as the minimization of a func-
tional that includes a term for matching image features and
a term for keeping the solution close to that dictated by the
integration. The functional is chosen to allow for efficient,
global minimization using dynamic programming.

Pass 1: Along Epipolar Lines
As before, we assume that we have a reciprocal pair of or-
thographic images taken of a C1 surface (a graph z(x, y)),

that the camera/source positions are far from the surface,
and that the images are rectified. In Sec. 2, a differential
equation was derived for ∂z

∂x
as a function of intensities at

corresponding points along an epipolar line, here we mod-
ify the equation so that it is defined relative to a cyclopean
coordinate system as in [1].

Let r(x, z) denote the following ratio of image measure-
ments

r(x, z) = − cot(θ)
el(xl) − er(xr)

el(xl) + er(xr)
(8)

where x is the cyclopean coordinate; θ is the half angle
between viewing direction; xl = x cos(θ) + z sin(θ) and
xr = x cos(θ) − z sin(θ) are coordinates on the left and
right epipolar lines, respectively. For corresponding points,
we have that

∂z

∂x
= r(x, z). (9)

The functional that we minimize has as its matching term
the squared magnitude of the difference between the gradi-
ent in the left and right images. This matching term is cou-
pled with a term measuring the squared distance between
r(x, z) and the partial derivative of the hypothesized solu-
tion z with respect to x. The functional is given as

Eh(z(x)) =

∫

(
∂z

∂x
− r)2dx+α

∫

|∇el −∇er|
2dx (10)

where el = el(xl(x, z)), er = er(xr(x, z)), and α is a
weighting term. For each epipolar line, we use dynamic
programming to find a discrete approximation to z(x) that
minimizes Eh(z(x)). For n discrete values of x, we con-
sider m possible depth values, and the computational cost
of finding the global minimum of Eh(z(x)) is O(nm2); see
[2] for details.

Pass 2: Across Epipolar Lines
If each epipolar line had an image feature such as an albedo
edge, the gradient matching term would lock onto the edge
and effectively provide the initial correspondence needed
for the integration. We are not guaranteed, however, that
each epipolar line will have an image feature that will allow
the minimization to find the correct initial correspondence
and, thus, the correct solution. Reconsider the images of the
mannequin in Fig. 1. While there are strong image features
for epipolar lines crossing the eyebrows, eyes and mouth re-
gions, the forehead is smooth and textureless, whereas the
nose has significant relief and little texture. However, we
expect that in general other epipolar lines will have image
features, and we can use these to determine the best solu-
tions for epipolar lines that do not. To operationalize this,
we define and minimize a second stage functional across
epipolar lines (in a manner different than that used in [16]).

The idea is to compute as the output from Pass 1 a family
of n solutions minimizing Eq. 10 such that the endpoints
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Figure 4. Reconstruction of three real cylinders of three material types: The cylinder in Row 1 is approximately
Lambertian, the rough cylinder in Row 2 has Oren-Nayar generalized Lambertian reflectance [18], and the plastic
cylinder in Row 3 is highly specular. The first two columns show a rectified pair of images of the cylinder. The third
column shows a plot of the image intensities across one epipolar line in the left (blue, solid) and right (red, dashed)
images. The fourth column shows the reconstructed shape (thick, blue) across the epipolar line superimposed on a
circular cross section.

of the solutions vary over a range of possible z values. If
the family of solutions is big enough (i.e., if our sampling
of the range of z values is fine enough), then the correct
solution should be well represented by one member from
the family of solutions. Note that this should hold whether
or not the epipolar line has an image feature. To choose the
correct solution for each epipolar line, we simply choose
the collection of solutions (one for each line) that produces
the most coherent surface according to a simple smoothness
criteria imposed across epipolar lines.

More precisely, let x = xe denote the end of the epipolar
line. Let z(xe, y) = ze denote z(x, y) at the endpoint x =
xe for scanline y. For each y and for each ending point ze

in the range of possible z values, we compute a solution

ẑ(x, y|z(xe, y)=ze) = argmin
(z(x,y)|z(xe,y)=ze)

Eh(z(x, y)). (11)

In other words, ẑ(x, y|z(xe, y) = ze) is the solution along
epipolar line y that minimizes Eq. 10 subject to the con-
straint that z(xe) = ze. Thus for each y, the family of so-

lutions is indexed by the value of the ending point ze. Note
that this family differs from the one arising in Sec. 2 and
shown in Fig. 3. And, within this family there should be a
ze and a corresponding solution ẑ(x, y|z(xe, y) = ze) that
is close to the correct solution. We denote the family of so-
lutions over all epipolar lines by Ẑ = {ẑ(x, y|ẑ(xe, y) =
ze), ∀ze, ∀y}.

Nevertheless, we still have the problem of determining
the correct solution from Ẑ for each epipolar line y. Con-
sider the following functional defined over the entire image

Ev(z(x, y)) =

∫ ∫
(

∂z

∂y

)2

dx dy. (12)

We can find the correct choice from Ẑ for each epipolar line
y by minimizing the above functional. We do not consider
all possible solutions z(x, y), rather we limit the search of
solutions to the family of solutions Ẑ given by Pass 1. Thus,
the optimization in Eq. 12 is effectively being done over the



Figure 5. Two views of a reconstructed plastic mannequin created using binocular Helmholtz stereopsis.

endpoints ze for each y. We take as our solution to Pass 2,

ẑ(x, y) = argmin
Ẑ

Ev(z(x, y)). (13)

As in Pass 1, we use dynamic programming to find
a discrete approximation to the ẑ(x, y) that minimizes
Ev(z(x, y)). The computational cost of this dynamic pro-
gramming step is O(m2l) where m is the number of end-
points (depth values), and l is the number of epipolar lines.

Note that this formulation has an inherent asymmetry, as
the second pass considers a range of ending points and not
a range of starting points. We correct this by re-running this
two stage process in reverse. Specifically, we run Pass 1 and
Pass 2 across the data to find a collection of optimal ending
points ẑe = ẑ(xe, y) for each epipolar line. We then re-run
Pass 1 in reverse (i.e., from right to left), fixing the endpoint
such that z(xe, y) = ẑe for each y. At this stage, for each y
we now have a family of solutions indexed by the value of
the beginning point zb. The overall solution is then chosen
by re-running Pass 2 to select the optimal starting points.

We should point out that this algorithm has only one real
parameter: the weighting α of the image gradient term used
in optimization of Eq. 10. The optimization in Eq. 12 is pa-
rameter free. This optimization does not smooth the solu-
tion along the epipolar lines, rather it chooses the solutions
which together form the surface that is smoothest across the
epipolar lines.

Here, we present results on a reciprocal pair of images of
a mannequin head shown in Fig. 1. In Fig. 5, we display two
views of a mesh of the surface reconstructed using our two
pass dynamic programming method. For this reconstruc-
tion, the brightness in the left and right images was normal-
ized by the maximum brightness in both images, and the
value of α = 0.1. In Fig. 6, we display a depth map image
in which light corresponds to near and dark to far. Finally,
in Fig. 7, we display a single view of the mesh with the
left image texture mapped onto it. Notice that the method
is unhampered by the specularities and is able to both “lock
onto” the features such the eyes, eyebrows, and lips, but also

provide good reconstructions in textureless regions such as
the forehead.

4 Discussion
This paper introduces binocular Helmholtz stereopsis and
shows that the constraint arising from reciprocal images is
a partial differential equation which can be readily solved.
The implementation validates that the method can be ap-
plied to objects with arbitrary and unknown BRDF, and un-
like conventional stereo it is able to accurately reconstruct
shape in textureless regions.

There are still many ways to improve and enhance binoc-
ular Helmholtz stereopsis. First, it is straightforward to
extend the implementation to perspective projection and
nearby light sources, though the PDE becomes more com-
plex. Second, it is assumed throughout that the depth func-
tion z(x, y) is C1, yet it should be possible to permit depth
discontinuities. As described in [14, 21], the equivalent to
half-occluded regions corresponding to depth discontinu-
ities in conventional stereo are shadowed regions in recip-
rocal image pairs. Hence, it should be possible to augment
Eq. 10 to introduce depth discontinuities as in [1, 6, 8], us-
ing shadows as a cue for half occlusion.

Finally, though an advance brought forth in this paper is
to reduce Helmholtz stereopsis from requiring at least three
camera positions [14, 21] to binocular imaging, it would be
worthwhile to re-examine multinocular Helmholtz stereop-
sis by directly considering the set of differential equations
arising from each reciprocal pair. It may then be possible to
eliminate the smoothness constraint between epipolar lines
used in the second pass of Sec. 3. Perhaps, multinocular
Helmholtz reconstruction can be formulated to exploit ad-
vantages found through photoconsistency and space carv-
ing [12] or level set methods [7].
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