
Appears in Proc. European Conference on Computer Vision, 2010

Blind Reflectometry

Fabiano Romeiro and Todd Zickler

Harvard University
33 Oxford St., Cambridge, MA, USA, 02138
{romeiro,zickler}@seas.harvard.edu

Abstract. We address the problem of inferring homogeneous reflectance
(BRDF) from a single image of a known shape in an unknown real-world
lighting environment. With appropriate representations of lighting and
reflectance, the image provides bilinear constraints on the two signals,
and our task is to blindly isolate the latter. We achieve this by leverag-
ing the statistics of real-world illumination and estimating the reflectance
that is most likely under a distribution of probable illumination environ-
ments. Experimental results with a variety of real and synthetic images
suggest that useable reflectance information can be inferred in many
cases, and that these estimates are stable under changes in lighting.

1 Introduction

The optical properties of a material often provide a clue for how it will behave
when acted upon. They help inform us, for example, if the material is hard, soft,
hot, cold, rigid, pliable, brittle, heavy, or lightweight. It makes sense, then, that
people can infer materials’ optical properties from their images; and building
similar functionality into computer vision systems seems worthwhile.

The optical properties of many materials are adequately summarized by the
bidirectional reflectance distribution function (BRDF), which describes how flux
at a surface patch is absorbed and reflected over the output hemisphere. The
BRDF provides a complete description of lightness, gloss, sheen, and so on; and
in this paper, we explore when and how it can be recovered from an image.
This task is made difficult by the fact that reflectance is confounded with shape,
lighting, and viewpoint, all of which may be unknown. Even when the shape
and relative viewpoint are provided (say, by contours, shadows, or other cues),
the blind separation of BRDF from lighting is something that computer vision
systems cannot yet do well.

This paper considers the following problem, depicted in Fig. 1. We are given
a single high dynamic range (HDR) image of a known shape under an unknown,
real-world lighting environment, and our task is to infer the material’s BRDF.
Our approach is to compute the BRDF that is most likely under a distribution
of probable lighting environments—a strategy that is motivated by previous
successes for other ill-posed vision problems, including color constancy and blind
image deblurring. In our case, we show that by choosing an appropriate BRDF
representation, we can leverage the statistics of real-world lighting to accurately
infer materials’ optical properties in a variety of lighting environments.
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2 Blind Reflectometry

+

{ {INPUT IMAGE MIRROR BRDF ILLUMINATION

, , ,...+

ACTUAL BRDFINPUT IMAGE MANY PROBABLE ILLUMINATIONS

Fig. 1. Our goal is estimating the BRDF from an image of a known shape in unknown
real-world lighting. Top: The trivial solution is a mirror-like BRDF, which exactly
predicts the input for a carefully-crafted “blurry” environment. Bottom: To avoid this,
we choose a BRDF that predicts the input for a distribution of probable environments.

2 Background and Related Work

People are quite adept at inferring reflectance information from images, and
there have been a number of psychophysical studies that explore the underlying
mechanisms [1,22,7,33,31,35]. Results suggest that people do not require contex-
tual knowledge of the environment to infer reflectance [7], but that performance
decreases when the directional statistics of the environment deviate significantly
from those found in nature [7,4,5]. These findings provide motivation for our
work, which also leverages the directional statistics of natural environments.

When it comes to computational approaches for recovering reflectance from
images, most have been developed for controlled or known lighting (e.g., [30,14,9]).
Fewer methods have been designed for cases where the lighting is not known,
and of these, most assume reflectance to be well-represented by a pre-chosen
“parametric” BRDF model, such as the Phong, Ward, or Lafortune models
(e.g., [21,36,11]). Parametric BRDF models place considerable restrictions on
reflectance, and as a result, they allow inferring quite a bit about a scene. For
example, the method of Georghiades [8] can simultaneously infer everything—
shape, lighting and reflectance—provided that the material is well-represented
by a simplified Torrance-Sparrow model (and that lighting consists of a moving
point light source). While parametric models continue to improve (e.g., [20]),
their use typically has two significant limitations. First, it severely restricts the
space of materials (see [19,32]); and second, because these models are non-linear
in their parameters, the required computation ends up being model-specific and
cannot easily be transferred from one material class to another.

An attractive alternative to parametric BRDF models is using a linear com-
bination of reflectance basis functions. This way, the representation can be grown
to include the entire world of BRDFs, at least in theory. Moreover, when object
shape is known, it leads to a simple bilinear relationship between the unknown
reflectance parameters (i.e., the coefficients in the basis) and the lighting pa-
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rameters. This bilinearity has already been exploited in both vision [13,10] and
graphics (e.g., [25,18]), and it is the key to making our approach tractable.

The choice of bases for reflectance and lighting are important, and we dis-
cuss them in detail in subsequent sections. But once these choices are made, we
obtain a bilinear inferrence problem that resembles others in vision: Given an
image of a known shape, we must find probable lighting and reflectance param-
eters that could have created it. Color constancy and blind image deblurring
can be formulated analogously [2,6,12], and our work leverages insight gained
from their analyses. Specifically, instead of simultaneously estimating the BRDF
and environment that best explain a given image, we obtain better results by
estimating the BRDF that is most likely under a distribution of lighting envi-
ronments (Fig. 1). This process is termed “MAPk estimation” in the context of
blind deblurring [12], and the same basic idea forms the core of our approach.

A natural comparison for our approach is the framework of Ramamoor-
thi and Hanrahan [24,26], which uses spherical harmonics to represent lighting
and reflectance and expresses their interaction as a convolution. Since spherical
harmonics are eigenfunctions of the convolution operator, this leads to elegant
closed-form expressions for the lighting and reflectance coefficients. But this rep-
resentation cannot easily incorporate a meaningful prior probability distribution
for natural lighting environments (see [5]), and it either requires that the entire
4D light field is available as input or that the BRDF can be restricted to being
a “radially-symmetric” function over a one-dimensional domain.

Another natural comparison is the method of Haber et al. [10], which also
represents lighting and reflectance using linear bases. Their approach differs in
terms of its input and output (multiple images instead of one; spatially-varying
BRDFs instead of uniform) and has two technical distinctions. It does not ex-
plicitly model the statistics of natural lighting, and it jointly estimates lighting
and reflectance instead of marginalizing over a distribution of environments.

3 Approach

We assume all sources and reflecting surfaces in the environment to be far from
the object in question so that the angular distribution of incident lighting does
not vary over the object’s surface. This allows the unknown lighting L to be
represented as an “environment map”—a positive-valued function on the sphere
of directions; L: S2 → R+. We also assume that the camera and object geometry
are known, that mutual illumination is negligible, and that the unknown BRDF
(F ) is isotropic. Then, a linear measurement made at pixel i can be written

Ii =
∫
Ω

Li(ω)Vi(ω)Fi(ω)(ni · ω)dω, (1)

where ni is the surface normal at the back-projection of pixel i, Li(ω) is the
hemisphere of the unknown lighting centered at direction ni, and Vi(ω) is a
binary-valued hemispherical “visibility” function that encodes the object’s self-
shadowing at the back-projection of i (e.g., [18,10]). Finally, Fi is a 2D slice of
the unknown BRDF determined by the normal ni and the local view direction.
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Since everything in Eq. 1 is known except the lighting and BRDF, an image
I = {Ii} imposes a set of constraints upon them. One approach to estimating the
BRDF, then, is to define prior probability distributions for the unknown lighting
p(L) and BRDF p(F ) and find the functions that maximize the posterior

p(L,F |I) ∝ p(I|L,F )p(L)p(F ), (2)

using a likelihood p(I|L,F ) based on Eq. 1. This is closely related to the approach
of Haber et al. [10], and it suffers from a preference for the trivial mirror-like
solution. Any image can be perfectly explained by a mirror-like BRDF and a
carefully crafted “blurry” environment that exactly matches the image [7], so
the likelihood (and usually the posterior) are maximal for these functions.

In this paper we avoid this problem in the following manner. Instead of
selecting the single BRDF/lighting pair that best explain an input image, we
select the BRDF that is most likely under a distribution of lighting environments.
We do this by computing the mean of the marginalized posterior:

Fopt ,
∫
Fp(F |I)dF =

∫
F

(∫
p(F,L|I)dL

)
dF . (3)

The intuition here—adapted directly from the related problem of blind image
deblurring [6,12]—is that instead of selecting a BRDF that perfectly explains
the image for a single lighting environment (the trivial solution), we select one
that reasonably explains the image for many probable lighting environments.

Evaluating the expression on the right of Eq. 3 requires prohibitive com-
putation, and to make it feasible, we employ a variational Bayesian technique.
Following [16,17] we approximate the posterior using a separable function,

p(L,F |I) ≈ q(L,F ) = q(L)q(F ), (4)

with components having convenient parametric forms. Given an input image, we
compute the parameters of this approximate posterior using fixed point iteration,
and then we trivially approximate the solution (Eq. 3) as the mean of q(F ).

Pursuing this approach requires suitable representations for lighting and re-
flectance. In particular, we require each to be a linear combination of basis
functions, and we require the prior probability distributions of their coefficients
to be well-approximated by exponential forms. We describe our choices next.

3.1 Representing illumination

We represent spherical lighting using a wavelet basis. As depicted in Fig. 2 and
following [34], we do this by mapping the sphere to a plane with an octahedral
map [23] and using a Haar wavelet basis in this plane. Notationally, we write L =∑M
m=1 `mψm with ψm the basis functions and `m the corresponding coefficients.

This choice of basis is motivated by the fact that statistics of band-pass filter
coefficients of real-world lighting display significant regularity. Much like real-
world images, the distributions of these coefficients are highly kurtotic, having
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heavy tails [4,5]. Our choice is also motivated by the apparent utility of the
related image statistics for tasks like compression, denoising, and deblurring.

To develop prior distributions for the coefficients ` , {`m}, we collected 72
environments (nine from the ICT Graphics Lab1 and the remainder from the
sIBL Archive2), normalized each so that it integrates to one, and studied the
coefficient distributions at different scales. Like Dror et al. [4,5], we found these
statistics to be notably non-stationary, especially at coarser scales. Figure 2
shows empirical distributions and parametric fits for a variety of scales using a
32 × 32 discretization of the sphere. At the finest scales (scales 4 and 5), the
distributions are quite stationary, and we employ a single zero-mean Gaussian
mixture for all of the coefficients at each scale (with 4 and 5 components, respec-
tively). At the middle scales (scales 2 and 3), the statistics change significantly
depending on elevation angle and basis type (vertical, diagonal, horizontal), and
accordingly we use distinct distributions for each basis type both above and
below the horizon. Each distribution is a zero-mean Gaussian mixture, and we
use three components for groups in scale 3 and two components for groups in
scale 2. Finally, at the coarsest scale (scale 1) we use zero-mean, two-component
Gaussian mixtures for the diagonal and horizontal basis types, and a Gaussian
rectified at a negative value for the vertical basis type to capture the fact that
lighting is dominant from above. Note that the DC value `1 is the same in all
cases since the illuminations are normalized. Additional details are in [28].

With these definitions we can write our illumination prior as

p(`) =
M∏
m=2

Nm∑
n=1

πnm pnm(`m), (5)

with Nm the number of mixture components for coefficient m and πnm the
mixing weights. The group structure described above is implicit in this notation:
All coefficients in any one group share the same Nm, πnm and pnm.

3.2 Representing reflectance

We represent BRDFs as a linear combination of non-negative basis functions
learned through non-negative matrix factorization (NMF) of all 100 materials
in the MERL/MIT database [15]. This produces the linear representation F =∑K
k=1 fkφk and has the advantage of allowing non-negativity constraints on the

recovered BRDF F to be naturally enforced through non-negativity constraints
on the coefficients f , {fk}. Also, we find that the empirical distributions of the
resulting coefficients fk can be well-approximated by exponentials (see Fig. 3,
right), making them well-suited for inference using variational Bayes.

Each BRDF in the database is represented using a 90×90×180 discretization
of the 3D isotropic BRDF domain, parameterized in terms of the half-vector and
difference-vector [29]. For computational convenience, we reduce each material to

1 http://www.debevec.org/probes; http://gl.ict.usc.edu/Data/HighResProbes
2 http://www.hdrlabs.com/sibl/archive.html

http://www.debevec.org/probes
http://gl.ict.usc.edu/Data/HighResProbes
http://www.hdrlabs.com/sibl/archive.html
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Fig. 2. Left : We represent lighting using a Haar wavelet basis on the octahedral domain
[23] discretized to 32 × 32. Statistics of wavelet coefficients are non-stationary, so we
fit distinct distributions for coefficients above and below the horizon. Right : Empirical
distributions and their parametric fits for a variety of wavelet coefficient groups.

the 90×90 bivariate domain of Romeiro et al. [27] and scale it to have a maximum
value of one before computing the NMF. The bivariate reduction allows handling
the entire database (and potentially much more) without resulting to out-of-
core methods, and as shown in [27], it has a limited effect on accuracy. The
resulting basis functions are defined on the two dimensional domain (θh, θd) ∈
[0, π/2) × [0, π/2), where θh and θd are the halfway angle and difference angle,
respectively (see [29]). We can visualize the basis functions as images, and two
of them are in the right of Fig. 3. In this visualization, specular reflection is
at small halfway angles (top edge), grazing effects are at large difference angles
(top-right corner) and retro-reflection is at small difference angles (left edge).

The left of Fig. 3 qualitatively evaluates the NMF model’s fit to the original
BRDF data for different numbers (K) of basis functions. We also compare to
a parametric BRDF model (Cook-Torrance) as fit by Ngan et al. [19]. While it
remains perceptually distinguishable from ground truth for some materials, we
find that the NMF model’s fit with ten basis functions (K = 10) provides a good
balance between complexity and accuracy. It provides fits that are comparable
to the Cook-Torrance model, but it is linear, which is important to our approach.

We can also evaluate the fit quantitatively by computing RMS error in the
BRDF domain. According to this metric, the NMF approach significantly out-
performs the parametric model. The mean and median RMS error computed
using the green channels of all materials are 1.58 and 0.45 for the NMF model,
and 46.91 and 17.11 for the Cook-Torrance fit. Some of this significant difference
is due to the fact that we have chosen to perform NMF based on L2 cost in the
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Fig. 3. Left : Qualitative evaluation of the NMF BRDF model. Top to bottom: NMF
model with 3, 5, and 10 basis functions; ground truth; and Cook-Torrance fit from [19].
Right : Empirical distributions and parametric fits for NMF coefficients corresponding
to basis elements that roughly account for grazing (top) and specular (bottom) effects.

BRDF domain, whereas the parametric Cook-Torrance fit is performed with an
approximate perceptual metric [19]. In fact, one can view the metric used in
NMF as a choice that can be tuned for each application. If one ultimately seeks
to infer BRDFs for the purposes of material recognition, then the L2 cost used
here may be preferred. If the inferred BRDF is to be used for image synthesis,
however, it may be more desirable to use a perceptual metric (e.g., [35]) within
a kernel-NMF framework (e.g., [3]).

Having computed basis functions φk and the parameters λk of the coefficient
distributions, we obtain the following prior distribution for reflectance:

p(f) =
K∏
k=1

λk exp(−λkfk), fk ≥ 0. (6)

3.3 A bilinear likelihood

Having defined linear representations of the lighting and reflectance, we can write
an expression for the likelihood of their coefficients given a particular image. We
begin by updating the imaging model to include a camera exposure parameter
(γ) and a crude model for noise:

Ii = γ

∫
Ω

Li(ω)Vi(ω)Fi(ω)(ni · ω)dω + ε, (7)

with ε ∼ N(0, σ2). The exposure parameter compensates for the difference be-
tween the absolute scale of the intensity measurements and the combined scale of
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the illumination and reflectance functions. This is important because the prior
distributions for lighting and reflectance are estimated from normalized data
while the intensity measurements may be at an arbitrary scale.

Substituting L =
∑
`mψm and F =

∑
fkφk into this expression, one can

re-write this as (see details in [28]):

Ii = γ`TMif + ε, (8)

where the per-pixel matrices Mi are determined by the shape (Vi, ni), view
direction, and the lighting and reflectance basis functions {ψm} and {φk}. For
an input image of a known shape, these matrices can be pre-computed, and we
assume them to be constant and known.

By treating the pixels of an input image as independent samples, this mea-
surement model leads directly to our desired expression for the likelihood of a
set of model parameters given image I:

p(I|`, f, σ, γ) =
N∏
i=1

σ−1

√
2π

exp
(
−σ

−2

2
(Ii − γ`TMif)2

)
. (9)

We treat the exposure and noise variance (γ, σ2) as model parameters to be
estimated along with illumination and reflectance, and for these we define prior
distributions p(σ−2) ∼ Γ (a, b) and p(γ) ∼ Exp(λγ).

3.4 Inferrence

The definitions of the previous sections (Eqs. 5, 6, 9, and the noise and exposure
priors) provide everything we need to write the posterior

p(`, f, γ, σ−2|I) ∝ p(I|`, f, γ, σ−2)p(`)p(f)p(γ)p(σ−2). (10)

As described in Sect. 3, we wish to marginalize over lighting (as well as noise,
and exposure) and compute the mean of the marginalized posterior. Following
Miskin and MacKay [16,17], we do this by approximating the posterior with a
separable function, p(θ|I) ≈ q(θ) = q(`)q(f)q(σ−2)q(γ), with θ , (`, f, σ−2, γ).
The function q(θ) is computed by minimizing a cost based on the Kullback-
Leibler divergence between it and the posterior [16,17]:∫

q(θ)
(

log
q(`)
p(`)

+ log
q(f)
p(f)

+ log
q(σ−2)
p(σ−2)

+ log
q(γ)
p(γ)

− log p(I|θ)
)
dθ (11)

We provide an overview of the optimization here, and details can be found
in [28]. The basic idea is to use coordinate descent, with each distribution q(·)
being updated using the current estimates of the others. The update equations
are derived by integrating all of the terms but one in Eq. 11 (the one containing
q(f), say), taking the derivative with respect to the remaining distribution (q(f)
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in this example) and equating the result to zero. In our case, this procedure
reveals that the approximating distributions q(·) are of the following forms

q(f) =
∏

qk(fk), with qk ∼ NR(uk, wk), (12)

q(`) =
∏

qm(`m), with qm ∼

{
N(um, wm) if m 6= 3
NRC(um, wm, T ) otherwise,

(13)

q(γ) ∼ NR(uγ ;wγ) and q(σ−2) ∼ Γ (σ−2; ap, bp), (14)

where NR is a Gaussian distribution rectified at 0, and NRC is a Gaussian distri-
bution rectified at T . The same procedure also provides closed form expressions
for the updated parameters of each distribution q(·) in terms of the current pa-
rameters of the others (see [28]). One strategy, then, is to cycle through these
distributions, updating each in turn; but as described in [16,17], convergence can
be accelerated by updating all parameters in parallel and then performing a line
search between the current and updated parameter-sets.

Specifically, we define intermediate variables that are sufficient to determine
all of the distribution parameters: Φ = (Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7) where Φ1 and
Φ2 are K-vectors such that Φ1(k) = uk

wk
and Φ2(k) = log ( 1

wk
); Φ3 and Φ4 are M -

vectors such that Φ3(m) = um
wm

and Φ4(m) = log ( 1
wm

); Φ5 = log ( bpap ); Φ6 = uγ
wγ

;
and Φ7 = log ( 1

wγ
). These intermediate variables are iteratively updated accord-

ing to Algorithm 1, and once they converge, they determine the distribution
q(f), whose mean is the BRDF we seek. The noise variable Φ5 is not updated at
every iteration, but only when the other variables have converged at the current
noise level. This is a strategy borrowed from Miskin’s implementation3.

We initialize the algorithm with the posterior means {u(0)
k } and {u(0)

m } corre-
sponding to a random BRDF and lighting environment, respectively. The initial
posterior variances {w(0)

m } and {w(0)
k } are set to relatively large values (10−1) to

account for the uncertainty in our initial estimates. Exposure parameters uγ and
wγ are initialized to 1 and 10 respectively. Finally, parameter bp

ap
is initialized to

1 so that we have a broad initial posterior on the inverse noise variance.

4 Evaluation and Results

We begin our evaluation using images synthesized4 with the MERL/MIT BRDF
data and our collection of measured illumination environments. Using these tools,
we can render HDR images for input to our algorithm as well as images with
the recovered BRDFs for comparison to ground truth.

There is a scale ambiguity for each image because we can always increase
the overall brightness of the illumination by making a corresponding decrease
in the BRDF. Accordingly, we only seek to estimate the BRDF up to scale. We
3 http://www.inference.phy.cam.ac.uk/jwm1003/train_ensemble.tar.gz.
4 PBRT: http://www.pbrt.org/

http://www.inference.phy.cam.ac.uk/jwm1003/train_ensemble.tar.gz
http://www.pbrt.org/
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Algorithm 1 Fit ensemble of approximating distributions

φ
(0)
1 (k)← u

(0)
k

w
(0)
k

, φ
(0)
2 ← log ( 1

wk(0)
), φ

(0)
3 (m)← u

(0)
m

w
(0)
m

, φ
(0)
4 ← log ( 1

wm(0)
)

φ
(0)
5 ← log (1), φ

(0)
6 ← u

(0)
γ

w
(0)
γ

, φ
(0)
7 ← log ( 1

wγ(0)
), i = 0

repeat
repeat
Φ∗ = Update(Φ(i)) (see [28] for update equations), ∆Φ = Φ∗ − Φ(i)

α∗ = arg minα CKL(Φ(i) + α∆Φ) (see [28] for cost expression CKL)

Φ(i+1) = Φ(i) + α∗∆Φ, Φ
(i+1)
5 = Φ

(i)
5 , i = i+ 1

until |C(i+1)
KL − C(i)

KL| < 10−4

Φ
(i)
5 = Φ

(i−1)
5 + α∗∆Φ5

until ||Φ(i)
5 − Φ

(i−1)
5 || < 10−4

also ignore wavelength-dependent (color) effects by performing inference on the
luminance channel and recovering a monochrome BRDF as output. Inferring
wavelength-dependent reflectance effects (i.e., a spectral BRDF) would require
solving the color constancy problem in conjunction with the reflectometry prob-
lem, and we leave this problem for future research.

While we operate in grayscale, we display the input and output using color in
this paper. The displayed input is the color image prior to extracting luminance,
and the displayed output is the outer product of the recovered monochromatic
BRDF and the RGB vector that provides the best fit to the ground truth. This
visualization strategy produces artifacts in some cases. For example, the color-
visualization of the recovered red material in Fig. 6 does not (and cannot) match
the highlight colors of the reference image.

Given a rendered input image of a defined shape (we use a sphere for sim-
plicity), we collect observations from 12,000 normals uniformly sampled on the
visible hemisphere. We discard normals that are at an angle of more than 80
degrees from the viewing direction (since the signal to noise ratio is very low at
these points) as well as normals that are close to the poles of our parametriza-
tion of the sphere (as Eq. 8 is not a good approximation in these regions). This
results in an observation vector I of length 8,600.

Each column of Fig. 4 shows a BRDF recovered from a single input image
synthesized with either the St. Peter’s Basilica or Grace Cathedral environment.
Following [27], the recovered BRDFs are compared to ground truth by synthesiz-
ing images in a novel environment, and close inspection shows them to be visually
quite accurate. Figure 5 further explores stability under changes in lighting. For
this, we run our algorithm twice for each material using two different environ-
ments and compare the recovered BRDFs. We visualize these BRDFs along with
ground truth by using them to synthesize a “spheres image” inspired by [32].
The BRDF estimates are quite consistent across the two environments, and they
provide imperfect but reasonable approximations to ground truth.

The same procedure was applied to the captured data from [27]. As above we
operate on the luminance channel of HDR images and estimate a monochrome
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Fig. 4. Evaluation with synthetic input. Top: Single image used as input. Middle:
Appearance predicted in a novel environment using the recovered BRDF. Bottom:
Ground truth image in the same novel environment.

BRDF, but now we visualize the output in color by taking the outer product of
the monochrome BRDF and the median RGB color of the input image. Figure 6
shows results with the BRDFs recovered from single input images (top row) being
used to render synthetic images of the same material under novel environments
(more precisely, the same environment from a different viewpoint). Accuracy is
assessed by comparing these synthetic images to real images captured in the same
novel environments. While the recovered reflectance is clearly distinguishable
from ground truth, we see that useful qualitative reflectance information is still
obtained. Based on the inferred BRDFs, for example, it would be straightforward
to create an ordering of the four materials based on gloss.

These results reveal two limitations of the approach. First, one should ex-
pect less accuracy when the input image contains significant mesostructure
(e.g., green metallic) or texture because these small variations effectively
increase noise. Second, performance will be diminished when the illumination
is “inadequate”, meaning that it does not induce significant specular, grazing,
and/or retro reflections, and does not sufficiently constraint the BRDF (e.g., red
specular and yellow plastic). This latter limitation is consistent with per-
ceptual findings [7] and frequency-domain arguments [26], and it has been doc-
umented for cases in which the environment is known [27]. Romeiro et al. [27]
also describe why quantitative analysis of the conditions for adequate illumi-
nation are difficult: Unlike the spherical harmonic approach [26], lighting and
reflectance are not related by a convolution operator in the present case. Per-
haps a quantitative description of the conditions for “adequate illumination” in
material recognition will be a fruitful direction for future work.
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Fig. 5. Stability under changes in lighting: BRDFs recovered when the same material
is seen in different environments. Top to bottom: BRDF recovered in the St. Peter’s
environment; ground truth; and BRDF recovered in the Grace Cathedral environment.

5 Discussion

Our results suggest that for a range of homogeneous diffuse and glossy materials,
reflectance information can be inferred from unknown real-world illumination
when the object shape is known. They also suggest that these estimates are
fairly stable when the illumination undergoes a change.

The approach has at least two features worth highlighting. First, it uses a
linear basis for reflectance. This allows a seamless trade between complexity and
accuracy, and it is very different from “parametric” BRDF models (Phong, etc.)
that are non-linear in their variables and are only suitable for a particular mate-
rial class. Second, it is an inference system built upon a probabilistic generative
image model, and this makes it amenable to combination with other contextual
cues and vision subsystems. In particular, we might explore combinations with
shape-from-X techniques (shading, contours, shadows, etc.) to assess how well
reflectance can be recovered when shape is not known a priori.
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