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Abstract

We present a novel optical setup and processing pipeline for mea-
suring the 3D geometry and spatially-varying surface reflectance of
physical objects. Central to our design is a digital camera and a
high frequency spatially-modulated light source aligned to share a
common focal point and optical axis. Pairs of such devices allow
capturing a sequence of images from which precise measurements
of geometry and reflectance can be recovered. Our approach is en-
abled by two technical contributions: a new active multiview stereo
algorithm and an analysis of light descattering that has important
implications for image-based reflectometry. We show that the ge-
ometry measured by our scanner is accurate to within 50 microns at
a resolution of roughly 200 microns and that the reflectance agrees
with reference data to within 5.5%. Additionally, we present an im-
age relighting application and show renderings that agree very well
with reference images at light and view positions far from those that
were initially measured.

1 Introduction

Systems for digitizing the appearance of physical objects have ap-
plications in fields as diverse as entertainment, manufacturing, and
archeology. Although 3D scanners capable of sub-millimeter geo-
metric accuracy are now commonplace, those which allow simulta-
neously measuring an object’s directionally- and spatially-varying
appearance are still a topic of intense research. Many applications,
including digital restoration of cultural artifacts, analysis of surface
finishes, and photorealistic rendering, would benefit from having
tools for efficiently acquiring both of these components.

We present a system for recovering aspects of object appearance
that, at a pre-chosen scale, are well-represented by a surface and
a spatially-varying bi-directional reflectance distribution function
(spatially-varying BRDF) [Nicodemus et al. 1977]. For suitably
opaque surfaces, this provides an accurate and efficient digital ap-
pearance model, and for objects with translucency it can be com-
plemented by additional terms that describe the non-local aspects
of appearance, such as sub-surface scattering. In any case, obtain-
ing accurate shape and spatially-varying BRDF (referred to as re-
flectance hereafter) is an essential ingredient of many appearance
scanning pipelines. Our goal is to create a system that acquires
these measurements with high accuracy and repeatability.

An alternative approach to the one pursued here would be to employ
a less structured appearance model, such as a “reflectance field”
that is defined on coarsely-approximated geometry [Debevec et al.

2000]. However, estimating accurate geometry allows more effi-
cient object scanning in many cases. It allows one to predict the
motion and deformation of sharp specular highlights, for example,
without having to collect dense angular measurements everywhere
on the surface. Additionally, recovering explicit models of the ge-
ometry and reflectance enables post-processing, such as animating
the object or editing and analyzing its material properties, that is
difficult or impossible with alternative representations.

Previously proposed systems for measuring 3D shape and re-
flectance suffer from a number of drawbacks that have limited the
development of practical scanners. First, many systems make re-
strictive assumptions about the BRDF, and these lead to errors in
the output that are difficult to detect and characterize. Second, sys-
tems often use separate sensors to measure reflectance and geome-
try, and this leads to a difficult and error-prone 2D-3D data registra-
tion problem that can cause a reduction in accuracy. Third, most ex-
isting systems involve a series of fragile calibration steps that limit
usability and degrade the quality of the recovered model. Finally,
previous designs often fail to correctly account for global illumi-
nation, such as interreflections and sub-surface scattering, which
contaminate measurements of the desired local surface reflectance.

We address many of these issues with a simple optical setup and
processing pipeline that build on recent advancements in multiview
stereo, phase-based profilometry, and light descattering. The ba-
sic building block in our design is a digital camera and a high-
frequency, spatially-modulated sinusoidal light source aligned to
share a common focal point and optical axis. Using at least two of
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these assemblies, it is straightforward to
capture a sequence of images of an ob-
ject from different viewpoints under time-
varying sinusoidal illumination originating
from different locations. Through two
technical contributions—a new active mul-
tiview stereo algorithm and a theoretical

analysis of light descattering—we show how these images allow
recovering precise high-resolution estimates of object shape and
local surface reflectance. Additionally, we show how several scans
captured with our system can be aligned and merged into a single
watertight model using existing techniques.

We analyze several models acquired by our scanner, including those
of objects with challenging material properties such as very shiny
spatially-varying surface reflectance. We show that even in these
difficult cases, the measured geometry is accurate to within 50 mi-
crons at 200 micron resolution, and the BRDF measurements agree
with reference data to within 5.5% over a wide range of angular
configurations. Finally, we show that images rendered using the ac-
quired models agree very well with reference images at view and
light positions that are far away from those initially measured. We
conclude with a discussion of the larger design space of scanners
that may benefit from these coaxial devices.

2 Design Rationale and Prior Work

Our system builds on several recent advances in multiview stereo,
unstructured space-time stereo, phase-based profilometry, and opti-
cal descattering; and its design reflects three main considerations.



Simultaneous recovery of geometry and reflectance. Measur-
ing surface reflectance is inherently an optical task, and it requires
images of an object whose geometry is known. In many prior sys-
tems, this involves a two-step process whereby the geometry of the
object is estimated prior to reflectometry. Examples include the
use of laser-stripe triangulation [Sato et al. 1997; Goesele et al.
2004], structured lighting [Debevec et al. 2000; Weyrich et al.
2006], transmissive (CT) scanning [Lensch et al. 2003], shape-
from-silhouettes [Müller et al. 2005], and human assisted pho-
togrammetric modeling [Yu et al. 1999]. In all of these two-step
approaches, the images that are used for reflectometry must be reg-
istered to the 3D model, and although this 2D-3D alignment prob-
lem has been studied [Lensch et al. 2001], it remains difficult in
practice and invariably leads to corrupted reflectance measurements
near misalignments.

To overcome this limitation, we seek a system that incorporates a
unified optical design in which range and reflectance are measured
in the same raster grid. Although we still must register 3D scans to
one another, we avoid the more difficult 2D-3D registration prob-
lem, thereby improving final model quality.

Support for a wide range of materials and shapes. We seek a sys-
tem that provides unbiased measurements of shape and reflectance.
In particular, we avoid methods based on photometric stereo, which
jointly estimate local surface orientation (surface normals) along
with reflectance parameters [Georghiades 2003; Goldman et al.
2005] since these are inherently limited by the degree to which a
surface obeys the chosen analytic reflectance model. For example,
recent systems based on robust Lambertian photometric stereo can
provide very accurate reconstructions in some cases [Hernández
et al. 2008], but as the object reflectance deviates from the Lam-
bertian model, the errors in the resulting geometry (and any subse-
quent reflectance samples) become hard to characterize and predict.
Even non-parametric methods require certain properties in the un-
derlying reflectance such as isotropy [Alldrin et al. 2008] and sym-
metry [Holroyd et al. 2008; Ma et al. 2007; Ghosh et al. 2009].
Finally, few attempts have been made to compute full 360◦ models
from 2.5D height height fields acquired with these techniques [Es-
teban et al. 2008].

Instead, we build on advances in phase-based profilometry [Srini-
vasan et al. 1985] (also referred to as phase mapping or interferom-
etry) and space-time stereo [Zhang et al. 2003; Davis et al. 2005],
that have been shown to provide accurate geometry for a wide vari-
ety of materials. In particular, we exploit the observation that high
frequency sinusoidal illumination can be used to separate local re-
flections from non-local ones [Nayar et al. 2006] and simultane-
ously allow the recovery of accurate geometry for objects exhibit-
ing translucency and diffuse interreflections [Chen et al. 2007; Chen
et al. 2008].

Note that while our system prioritizes generality, it also prioritizes
practicality, and it does both within the confines of an appearance
model comprised of shape and reflectance. It is not intended for
objects with extremely low albedo, perfect mirror-like reflectance,
or refraction. (These are each better handled by alternative systems;
see [Ihrke et al. 2008].)

Simple and stable calibration. A major barrier to achieving an ac-
curate scanner that is practical is the effort and expertise required
to calibrate it before each scan. This typically includes estimating
the position, orientation, and internal properties of the cameras and
sources, as well as their radiometric sensitivity and output. It often
requires an expert to frequently repeat calibration routines that in-
volve geometric and radiometric calibration targets such as checker-
board patterns, mirrored spheres, and diffuse reflectance standards.

Figure 1: Our prototype scanner consists of two identical coax-
ial camera/lightsource assemblies (left) mounted to the arms of a
four-axis spherical gantry (right). The coaxial device mounted on
the left arm views the object through a mirror (green) to achieve
roughly equal stand-off distances between the two arms. The light
is provided by tungsten-halogen sources with computer-controlled
mechanical shutters (white boxes in image on right).

In contrast, we seek a system with off-line geometric and radiomet-
ric calibration requirements that are manageable for a non-expert,
and that rarely (if ever) need to be repeated. We do this by leverag-
ing recent developments in feature-based camera calibration algo-
rithms [Brown and Lowe 2005; Furukawa and Ponce 2008] and by
using devices that reduce the number of calibration parameters and
the difficulty of estimating them.

3 System Overview

The basic building block of our system, which is depicted in Fig-
ure 1, is a coaxial camera/lightsource assembly. This produces
dynamically-modulated lighting by coupling a stable source with
a translating glass slide, and it effectively co-locates this modulated
lighting with a camera through a beamsplitter. Our prototype sys-
tem uses two of these assemblies, and it achieves view and lighting
variation using a spherical gantry.

This design is the result of a unified consideration of the three
desiderata of the previous section. Each of the two basic
components—the slide-based high-frequency sinusoidal lighting
and the coaxial camera/lightsource pairs—addresses them in multi-
ple ways.

Coaxial cameras and illumination. Coaxial cameras and light
sources have been previously used for related applications includ-
ing 3D reconstruction [Lu and Little 1999; Zickler et al. 2002;
Zhang and Nayar 2006] and measuring BRDFs and general re-
flectance fields [Han and Perlin 2003; Garg et al. 2006; Ghosh et al.
2007]. We use them in our design for a number of reasons.

First, these assemblies simplify calibration by allowing us to lever-
age recent feature-based camera calibration algorithms [Brown and
Lowe 2005; Furukawa and Ponce 2008] to automatically calibrate
the geometric aspects of both the cameras and the light sources.
Once the assembly is carefully manufactured, the sub-pixel camera
calibration information that is obtained by these automatic methods
gives the pose of the accompanying source without any additional
effort. In particular, this eliminates the need for mirrored spheres
or other scene fiducials of known size and position [Lensch et al.
2003].



Second, by using two of these coaxial devices, we can easily cap-
ture a reciprocal image pair in which the center of projection of
the camera and source are swapped [Zickler et al. 2002]. Recip-
rocal images allow us to enhance feature-based camera calibration
for surfaces with strong view-dependent specular effects [Zickler
2006]. Perhaps more importantly, surface locations occluded in
one camera view correspond to shadowed locations in the recip-
rocal view. Therefore, these pairs allow one to reason about vis-
ibility before any information is known about the geometry, and
allows robustly recovering per-pixel geometry through multi-view
triangulation. Another important property of reciprocal images is
that they provide a constraint on the surface normal by virtue of
the reciprocity of BRDFs. However, we choose not to incorporate
this constraint in our system due to its sensitivity to the radiometric
properties of the device and the difficulty of applying it near high-
frequency variation in the reflectance such as edges in the material
albedo [Guillemaut et al. 2004].

Third and finally, unlike many designs, our use of coaxial devices
and descattering allows measuring surface backscattering, which
can be an important attribute of appearance.

Modulated lighting with a glass slide. While it is common to use
digital projectors for modulated lighting, we instead create it by
coupling a fixed stable light source with a moving glass slide. This
avoids the many non-idealities associated with projectors, such as
vibration, shallow depth of field, limited resolution, light leakage,
screen door effects, and brightness instability (see [Zhang and Na-
yar 2006]), and it improves the long-term stability of any radiomet-
ric calibration.

An important attribute of our system is that it extracts both shape
and reflectance information from lighting that is modulated by a
single high-frequency sinusoid, which can be positioned very pre-
cisely and repeatably by a translation stage. This is enabled by two
key technical contributions of this paper:

1. Multiview phase mapping. Like many phase mapping sys-
tems, we use shifted sinusoidal illumination patterns to esti-
mate the phase offset at a dense set of surface locations in a
reference camera [Srinivasan et al. 1985]. This phase infor-
mation yields surface depth, but only up to a discrete choice
(a 2π ambiguity). One way to resolve this ambiguity is to
project a sequence of lower-frequency patterns, but achiev-
ing this “phase unwrapping” reliably often requires capturing
many images or, for highly scattering materials, using cross
polarization [Chen et al. 2007] that reduces signal strength; or
more sophisticated lighting patterns [Chen et al. 2008] that are
hard to implement without a projector. Instead, we leverage
the fact that we collect images from multiple viewpoints, and
we introduce a technique for resolving the phase ambiguity
through triangulation. A quantitative analysis of our results
shows that this method provides depth with sub-millimeter
precision (often tens of microns) for a wide variety of objects.

2. Local reflectance from sinusoidal illumination. As shown in
previous work [Nayar et al. 2006], shifted sinusoidal illumi-
nation allows separating local or “direct” reflections from sub-
surface scattering, diffuse interreflections, and other non-local
“indirect” effects; and it is tempting to interpret the resulting
direct component as samples of a BRDF at the implied scale.
We show that this interpretation is correct only after applying
a significant correction factor that depends on the local light
and view directions, as well as the intrinsic and extrinsic pa-
rameters of the measurement devices. A detailed derivation of
this correction factor is provided in an associated technical re-
port [Holroyd et al. 2010], and it is validated experimentally.

The remaining sections provide a detailed account of our setup and
measurement process before presenting an evaluation of our proto-
type scanner.

4 Experimental Setup

Figure 1 shows two photographs of our prototype coaxial assem-
blies on the left and our complete scanner on the right. Each assem-
bly consists of a QImaging Retiga 4000R 12-bit monochrome cam-
era with 1024x1024 resolution coupled to a Varispec tunable LCD
RGB filter and a 60mm Nikkon macro lens. Using an external color
filter avoids mosaicing artifacts, but requires taking a separate ex-
posure for each color band. The light source is a tungsten-halogen
fiber illuminator connected through a randomized light guide. Each
illuminator contains a computer-controlled mechanical shutter that
allows interrupting the flow of light onto the guide. The incom-
ing light path is focused onto a glass slide using a custom focusing
assembly, and this slide is located at the focal plane of a 50mm
Nikkon lens.1 The slide is affixed to a translation stage that steps
within the focal plane in 3 micron increments which are repeatable
to within 3 microns.

The camera and light paths are aligned using a four-inch pellicle
beamsplitter. We experimented with several alternatives and found
that a large pellicle beamsplitter produced the cleanest images un-
der co-axial lighting (see the top left image in Figure 3). On the
downside, these attract dust and produce spectral artifacts in the
emitted light due to interference at the membrane that must be ac-
counted for during radiometric calibration. We estimate that the
camera and light paths diverge by no more than 0.05◦ over our
working volume.

One assembly is mounted to each arm of a computer-controlled
four-axis spherical gantry (Figure 1 right) which allows sampling
the full sphere of directions to within 0.1 degree of precision around
a working volume 25cm in diameter. The stand-off distance to each
device is roughly 1m. For this working volume and camera resolu-
tion, we sample the object surface at 0.2mm intervals.

4.1 Calibration

Geometric calibration. We used Zhang’s chart-based algo-
rithm [2000] to estimate the intrinsic parameters of each camera:
focal length, principal point, and radial and tangential distortion
coefficients. The gantry arm angles are then used to estimate the
position of each coaxial device to within about 5 pixel reprojection
error over the working volume. This rough calibration is improved
for each scan using an automatic feature-based refinement proce-
dure described in Section 5.3. Note that no further steps must be
taken to estimate the positions of the light sources since these are
co-located with the cameras. We found this rough geometric cal-
ibration to be stable and did not need to readjust the alignment of
our coaxial assemblies even after months of use.

Radiometric calibration. In order to convert the response at each
camera pixel into a measurement of the BRDF, we must know the
camera sensitivity and light output, both of which depend on wave-
length and position on the respective focal plane. We represent
camera sensitivity using three scalar functions, one for each color
band, defined over the image plane: σ(u), u ∈ R2. We represent
light emission using a scalar function that is attached to a coor-
dinate system associated with the coaxial device. This function is
defined over a 3D volume that tightly encloses the working volume,
and we denote it by l(x), x ∈ R3. We opt to represent this as a

1Although the same lens would ideally be used along both the camera
and light path, physical constraints of our setup prevented this.
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Figure 2: Illustration of our procedure for estimating the camera
sensitivity and light emission functions.

3D function instead of a 2D function on the source focal plane be-
cause the beamsplitter produces spectral variations in the emitted
light field that are difficult to represent with a simple point-source
model. One consequence of this choice is that the inverse-square
effect of the light source is absorbed into l(x).

We first estimate the camera sensitivity functions for each de-
vice following the procedure illustrated in Figure 2. A planar
Spectralon c© target is held fixed relative to one of the coaxial de-
vices (red) which provides the only source of illumination in the
scene — the glass slide is removed during this procedure. The other
device (green) records several images at different viewpoints. Un-
der the assumption that the board is a perfectly diffuse reflector, the
response at a single pixel I(u) can be written as

I(u) = σ(u)l(x)(n̂ · ω̂l), (1)

where the 1/r2l term is absorbed into the 3D function l(x) as
mentioned above. Each point in a discrete set of points on
the board induces a linear constraint on the sensitivity function:
σ(u1)/I(u1) − σ(u2)/I(u2) = 0. Because we expect σ(u) to
be smooth, we model it as a 10th-order bivariate polynomial whose
coefficients are estimated by solving a constrained linear system of
the form Ax = 0, ‖x‖ = 1.

Once we have estimated the camera sensitivity functions we hold
them fixed and estimate the light emission functions l(x). Note that
dividing I(u1) by σ(u1) and (n̂ · ω̂l) gives a value of l(x) at the
corresponding 3D position. We record a dense set of measurements
at different locations and orientations throughout the working vol-
ume and estimate the value of l(x) at the vertices of a volumetric
grid by convolving these scattered measurements with a wide Gaus-
sian kernel. We used a 128 × 128 × 128 grid (which corresponds
to 1 mm3 voxels) and a standard deviation of 20.0mm.

We performed random sampling cross validation to evaluate the ac-
curacy of our calibration. We converted the pixel responses into
values of the BRDF (presumed to be perfectly diffuse) at a set of
3D positions uniformly sampled over the working volume and over
orientations of up to 80◦ that were not used for training. For both
devices, 95% of the values predicted by our model were within
2% of the correct values and 99% were within 5%. Note that our
calibration only allows measuring the BRDF up to some unknown
global scale. To compute absolute values one would need to mea-
sure the power of the light source which we did not do.

5 Measurement and Processing Pipeline

We acquire multiple 2.5D scans of a target object which are sub-
sequently aligned and merged into a single 3D model. The final
model is represented as a watertight triangle mesh with a variable-
length list of BRDF measurements (local light direction, local view
direction, and RGB vector) at each vertex. This section describes
the main steps in our pipeline in the order they are performed.

1. We acquire a set of images comprising one scan (Section 5.1).

I1
0→0(u) I1

1→0(u)

I1
0→1(u) I1

1→1(u)

Figure 3: Some of the raw images acquired in one scan. The yellow
bordered images are captured under co-axial lighting and the blue
bordered images correspond to a reciprocal image pair. Note the
high-frequency sinusoidal illumination.

2. From these images, we perform descattering and compute the
apparent sinusoid phase and amplitude at each pixel (Sec-
tion 5.2).

3. We apply a feature-based pose refinement algorithm that re-
covers the positions of the cameras and light sources to within
sub-pixel accuracy (Section 5.3).

4. We obtain a dense depth map for each scan using a new mul-
tiview phase mapping algorithm (Section 5.4).

5. We align and merge multiple depth maps into a single water-
tight model (Section 5.5).

6. Finally, we extract BRDF samples for each vertex in the wa-
tertight mesh by applying appropriate radiometric correction
factors (Section 5.6).

5.1 Raw Images in One Scan

Here we describe the images that are acquired in a single 2.5D scan.
The target object is positioned on a small platform in the center of
the working volume, and one of the gantry arms is selected as the
reference frame and held fixed. The free arm is moved toN distinct
auxiliary frames, and for each of these auxiliary frames we collect
four image stacks corresponding to the four camera/source combi-
nations (two coaxial images and two reciprocal images). Each stack
consists of M images recorded at different positions of the active
source’s translation stage (i.e., different phase shifts of the projected
sine wave).

Some of the images from one scan of the bird model are shown
in Figure 3. We denote images by Ik

i→j(u), where i ∈ [0 . . . N ]
indexes the light source position, j ∈ [0 . . . N ] indexes the camera
position, and k ∈ [1 . . .M ] indexes the position within a stack.
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Figure 4: Amplitude maps computed from the stacks along the top
row in Figure 3. Note that the strong haze in the coaxial image
has been removed. Also, the slight color differences are due to the
varying radiometric properties of the light sources and cameras.

For index i (or j), the value 0 is used to represent cases where the
source (or camera) are at the reference frame.

In images where i = j the object is captured under co-axial illu-
mination, and these images contain measurements of the surface
BRDFs at backscattering configurations. As shown in Figure 3, the
sinusoidal pattern is not distorted by the scene geometry in these
cases, and the images are free of cast shadows. These images ex-
hibit a strong haze caused by reflections from dust on the beam-
splitter, but as described below and shown in Figure 4, this haze is
conveniently removed by optical descattering.

Images where i 6= j comprise reciprocal pairs in which i and j
are swapped: (Ii→j , Ij→i). These play an important role in our
pose refinement (Section 5.3) and multiview stereo algorithm (Sec-
tion 5.4).

5.2 Amplitude and Phase Maps

Translations of the glass slide induce time-varying sinusoidal irra-
diance at the object’s surface. Recent work has demonstrated that
for many scenes the response measured at one camera pixel in this
scenario will also be a sinusoid, but with modified amplitude, DC
offset, and phase. The amplitude of the sinusoid is proportional
to the amount of light reflected directly from the surface (“local
reflections”) and the DC offset includes the effects of sub-surface
scattering and diffuse interreflections (“non-local reflections”) [Na-
yar et al. 2006; Chen et al. 2007; Gupta et al. 2009]. The underlying
assumption is that the non-local contributions to the image are con-
stant over the set of phase shifts, and we discuss the ramifications
of this important assumption in Section 7.

We model the response at one pixel as: Ik(u) = α(u) cos(γ tk +
φ(u)) + β(u), where α is the amplitude of the cosine, tk is the
displacement of the translation stage in the kth image, γ is the ob-
served frequency with respect to tk, φ is the phase offset, and β
is the DC offset. The frequency γ is equal to the product of the
spatial frequency of the sine wave printed on the glass slide f and
(tk+1 − tk), the distance the slide is translated between images.

The values of interest are the amplitude α, which is connected to
the surface BRDF, and the phase offset φ, which gives information
about the scene depth along each ray leaving the camera. Following
Chen et al. [2007], we compute these as the least squares solution

φ1→0(u) V1→0(u)

Figure 5: Phase map and visibility map computed from the image
stack in the top right corner in Figure 3. The cosine of the phase at
each pixel is shown as a grayscale image.

of the following system:2664
cos(γ t1) − sin(γ t1) 1

...

cos(γ tM ) − sin(γ tM ) 1

3775
24c1c2
c3

35 =

2664
I1(u)

...

IM (u)

3775 (2)

α(u) =
q
c21 + c22 φ(u) = tan−1(c2/c1) β(u) = c3.

Note that the pseudo-inverse of the coefficient matrix can be pre-
computed as it depends only on γ and tk which are both known
and held fixed. Therefore, computing these maps is very fast and
is done for each color channel independently. We retain a single
phase offset at each pixel by averaging these three values.

Figure 4 shows the α(u) computed from the image stacks along
the top row in Figure 3. Note that the sinusoidal pattern has been
removed along with diffuse interreflections (most strikingly in the
image captured under co-axial lighting). However, a significant
correction factor must be applied before these images can be in-
terpreted as BRDF measurements (Section 5.6). Figure 5 shows the
phase φ(u) computed from the image stack in the top right cor-
ner of Figure 3. We also compute a binary visibility map V (u) by
applying a threshold to α(u). Values below 1% of the camera’s
dynamic range are assumed to be in shadow. By identifying which
pixels are in shadow we have also identified which pixels are not
visible in the co-located camera [Zickler et al. 2002]. We leverage
this information in our multiview stereo algorithm (Section 5.4).

The frequency of the sine wave printed on the glass slide, f , is
an important parameter. We chose a value of f = 10 cycles/mm
because experimentally, we found it to yield reflectance measure-
ments at a scale suitable for a variety of common objects — we
discuss this parameter further in Section 5.6 when we describe our
procedure for recovering measurements of the BRDF from α(u).
The displacements tk should be chosen so that the system in Equa-
tion 2 is well-posed. Although this requires only three measure-
ments in theory, we found that translating the glass slide by 0.3/f
(0.3 times the period) and capturing a total of M = 10 images
gives stable and accurate estimates.

5.3 Pose Refinement

In order to realize the potential resolution of our scanner, the refer-
ence and auxiliary locations in each scan must be known to within
sub-pixel accuracy. Although standard calibration algorithms pro-
vide this level of accuracy, they require placing precise fiducials
in the scene such as a planar checkerboard with known dimen-
sions [Zhang 2000]. We achieve a more automated solution by us-
ing a feature-based pose refinement algorithm to improve the rough



calibration derived from the gantry configuration. The key chal-
lenge is identifying corresponding scene points in images captured
at different viewpoints. Fortunately, the fact that we acquire recip-
rocal image pairs allows reliably locating stable image features even
for objects with strong view-dependent appearance that lack “intrin-
sic” features [Zickler 2006] — note that specular highlights remain
fixed to the object surface in a reciprocal pair. We locate corners in
α(u) using a Harris detector [Harris and Stephens 1988] along with
specular highlights by applying a simple intensity threshold. We
then match corner features between all pairs of images and match
specular features between reciprocal images by simply eliminating
false matches using the epipolar constraints provided by the rough
calibration. In some cases, we added additional black and white
corners to the scene to increase the number of available features.
However, unlike traditional calibration targets, the 3D locations of
these corners is not assumed to be known. Figure 6 shows a typical
set of features extracted from images of the birdmodel. We found
this simple procedure to be very reliable and we did not need to use
more extensive feature vector matching [Brown and Lowe 2005] or
employ a statistical outlier rejection method. Finally, we use the
Sparse Bundle Adjustment (SBA) package developed by Lourakis
et al. [2004] to jointly optimize the 3D locations of the features
and camera positions along with their focal lengths and principal
points. We observed final reprojection accuracy of approximately
0.3 pixels for all of the models we scanned.

5.4 Multiview Phase Mapping

The next step in our pipeline is to compute a dense depth map in the
reference frame of each scan using the phase maps and visibility
maps described in Section 5.2. Traditional phase-based profilome-
try methods use the phase shift observed at each pixel in conjunc-
tion with the pose of the light source to recover the depth up to a
2π ambiguity [Srinivasan et al. 1985]. This ambiguity is resolved
through a process called phase unwrapping, either by varying the
frequency of the modulated light or with some heuristic such as
favoring locally smooth surfaces [Strand and Taxt 1999].

We take a different approach that does not rely on knowing the pose
of the light source, and we resolve the 2π ambiguity by considering
information across multiple viewpoints: we search along the ray
through each pixel in the reference camera to locate a 3D position
that gives consistent phase information over the set of views. This

Figure 6: Feature-based pose refinement. Each column shows a
reciprocal image pair, with reference view in the top row. By de-
tecting intrinsic texture features (white) and reciprocal specularity
features (cyan), the geometric calibration is automatically refined
from an average reprojection error of 5 pixels to 0.3 pixels.

Figure 7: The search for depth correspondences becomes more sta-
ble with more auxiliary frames. We recommend N ≥ 7 in practice.

avoids the need to vary the frequency of the modulated light [Chen
et al. 2007] or use more sophisticated lighting patterns [Chen et al.
2008], thereby simplifying the overall design. Also, our multiview
matching process benefits from the fact that visibility information
is available before anything is known about the surface by virtue
of having captured reciprocal image pairs [Zickler et al. 2002].
This eliminates the need for reasoning about scene visibility during
matching, which is a significant source of complexity in standard
multiview stereo [Seitz et al. 2006].

Our approach is related to space-time stereo [Zhang et al. 2003;
Davis et al. 2005] in that we deviate from conventional phase-based
profilometry by not assuming knowledge of the light source pose.
Like space-time stereo, we instead treat phase information as “tex-
ture” projected into the scene to help establish stereo correspon-
dence. However, unlike conventional space-time stereo, we use si-
nusoidal illumination, and this allows reliably measuring the geom-
etry of objects in the presence of scene interreflections and subsur-
face scattering [Nayar et al. 2006; Chen et al. 2007].

Let (ui) = Πi(x) denote the projection of a 3D point x into the
image plane of the ith camera. At each source location i with an
unoccluded view of x, two conditions must be satisfied for x to lie
on the object surface:

φ0→0(u0) = φ0→i(ui) φi→0(u0) = φi→i(ui).

This corresponds to observing the same phase offset in the temporal
response measured at different views when the object is illuminated
by the same light source. We treat phase offsets as unit-length vec-
tors in the plane and measure the agreement between two phases as
the dot product of their respective vectors. This allows writing an
objective function over points x along each ray

ε(x) =

PN
i=1 piVi→0(u0)PN
i=1 Vi→0(u0)

, (3)

where

pi =
(φ0→0(u0) · φ0→i(ui)) +(φi→0(u0) · φi→i(ui))

2
.

The expression (φa(x) · φb(x)) denotes the inner product of the
two vectors associated with these phase values. Note that ε(x) is
bounded between −1 and 1 as long as the denominator is greater
than 0. As expected, increasing the number of auxiliary frames N



causes the function ε(x) to become more peaked around the cor-
rect depth as false matches are eliminated. This is illustrated in the
graphs in Figure 7 which plot ε(x) as a function of the depth at
one of the pixels in the reference view in Figure 3 over a 3cm in-
terval that straddles the surface. We compute the position x that
maximizes ε(x) in two steps. First, we compute values of ε(x) at
0.1mm increments across the working volume and locate the sam-
ple with the largest value. Second, we fit a quadratic function to
the 3 samples of ε(x) surrounding this maximum and output the
depth that maximizes this quadratic. We have found that N ≥ 7 is
sufficient to recover accurate geometry (Section 6).

We record depth values only at pixels that are visible in at least 3
views and for which ε(x) > 0.5. In order to reject outliers, we
embed the depth map in a graph whereby pixels are represented as
nodes and edges connect neighboring pixels whose depth values are
within 1.5mm (0.5% of the working volume). We then retain the
largest connected component. This removes unwanted elements of
the background that are often captured in the phase maps (Figure 5).

5.5 Alignment and Merging

We use well established methods for aligning multiple depth
maps to one another and merging them into a single watertight
model. Specifically, we use the Iterative Closest Points (ICP) al-
gorithm [Zhang 1994] followed by the Poisson surface reconstruc-
tion algorithm of Kazhdan et al. [2006]. At this point we have the
original depth maps and their corresponding reference and auxiliary
images registered to the merged model. The final step is extracting
BRDF measurements.

5.6 Recovering BRDF Measurements

A significant advantage of using sinusoidal illumination is that the
amplitude maps αi→j(u) carry information about the local re-
flectance at the measurement scale of the camera and projected sine
wave, even when certain non-local effects, such as diffuse inter-
reflections, are present in the scene [Nayar et al. 2006]. It makes
sense, then, that these amplitude maps can be used to obtain sam-
ples of the BRDF. The remainder of this section describes a signifi-
cant correction factor that must be applied when relating amplitudes
to BRDF values.

Amplitude loss. We have derived a closed-form expression for the
amplitude of the time-varying sinusoid measured at a single cam-
era pixel imaging an opaque surface under projected sinusoidal il-
lumination [Holroyd et al. 2010]. Figure 8 illustrates the geometric
setup and key notation used in our analysis. We briefly summarize
the main result here.

Let Asurf denote the portion of the scene that is imaged by a single
camera pixel Apixel. Under a pinhole camera model, the size and
shape of Asurf is determined by the orientation (n̂ · ω̂v) and dis-
tance rv , along with the dimensions of Apixel and the focal length
fc. Additionally, consider the image that Asurf forms on the focal
plane of the light source, Alight, which will depend as well on the
orientation (n̂ · ω̂l), distance rl, and focal length fl. Due to the
small extent of a single pixel, the regionAlight is well-approximated
by a parallelogram, as depicted in Figure 8, which is characterized
by the lengths of its sides, a and b, it’s orientation ξ relative to the
horizontal axis of the source focal plane, and it’s skew, which we
parameterize here by the signed distance c. We show in the techni-
cal report that the area of this parallelogram is equal to

ab = w2 (n̂ · ω̂l)r
2
cf

2
l cos3 ψc

(n̂ · ω̂v)r2l f
2
c cos3 ψl

, (4)

where w is the width of one camera pixel and ψl and ψc are the
angles made by the rays leaving the light and camera with their
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Figure 8: Top: Geometric setup and notation used in our analysis
of “amplitude loss”. Bottom: Measurements of the amplitude mea-
sured at one pixel as a camera moves towards the horizon with a
fixed overhead light in a direction perpendicular and parallel to the
projected sine wave, respectively. The measurements correspond to
images of a Spectralon board corrected to account for deviations
from a perfectly Lambertian reflector.

their respective optical axes (Figure 8). We further show that the
amplitude of the cosine measured at Apixel satisfies

α(u) ∝ l(x)σ(u)ρ(ω̂l, ω̂v)(n̂ · ω̂l)A
′, (5)

with

A′ = A sinc(af cos ξ) sinc(bf sin ξ + cf cos ξ). (6)

This result confirms that the values in α(u) are proportional to the
product of the surface irradiance under point lighting l(x)(n̂ · ω̂l)
(recall that 1/r2l is captured by l(x)), the amplitude of the projected
sinusoid A, the BRDF ρ(ω̂l, ω̂v), and the camera sensitivity func-
tion σ(u). However, it also predicts a less obvious effect we call
“amplitude loss” (Equation 6) whereby the measured response is
inversely proportional to the product of the pixel width w and the
frequency f of the source radiance patterns in addition to the rela-
tive distances between x and the camera and source. In words, if
either f or w increase (holding everything else fixed) the measured
amplitude will decrease at a rate predicted by the product of the
sinc functions in Equation 6 and eventually reach zero — this cor-
responds to the point at which the sine pattern is no longer visible
in the image. Similarly, as the camera approaches a grazing view
of the surface with the source held fixed overhead or the distance
rv increases then the measured amplitude will similarly decrease.
The graphs in Figure 8 confirm this effect and validate our ana-
lytic model. They show the amplitude measured at a camera pixel
as it moves toward the horizon (n̂ · ω̂v) → 0 while it’s up vec-
tor remains in the epipolar plane with a stationary overhead light
(n̂ · ω̂l) = 1. For this “in-plane” configuration, c = 0 and so the
parallelogram reduces to a rectangle. The two graphs correspond
to the sine wave being perpendicular and parallel to the plane of
motion, respectively. These graphs also include predictions by a
numerical simulation which agree with our analytic model exactly.
Note that this amplitude loss can be significant. In the case where
ξ = 0, a roughly 20% decrease is observed at an elevation angle of
60 degrees which falls off to roughly 90% at 80 degrees.

Based on this analysis, we harvest BRDF samples as follows. Each
vertex in the merged model is projected into the amplitude maps
αi→j(u) in which it is visible. No additional registration between
images and geometry is required because the depth maps and am-



plitude maps are both computed in the same raster grid, but we do
avoid samples near depth discontinuities (any pixel within 3 pix-
els of a change in depth ≥10 mm), since slight misalignments be-
tween the individual scans and the merged model may exist. To
convert these samples to BRDF values, we divide them by σ(u),
l(x), (n̂ · ω̂l), and the product of the sinc functions in Equation 6.
This produces BRDF measurements up to a single global scale fac-
tor that we do not attempt to estimate.

6 Results

In this section we analyze the accuracy of models acquired with our
scanner for several objects that exhibit a range of properties.

6.1 Geometry

We measured the geometric accuracy of our scanner by comparing
it to a high-end laser rangefinder operated by XYZRGB, Inc.2 This
laser scanner produces scans at 300 micron resolution with an accu-
racy of 20 microns. We scanned the first two objects shown in Fig-
ure 12 after first coating them in a removable diffuse powder. The
bird is ceramic and exhibits spatially-varying reflectance includ-
ing both very shiny glazed regions and diffuse unglazed regions.
The frog is made of painted wood and also exhibits spatial varia-
tion in both the material albedo and in the shape and strength of the
specular reflection.

Figure 9 shows individual scans and the final models acquired with
our scanner. We used ICP to align these models to the laser-scanned
reference and report the distance between each vertex and the near-
est point on the reference surface. The median error for the frog
model is ∼ 40 microns and the maximum error in any single scan
is 0.25mm. The median error for the bird model is ∼50 microns
and the maximum in any scan is 0.25mm. Figure 9 also demon-
strates the typical amount of coverage in one scan. Our data agrees
very well with the reference, although there are areas that contain
slight ringing artifacts (e.g., near the neck of the bird and on the
arm of the frog) due to deviations between our measurements and
the model expressed in Equation 2 as well as reprojection errors
that remain after pose refinement. However, note that these errors
never exceed more than 0.05mm and are typically on the order of
0.02mm. The right shoulder of the frog and the top of its hands
were not visible in any of the scans and were filled in during the
merging process so they deviate more substantially from the refer-
ence.

6.2 Reflectance

We measured the BRDFs of two types of spray paint after apply-
ing them to a planar board, removing the glass sinusoidal slides
from our co-axial assemblies, and using the gantry as a traditional
reflectometer. We compared this data to measurements obtained
using our scanner for the same planar sample and a curved sample.
Figure 10 shows comparisons along with the curved samples for
Valspar #66304 Aubergine Silk Interior Enamel (“red paint)” and
Valspar #66307 Lime Pearl Interior Enamel (“pearl paint”). The
two lobes correspond to an elevation angle in the light source of 20
degrees and 40 degrees, respectively, and densely sampled view di-
rections within the plane formed by the source and surface normal.
For both the planar and curved samples, we observed close agree-
ment with the reference data (within 5.5%) over this range of light
and view directions. We also measured the degree of reciprocity in
our data using the set of reciprocal images we acquire in each scan.
We observed a median error of 13% for the red paint and 15% for
the pearl paint — within individual scans these errors were roughly

2http://www.xyzrgb.com
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Figure 10: Polar plots of reflectance data acquired with our scan-
ner for two types of spray paint compared to reference measure-
ments. The curved samples are shown in the insets. The two lobes
in each graph show in-plane measurements of changing view eleva-
tion angle, for a fixed light elevation angle equal to 20 degrees and
40 degrees, respectively. Intensity is plotted relative to a standard
diffuse target.

10%. Although these errors are competitive with prior image-based
reflectometers [Marschner 1998; Dana et al. 1999], they were not
low enough to enable refining the surface normals as is done in
Helmholtz stereopsis [Zickler et al. 2002]. We discuss this point
further in Section 7.

6.3 Geometry and Reflectance

We also analyzed the accuracy of our scanner by fitting an analytic
spatially-varying BRDF to the models shown in Figure 12. This
allows rendering images at view and light positions that were not
initially sampled. The cat object is made of wood and has both
unfinished and polished areas as well as painted regions. For each
object, we acquired 6 scans with 7 auxiliary frames in each scan
chosen uniformly within a cone of 60 degrees around the reference
camera. This yields an average of 10 BRDF measurements per ver-
tex. With this number of measurements, important features of the
reflectance such as specular highlights will only be observed at a
relatively small number of vertices, especially for very shiny ob-
jects. Therefore, independently fitting a BRDF model to the data at
each vertex would give poor results. Building on prior work, we in-
stead model the spatially-varying reflectance as a low-dimensional
subspace spanned by a small set of “basis” BRDFs [Lensch et al.
2003; Goldman et al. 2005; Lawrence et al. 2006]. This allows shar-
ing reflectance data between different vertex locations (with poten-
tially different orientations) that cover the same material.

We first use the k-means algorithm to separate the surface into clus-
ters based on the diffuse albedo at each vertex (Figure 11 shows
the clusters for the cat model). We fit the parameters of a Cook-
Torrance BRDF [1981] to the reflectance data within each of these
clusters (tens of thousands of scattered BRDF measurements). Fi-
nally, at each vertex we estimate a diffuse color and set of convex
linear blending weights (partition of unity) over the specular terms
in these k Cook-Torrance BRDFs that give the best agreement with
the measurements. Figure 12 compares renderings to reference im-
ages at light and camera positions that are approximately 20 de-
grees away from the closest measured ones. The reference image is
the amplitude map for one auxiliary frame that was held out during
training. We observed very close agreement for all of these objects
over the entire range of view and light positions. The supplemen-
tal video includes animations of these models rotating under point
lighting. Note that achieving accurate smooth motion of specular
highlights over the object surface (e.g., in the bird model) would
require an infeasible amount of data with image-based methods that
rely on approximate geometry. With those methods, these features
would be improperly interpolated wherever the proxy geometry de-
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Figure 9: Error analysis of geometry acquired with our scanner for the frog and bird models. Comparisons are made to a reference
surface obtained by coating these objects in a diffuse powder and scanning them with a high-end laser rangefinder.

Figure 11: Material clusters computed for the cat model. A pho-
tograph is shown on the left next to false-color images showing the
coverage of the four clusters over the object.

viated from the true object surface resulting in “ghosting” artifacts.
The fact that we acquire very accurate geometry and reflectance
allows producing convincing smooth interpolations of these high-
frequency features from only 36 light positions.

6.4 Capture and Processing Times

Table 1 lists the number of individual scans we acquired for each
object along with capture and processing times. It requires roughly
7 minutes to collect the set of HDR images at each auxiliary frame
(Section 5.1), 30% of which is spent operating the translation stage
and mechanical shutters and positioning the gantry. The remaining
time could be significantly reduced by using more powerful light
sources. Computing the amplitude and phase maps along with per-
forming pose refinement for one scan with 7 auxiliary frames takes
approximately 5 minutes in addition to 10 − 30 minutes to esti-
mate depth maps. Alignment and merging multiple scans and re-
constructing BRDF samples requires an additional 50 minutes on
average.

7 Discussion and Future Work

We have demonstrated an acquisition setup and processing pipeline
for obtaining accurate high-resolution measurements of the 3D
shape and reflectance of opaque objects. This was enabled by
an optical design centered around a co-located camera and high
frequency spatially-modulated light source, as well as a new ac-
tive multiview stereo algorithm and a theoretical analysis of light

Model Scans Capture Time Processing Time Total
Bird 7 5.8 h 3.7 h 7.0 h
Frog 6 5.0 h 3.6 h 6.2 h
Cat 6 5.0 h 3.2 h 6.2 h

Table 1: Statistics for the results reported in the paper. A portion
of the capture and processing are done in parallel and so the total
is less than the sum of these parts.

descattering with sinusoidal illumination. We presented results that
show geometry captured with our system is accurate to within 50
microns of the true surface on average and agrees with reference
reflectance data to within 5.5%.

Our proposed system represents one point in the larger design space
of scanners that might use coaxial devices, and we anticipate future
systems with goals and requirements that are different from those
considered here such as scanning translucent objects. Additionally,
we believe this work could lead to new tools for appearance scan-
ning “in the field”. Co-axial camera and light source assemblies re-
duce the calibration burden significantly, because the position and
orientation of the light source does not need to be continually re-
calibrated. While we rely on a rough chart-based calibration of
our gantry, it is likely that this step could also be replaced by au-
tomatic feature-based techniques [Brown and Lowe 2005]. Thus,
future work might allow scanning outside a lab setting with rough
placement of multiple co-axial assemblies.

Another aspect of these illumination systems that deserves more
attention is defocus in the lightsource. Although we were able to
set the aperture on the light path to avoid artifacts due to a limited
depth of field, a proper analysis of defocus would allow using larger
apertures and decrease acquisition time. Some work was recently
published on this topic [Gupta et al. 2009].

We inherit limitations of the light descattering method we build
upon and point out that only diffuse interreflections are completely
removed by our system. Other interreflections could corrupt the
data, although we have found that they are often detectable either
as a high residual error in the solution to Equation 2 or as outliers
during the search for correspondences in our multiview stereo algo-
rithm.

Another weakness in our final design is the complexity of the ra-
diometric properties of the lightsource. Although the errors we re-
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Figure 12: Rendered images computed using models captured by our scanner compared to reference images. The chosen light and view
positions are approximately 20 degrees away from the closest measurement location. Note that we do not attempt to render shadows.



port are comparable to prior image-based reflectometry systems,
the lack of reciprocity in our measurements prevented us from re-
fining the surface normals using a method like Helmholtz stereop-
sis [Zickler et al. 2002]. Future research is warranted into alterna-
tive beamsplitters that minimize wavelength interference effects in
order to incorporate photometric constraints that would help further
improve the quality of the resulting models.

This work also indicates new directions of research in view plan-
ning, alignment and merging. The location of auxiliary frames
could be chosen adaptively, guided by an on-line reconstruction of
the shape and reflectance of the target surface. The fact that our
setup produces perfectly registered depth and BRDF maps opens
up new possibilities for alignment and merging techniques that con-
sider both of these components as opposed to focusing only on ge-
ometry.
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