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Abstract

Complex reflectance phenomena such as specular reflections confound
many vision problems since they produce image ‘features’ that do not cor-
respond directly to intrinsic surface properties such as shape and spectral
reflectance. A common approach to mitigate these effects is to explore func-
tions of an image that are invariant to these photometric events. In this paper
we describe a class of such invariants that result from exploiting color infor-
mation in images of dichromatic surfaces. These invariantsare derived from
illuminant-dependent ‘subspaces’ of RGB color space, and they enable the
application of Lambertian-based vision techniques to a broad class of spec-
ular, non-Lambertian scenes. Using implementations of recent algorithms
taken from the literature, we demonstrate the practical utility of these invari-
ants for a wide variety of applications, including stereo, shape from shading,
photometric stereo, material-based segmentation, and motion estimation.

1 Introduction

An image is the product of the shape, reflectance and illumination in a scene. For
many visual tasks, we require only a subset of this information, and we wish to
extract it in a manner that is insensitive to variations in the remaining ‘confounding’
scene properties. For 3D reconstruction, for example, we seek accurate estimates
of shape, and we design systems that are insensitive to variations in reflectance and
illumination.

One practical approach to these problems is to compute a function of the input
images that is invariant to confounding scene properties but is discriminative with
respect to desired scene information. A number of these invariants are described
in the literature, with the simplest example being a normalized-RGB image. For a
Lambertian scene, the normalized RGB color vector at each pixel depends on the
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spectral reflectance of the corresponding surface patch butnot its orientation with
respect to a light source. It is useful invariant for material-based segmentation.

Like normalized-RGB, most existing invariants seek to isolate information
about the material properties in a scene and are therefore designed to be invari-
ant to local illumination and viewing geometry. In contrast, this paper consid-
ers a class of invariants that deliberately preserve geometry information in a way
that is invariant to specular reflections. The proposed invariants provide direct
access to surface shape information through diffuse shading effects, and since dif-
fuse shading is often well approximated by the Lambertian model, they satisfy
the ‘constant-brightness assumption’ underlying most approaches to stereo recon-
struction and structure-from-motion. In addition, these invariants provide access
to surface normal information, which can be recovered usingLambertian-based
photometric reconstruction methods.

The idea underlying the proposed invariants can be interpreted geometrically.
When the illuminant color is known, and the reflectance of surfaces can be repre-
sented by a dichromatic model (Shafer, 1985), we can linearly transform the space
of RGB tristimulus vectors in a way that isolates specular reflection effects. Fol-
lowing the transformation, two sensor channels are free of these effects, and this
two-dimensional “color subspace” constitutes a specular invariant. Since this oper-
ation is linear, the diffuse shading information is preserved by the transformation,
and the invariant can be exploited photometrically. Also, the method places no re-
strictions on scene texture because the computation operates independently at each
image point. Finally, it only requires knowledge about the spectral content of scene
illumination and therefore makes no assumptions about the spatial distribution of
light sources.

This paper begins with the case of RGB images and singly-colored illumination
environments (Sect. 3), in which case the linear transformation can be interpreted
as a transformation to an alternative, illuminant-dependent color space. We refer
to this space asSUV color space. In addition to providing a specular invariant, we
show that this color space leads naturally to a notion of generalized hue (Sect. 3.1).
We are not limited to this case, however, and a similar procedure can be shown to
handle mixed-illumination environments and hyper-spectral images (Sect. 4). To
assess the utility of the proposed invariants they are applied in number of visual
tasks, including binocular stereo, shape-from-shading, photometric stereo, optical
flow estimation, and segmentation (Sect. 5). In each of thesecases, when the source
colors are known, significant improvements result from computing the invariants
as a pre-process.
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2 Background and Related Work

As mentioned in the introduction, many existing invariantsseek to isolate informa-
tion about material properties in a scene. One such propertyis surface reflectance,
which is often described by the bi-directional reflectance distribution function, or
BRDF. Here, we consider the BRDF to be a five-dimensional function of wave-
length and imaging geometry, and we write itf(θ, λ), whereθ = (θi, φi, θr, φr)
encodes the directions of the incident and reflected radiance in the local coordi-
nate system. The simplest model of reflectance is the Lambertian model, accord-
ing to which the BRDF is a constant function of the imaging geometry, so that
f(θ, λ) = f(λ).

A number of photometric invariants have been proposed for Lambertian scenes.
Normalized-RGB,r-g chromaticity, and hue/saturation images are all examples
of representations that are independent ofdiffuse shading(the geometric relation
between a surface normal and the illumination direction) and depend only on the
spectral reflectance of the surface and the spectral power distribution (SPD) of the
illuminant. Additional invariants to either local geometry or spectral reflectance
can be computed from “reflectance ratios” when multiple images of a scene are
available (e.g., Wolff and Angelopoulou, 1994), or when thereflectance of the
surface is spatially coherent (e.g., Nayar and Bolle, 1996); an invariant to both
local geometry and illuminant spectral power distribution(SPD) can be computed
from a single image under appropriate imaging conditions (Hordley et al., 2002).

Invariants for more general scenes, including some scenes with specularities,
can be derived from the Shafer’s dichromatic model of reflectance (Shafer, 1985).
According to this model, the BRDF of the surface can be decomposed into two
additive components: the interface (specular) reflectanceand the body (diffuse)
reflectance. In theory, by separating an image according to these components, one
can obtain invariants to either diffuse or specular reflection effects.

According to the dichromatic model (with the neutral interface assumption (Lee
et al., 1990)), the observation of a surface point can be written

ek = σddk + σssk, (1)

whereσd andσs are geometric scale factors that depend on the material properties
and the local view and illumination geometry (θ), and

dk =

∫

E(λ)R(λ)Ck(λ)dλ (2)

sk =

∫

E(λ)Ck(λ)dλ. (3)
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Here,E(λ) is the SPD of the incident illumination,R(λ) is the spectral reflectance
of the surface, andCk(λ) is the spectral sensitivity of a linear sensor. A typical
RGB camera yields three such observations, and in this case we write eRGB =
{ek}k=R,G,B and defined = {dk}k=R,G,B ands = {sk}k=R,G,B to be thediffuse
color andspecular color, respectively. These are conventionally assumed to be
vectors of unit length.

There is practical utility in separating the diffuse and specular components in an
image. Since diffuse reflections are typically well-represented by the Lambertian
model, computing this separation as a pre-process allows the application of pow-
erful Lambertian-based vision algorithms to a variety of non-Lambertian scenes.
Materials that can be treated in this way include plant leaves, cloth, wood, and
the skin of fruits (Lee et al., 1990; Tominga and Wandell, 1989) in addition to a
large number of dielectrics (Healey, 1989). The dichromatic BRDF model has also
proven useful for a number of applications involving human skin (e.g., face recog-
nition (Blanz and Vetter, 2003), pigment-based analysis and synthesis (Tsumura
et al., 2003)), even though the reflectance of human skin is more accurately de-
scribed by the higher dimensional BSSRDF (Wann Jensen et al., 2001).

Despite its apparent utility, image analysis relying on explicit decomposition
of the diffuse and specular components is rare because the separation problem is
ill-posed. Classically, this separation problem is addressed using color histogram
analysis. As made clear by Eq. 1, in the RGB cube, a collectionof color vectors
from a dichromatic material under multiple view and illumination configurations
(i.e,., different values ofθ) lie in the dichromatic plane—the plane spanned by
the specular and diffuse colors,s andd (Shafer, 1985). These color vectors often
cluster in the shape of a ‘skewed-T’ in this plane, where the two limbs of the
skewed-T correspond to diffuse and specular reflections (Gershon, 1987; Klinker
et al., 1988). When these limbs are sufficiently distinct, the diffuse and source
vectors can be recovered, the two components can be separated, and the highlights
can be removed (Klinker et al., 1988).

While this method works well for homogeneous, dichromatic surfaces in the
noiseless case, there are two significant limitations that make it difficult to use in
practice. First, many surfaces are textured and violate thehomogeneous assump-
tion. Even when an imagedoescontain homogeneous surfaces, a non-trivial seg-
mentation process is required to identify them. Second, in order for the specular
and diffuse limbs of the skewed-T to be distinct, the specular lobe must be suffi-
ciently narrow (i.e., its angular support must be small relative to the curvature of the
surface.) Overcoming these restrictions generally requires additional assumptions
regarding spatial coherence on the surface (Nayar et al., 1997; Mallick et al., 2006;
Tan and Ikeuchi, 2003; Tan et al., 2006), specific parametricmodels for specular
reflectance (Ragheb and Hancock, 2001), or the use of multiple images that exploit
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additional cues such as polarization (Wolff and Boult, 1991; Nayar et al., 1997).
When the source color is known and constant over a scene, one can compute

specular invariants that are based on transformations of RGB color space and do
not require explicit specular/diffuse separation. This isthe approach taken in this
paper, and it is related to the work of Tan and Ikeuchi (2003),who obtain such a
specular invariant using a source-dependentnon-lineartransformation of the RGB
values at a pixel. The transformation is computed independently at each point, and
it yields a positive grayscale image that depends only on diffuse reflections (σd and
d) and is independent of specular effects (σs). Another non-linear transformation
that provides a similar invariant under white illuminationis proposed by Yoon and
Kweon (2006a). As an alternative, Park (2003) defines alinear transformation
that provides two channels that, while not pure invariants,are highly insensitive
to specular reflections. Following this transformation, the measurements in one
channel correspond predominantly to specular reflectance information, while the
other two are predominantly diffuse. Unlike these existingmethods, we present
true invariants that are computed linearly, and hence have the unique property of
preserving diffuse shading (and geometry) information.

The invariants presented in this paper assume knowledge of the scene illumi-
nants. In controlled environments, or when the illuminants do notchange signifi-
cantly over time, the required source color vectors can be measured by imaging a
calibration target. This is the approach taken in this paper. While not explored here,
it may be possible to apply these invariants in more uncontrolled environments by
combining them with existing image-based methods for illuminant estimation. For
scenes with sufficient color diversity, for example, one canestimated the illumi-
nant color using statistical knowledge of common sources and surfaces (Brainard
and Freeman, 1997; Finlayson, 1996; Finlayson et al., 2001;Lehmann and Palm,
2001; Rosenberg et al., 2001; Sapiro, 1999; Tominga and Wandell, 2002), and for
glossy scenes with only a small population of diffuse colors, it can be estimated
using methods based on the dichromatic model (Finlayson andSchaefer, 2001;
Lee, 1986; Tan et al., 2004; Tominga and Wandell, 1989). The accuracy of these
methods depends on the materials and illuminants that are present in a particular
scene, so in a generic setting, one would probably want to usesome combination
of them. For discussions, and for detailed evaluations of some of these algorithms,
the reader is referred to (Barnard et al., 2002a,b; Hordley and Finlayson, 2006).

Invariants for scenes with more general reflectance functions are developed by
Narasimhan et al. (2003). They describe a general model of reflectance consist-
ing of a product of a “material” term (Lambertian albedo, Fresnel coefficient, etc.)
and a “geometry” term that encodes the relationship betweenthe surface normal,
light-source, and viewing direction. Invariants to both ofthese terms can be com-
puted from either multiple observations of a single point under variable view or
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illumination, or from one observation of a spatially-coherent scene. The geometry
invariant is of particular interest, since it can be used directly for material-based
segmentation.

3 A Source-dependent Color Space

Suppose we treat RGB tristimulus values as points inR
3 and linearly transform the

RGB coordinate system by rotating the axes. Also, as shown inthe left of Fig. 1,
suppose this rotation is such that one of the axes (red, say) becomes aligned with
the direction of the effective RGB source vectors. This transformation defines a
new color space (see below), which we refer to as theSUV color space. It can
be defined according toeSUV = ReRGB using anyR ∈ SO(3) that satisfies
Rs = (0, 0, 1). From Eq. 1 it follows that tristimulus vectors in the transformed
space satisfy

eSUV =
(

d̄σd + s̄σs

)

, (4)

with
d̄ = Rd, and s̄ = Rs = (0, 0, 1).

Notice that according to our definition, the S channel is uniquely defined for a given
s (and thus a given illuminant SPD and sensor), while the U and Vchannels can be
arbitrarily chosen from the family of orthonormal bases forthe plane orthogonal to
s.

The SUV color space is asource-dependentcolor space because it depends
on the effective source color vector in the image. It has two important properties.
First, it separates the diffuse and specular reflection effects. The S channel encodes
the entire specular component and an unknown fraction of thediffuse component,
while the remaining two channels (U and V) are independent ofσs and are there-
fore specular invariants.

The second important property is that shading information is preserved by the
linear transformation. This is clear from Eq. 4. Ifr⊤i denotes theith row of R, the
values of the two diffuse channels satisfy

eU = r⊤1 dσd and eV = r⊤2 dσd. (5)

Assuming Lambertian diffuse reflectance,σd is a constant function of the local
view and illumination directions. In this case, the two-channel color vector

j = (eU , eV ) (6)

and its monochromatic relative

j =
√

e2U + e2V (7)
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Figure 1:Linear and non-linear transformations of the RGB cube. Three observations of
the same material yield color vectorse1, e2, e3 in the dichromatic plane spanned by the
source and diffuse colorss andd. Left: The SUV color space is defined by a rotation of
the RGB coordinate vectors. One axis is aligned with the source color, and two of three
resulting channels (UV) are invariant to specular reflections. Diffuse shading information
is preserved in these channels and can be used to recover shape. Additionally, the ratio
between the U and V channels representsgeneralized hue(ψ), which provides a second
invariant depending only on spectral reflectance. Right: Unlike SUV space, central projec-
tion used to computer-g chromaticity values and HSV-type color spaces does not preserve
diffuse shading information.

provide direct information about the normal vector on the surface, with the terms
r⊤2 d andr⊤3 d in Eq. 5 contributing to the effective Lambertian albedo values.

An example of the monochromatic specular invariant computed from SUV
space is shown in Fig, 2. In this example, the invariant was computed using the
source color determined by intersecting lines in chromaticity space (Lee, 1986),
and then transforming the image from RGB to SUV space on a pixel-by-pixel ba-
sis. (Here, we chooseR = RG(−θs)RB(φs) whereRk(θ) is a right-handed
rotation about thek-axis by angleθ, and(θs, φs) are the elevation and azimuthal
angles of the source vectors in the RGB coordinate system.) Comparing the result
to the original image, we see that specular effects are largely removed. Note that
the dichromatic model is violated when saturation occurs inthe input images, and
this causes errors at points of extreme brightness.

To see that SUV space is in fact a color space, recall that any linear color space
can be defined by a linear transformation of the color matching functions of an-
other. Such a transformation provides a mapping, say, between the ISO RGB color
space (with an identified white point) and the CIE XYZ color space, and it induces
a corresponding invertible linear mapping between the tristimulus vectors in the
two spaces. The rotation matrix described above is a coordinate transformation,
and it therefore defines a spectral space that is related to the original sensor space
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Figure 2: Input RGB image (left) and its corresponding specular invariant (right) com-
puted pixel-wise according to Eq. 7 using the known illuminant color.

through a corresponding linear transformation of the sensor sensitivity functions.
The important point is that following the transformation, the illuminant SPDE(λ)
integrates to black against two of the three transformed sensitivity functions. Thus,
by converting to SUV space, we are implicitly choosing a transformation of the
sensor such that the transformed sensitivitiesC̄k satisfy

∫

E(λ)C̄k(λ)dλ = 0, k = 1, 2.

It is clear that the same invariant properties could be obtained using any transfor-
mationT ∈ GL(3) satisfyingTs ∝ [0, 0, 1]⊤. The rotation matrix used in the
definition above is simply one practical choice.

Figure 1 compares the linear, source-dependent SUV color space with conven-
tional non-linear representations of color that also have invariant properties. Non-
linear representations such asr-g chromaticity and hue-saturation-value (HSV) are
computed by central projection. Each RGB vector in the RGB cube is intersected
with the planeR+G+B = c for some constantc. For example, hue and saturation
correspond to the distance and polar angle of these intersection points relative to
the cube diagonal, and chromaticity coordinates are derived from the intersection
of these color vectors with the planeR +G + B = 1. Non-linear representations
such as these are useful for recognition, for example, because they remove Lam-
bertian shading and shadow information. All positive scalar multiples ofeRGB

map to the same chromaticity coordinates and the same hue.
In contrast, the diffuse channels of SUV color spacepreserve diffuse reflec-

tion effectsencoded in the geometric scale factorσd. Since diffuse reflectance is
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Figure 3: Pseudo-colored generalized hue images, each computed froma single RGB
image of a globe under point source illumination having a distinct color. Generalized hue
is invariant to both specularities and diffuse shading, andis discriminative only with respect
to the spectral reflectance of the surface.

often well-approximated by the Lambertian model, this implies that the specular-
invariant image often: 1) satisfies the ‘constant-brightness assumption’ underlying
most stereo and structure-from-motion systems; and 2) provides access to surface
normal information through Lambertian-based photometricreconstruction meth-
ods such as shape-from-shading and photometric stereo. As aresult, by com-
puting these invariants as a pre-processing step, we can successfully apply many
Lambertian-based algorithms to a much broader class of specular, non-Lambertian
surfaces. Applications are explored in Sect. 5.

3.1 Generalized Hue

An additional invariant is created by taking the ratio between specular invariant
channels of Eq. 6. The result,

eU/eV = r⊤1 d/r⊤2 d,

is independent of both the diffuse and specular geometric scale factorsσd andσs.
As shown in Fig. 1, it is instructive to interpret this ratio as an angle and define

ψ = tan−1 (eU/eV ) = tan−1
(

r⊤1 d/r⊤2 d
)

, (8)

which we refer to asgeneralized hue. Notice thatψ reduces to the standard defini-
tion of hue when the source colors is white.

Examples of generalized hue images are shown in Fig. 3 for a specular globe
under two different source colors. In each case, the source vector is measured by
imaging a Macbeth color checker, this vector is used to compute a two-channel
subspace image as in Eq. 6, and the ratio between the two channels is used to
computeψ. Since it depends only ond, the value ofψ within each country on the
globe is constant and is invariant to both specular reflections and diffuse shading.
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4 Color Subspaces

If we again think of RGB vectors as points inR
3, the invariants defined in the previ-

ous section are seen to derive from a projection onto the two-dimensional subspace
orthogonal to the source vectors. (See left of Fig. 1.) Based on this interpreta-
tion, the invariants defined in Eqs. 6 and 7 can be generalizedto environments with
mixed illumination.

The invariants of the previous section are based on Eq. 1, which in turn is
premised on the assumption that the illuminant SPD is constant over the incident
hemisphere of a surface point (i.e., that the illuminant ‘color’ is the same in all
directions.) Notationally, ifL(ωi, λ) represents the incident radiance at a surface
point, whereωi = (θi, φi) ∈ Ω parameterizes the hemisphere of incident direc-
tions, the model requires that this input radiance field can be factored (with a slight
abuse of notation) asL(ω)E(λ). To relate this to the terms in Eq. 1, recall that
f(θ, λ) with θ = (θi, φi, θr, φr) denotes the BRDF of the surface, and write the
image formation equation as

ek =

∫

λ

∫

Ω
f(θ, λ)L(ωi, λ)Ck(λ) cos θi dωidλ. (9)

According to the dichromatic model, the BRDF of the surface can be decomposed
into additive diffuse and specular components, and each of these two components
can be factored into a univariate function of wavelength anda multivariate function
that depends on the imaging geometry. Finally, assuming aneutral interface, the
index of refraction on the surface is constant over the visible spectrum—a valid
assumption for many materials—so that the specular function of wavelength is
constant. This leads to the common expression for the BRDF ofa dichromatic
surface,

f(θ, λ) = fd(θ)R(λ) + ksfs(θ), (10)

whereks is a constant. Substituting into Eq. 9 yields the expressions

σd =

∫

Ω
fd(θ)L(ωi) cos θi dωi

σs = ks

∫

Ω
fs(θ)L(ωi) cos θi dωi

dk =

∫

R(λ)E(λ)Ck(λ) dλ

sk =

∫

E(λ)Ck(λ) dλ.
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To generalize the model, we consider a mixed-illumination environment whose
spectral content can be written in terms of a finite linear basis:

L(ωi, λ) =
N
∑

j=1

Lj(ωi)Ej(λ). (11)

An example withN = 2 is an office environment where the illumination in every
direction can be described as a mixture of daylight and fluorescent light. When the
input radiance field can be decomposed in this manner, the BRDF decomposition
of Eq. 10 yields

ek =

N
∑

j=1

σ
(j)
d d

(j)
k + σ(j)

s s
(j)
k , (12)

with

σ
(j)
d =

∫

Ω
fd(θ)Lj(ωi) cos θi dωi

σ(j)
s = ks

∫

Ω
fs(θ)Lj(ωi) cos θi dωi

d
(j)
k =

∫

R(λ)Ej(λ)Ck(λ) dλ

s
(j)
k =

∫

Ej(λ)Ck(λ) dλ.

Equation 12 suggests the existence of a specular invariant that is analogous
to the two-dimensional subspace defined of Eq. 6. In that section, the illumi-
nant color is assumed constant over the input hemisphere (which corresponds to
N = 1 in Eq. 12) and the specular invariant subspace computed froma three-
channel RGB image is two-dimensional. In general, given anM -channel (possi-
bly hyper-spectral) imagee and anN -dimensional spectral basis{Ej(λ)}j=1...N

for the incident illumination, there exists a subspace of dimension(M − N) that

is independent of allσ(j)
s and therefore invariant to specular reflections. Letting

{rl}l=1...(M−N) represent an orthonormal basis for this specular invariantsub-
space, thelth component (or ‘channel’) of the specular invariant image isgiven
by

jl = e⊤rl =
N
∑

j=1

σ
(j)
d r⊤l d(j). (13)

A specular invariant image with(M − N) channels defined by this equation can
be treated as an image, and as is the case for the U and V channels of Sect. 3,
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Figure 4: Left: For any mixture of two source SPDs, the specular invariant subspace is
one-dimensional. By projecting RGB color vectors onto thisline, a specular invariant can
still be computed. Right: Two frames of an RGB video of a scenewith mixed illumination
and the corresponding specular invariants. A blue light on the right and a yellow light on
the left induce complex specular effects. Projecting theseimages onto the one-dimensional
subspace orthogonal to the source color vectors in RGB spaceyields an invariant to spec-
ular reflections that preserves diffuse shading information.

the channel values in this image can assume negative values.It is often more
convenient to use the monochromatic specular invariant given by

jinv(M−N) =

(

M−N
∑

l=1

j2l

)

1
2

, (14)

where the subscriptjinv(u) is used to indicate that the grayscale invariant is derived
from au-dimensional specular invariant subspace. It is clear thatEqs. 6 and 7 are
specific examples of these invariants for the caseM = 3 andN = 1.

Since the vast majority of cameras record three (RGB) channels, another inter-
esting case to consider isM = 3, N = 2. An example is shown in Fig. 4, where
light comes from two sources with different SPDs. These SPDsinduce two source
color vectorss(1) ands(2) in RGB space (these are measured by imaging a calibra-
tion target), and by projecting the RGB color vectors of the input image onto the
one-dimensional subspace orthogonal to these vectors, we create an image that is
void of specular reflection effects.

4.1 Generalized Hue Under Mixed Illumination

The concept of generalized hue (Sect. 3.1) can also be extended to handle hyper-
spectral images and mixed illumination. In anM -channel image of a scene illu-
minated by a mixture ofN illuminant SPDs, generalized hue can be defined as a
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scalar function defined on the surface of an(M −N − 1)-dimensional unit sphere
embedded in the(M −N) dimensional diffuse space. The sphere may be param-
eterized by a vector of anglesΨ.

As with RGB sensors and single illuminants, this expanded notion of general-
ized hue is independent of both shading and specularity, andit is consistent in that
it reduces to the standard definition of hue for an RGB image acquired under white
light.

4.2 Practical Considerations

The quality of the specular invariant signal depends on the spectral characteristics
of the scene and the accuracy of the estimated source vectors. We discuss each
separately in this section.

Spectral Characteristics

When a surface is ‘white’, the spectral reflectance is a constant function of wave-
length, so thatR(λ) = R. In this case, since

dk = R

∫

E(λ)Ck(λ)dλ = Rsk,

it follows that the observed color vectore, the diffuse color vectord and the source
color vectors are collinear. For these surfaces, the invariant imagesj are zero;
and as a result, they provide no information about the surface, regardless of the
illuminant and sensors that are chosen. This is the same restriction noted by Klinker
et al. Klinker et al. (1988); when the diffuse and source colors are the same, there
is no way to distinguish between the two reflection components.

More generally, the utility of the proposed invariants relies on the angular sep-
aration between the observed color vectore and the source vectorss. When this
separation is small, the signal-to-noise ratio (SNR) in theinvariant image can be
prohibitively low. This is evident, for example, in the generalized hue image of
the globe in the bottom-right of Fig. 3, where the hue variation within the People’s
Republic of China is seen to be large.

Assuming independent, additive Gaussian noise with zero mean and variance
σ2 in each of the three channels of a color vectoreRGB , and assuming‖eRGB‖ ≤
1, the signal-to-noise ratio (denoted SNR(eRGB)) is 10 log10(1/σ) dB. The mag-
nitude of the diffuse color vectorj is related to that of the original color vector by
‖j‖ = ‖eRGB‖ sinα, whereα is the angle between the source colors and color
vectoreRGB in color space. It follows that

SNR(j) = SNR(eRGB) + 10 log10(sinα). (15)
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Figure 5:The signal-to-noise ratio (SNR) of the two-channel diffuseimage (j) relative to
that of the original image (e) as a function ofα, the angle betweene and the source color
s in the RGB cube.

This relationship is shown in Fig. 5, and it suggests that when the angle between the
image and the source color is less than10◦, the two-channel diffuse signal suffers
severe degradation.

In practice, this can be improved by increasing the SNR of theinput images
using multiple exposures (Grossberg and Nayar, 2003). Additionally, since sur-
face points with low SNR can be detected by monitoring the angle between the
source colorss and the input color vectorseRGB , this information can be easily
incorporated into any robust vision algorithm (see, e.g., van de Weijer and Gevers,
2004).

Source Color

It is difficult to make general statements regarding the sensitivity of these invari-
ants to errors in the source color estimates, because this sensitivity depends on the
sensitivity functions as well as the spectral reflectances and illuminant SPDs of a
particular scene. We can, however, gain some insight from the simple case of a ho-
mogeneous surface under a single illuminant. We present a qualitative description
of this case here; related quantitative empirical results are presented in Sect. 5.4.2.

RGB observations of a homogeneous surface under a single illuminant lie in
the dichromatic plane spanned the source and diffuse vectors s andd. Assuming
the source vector is known, a two-channel invariantj = (j1, j2) is computed by
projecting the vectors onto the subspace orthogonal to thissource vector. When
the estimate of the source color is inaccurate, the computedinvariant also contains
error. To describe sensitivity, we consider the square of the grayscale invariant
j2inv(2) = j21 + j22 and compute its derivatives with respect to angular variations in
s.

Let {r1, r2} be an orthonormal basis for the subspace orthogonal tos, and
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choose this basis such thatr1 is in the dichromatic plane. Since the observed color
vectors also lie in the dichromatic plane, any one vector will have coordinates of
the forme = (e1, 0, e3) in the coordinate system defined byr1, r2, andr1×r2 = s.
Thus, the squared value of the grayscale invariant is simplye21.

To describe a perturbation of the source direction, we consider a small rotation
about an axis (a, say) orthogonal it. The pencil of rotation axes orthogonalto s can
be parameterized by the angle fromr1 (so thata(ϕ) = (cosϕ, sinϕ, 0)), and the
‘noisy’ invariant (j2inv(2)) that results from a rotation by angleθ about any one of
these axes is

j2inv(2) =< Rθ,ϕr1, e >
2 + < Rθ,ϕr2, e >

2 . (16)

Here, the rotation matrixRθ,ϕ is obtained from the axis angle representation as
usual,

Rθ,ϕ = I + sin θ[a(ϕ)]× + (1 − cos θ)[a(ϕ)]2×,

where[·]× is the skew symmetric matrix equivalent of the cross product.
A measure of the sensitivity of the invariant is obtained by taking the derivative

of Eq. 16 with respect toθ and evaluating it atθ = 0:

∂j2inv(2)

∂θ

∣

∣

∣

∣

∣

θ=0

= 2e1e3 sinϕ. (17)

This expression reveals that the sensitivity of the invariant is highly asymmetric.
Whenϕ = 0, the rotation axis lies in the dichromatic plane, and the source vector
is perturbed in a direction orthogonal to that plane. In thiscase, the derivative is
zero and the invariant is largely unaffected by small perturbations of the source
estimate. In contrast, when the source color is perturbedwithin the dichromatic
plane (e.g.,ϕ = π/2), the magnitude of the derivative is maximal.

For any perturbation direction (i.e., for anyϕ), the sensitivity is proportional
to the product of the two non-zero components of the color vector e. Thus, if we
consider vectors of equal norm, the sensitivity is largest when the angle between
the observed color vectore and the source vectors is 45◦.

Source Color and Interreflections

In cases of significant interreflection, it is possible for one surface point (p, say)
to specularly reflect light that is first reflected at another point. When the first
reflection is diffuse, the reflected spectral radiance is modulated by the spectral
reflectance of the surface, and in general, it is not spectrally equivalent to the scene
illuminant SPD. Thus, with respect top the first point behaves much like a light
source having a distinct SPD, and the effective source vector at pointp is different

15



from s. In this case, the intensity observed atp does not follow the image formation
model of Eq. 1 (or Eq. 12 in the mixed case), and the proposed invariants may be
contaminated by specular effects.

One method for handling interreflection effects is to locally estimate the effec-
tive source colors, and to allow these source colors to vary from point to point. As
shown by Nayar et al. (1997), this can be accomplished by capturing multiple ex-
posures from a fixed viewpoint with polarization filters at difference orientations.
For the purposes of this paper, however, we assume interreflection effects to be
negligible so that that effective source vectors are the same at every point and a
single image can be used as input.

5 Applications and Evaluation

This section investigates the utility of the subspace-based invariants for a number
of vision algorithms and compares the results to those obtained using standard
grayscale imagese = (eR + eG + eB)/3. For RGB images, when the illumination
is a mixture of two known SPDs, the two-channel specular invariant j1 from Eq. 13
is grayscale and is equal tojinv(1) from Eq. 14. On the other hand, a single-SPD
specular invariant computed from an RGB image includes two diffuse channels
{j1, j2}, which can be combined into a grayscale invariantjinv(2) using Eq. 14.
In this case, one can also compute generalized hue, which canbe use to replace
conventional hue as a material descriptor. The results in this section show that
these invariants can have advantages over conventional grayscale and hue images
in the presence of specular reflections.

For the experiments in this section, the source colors are measured by imaging a
Macbeth color checker in an offline calibration procedure, and we focus on cases in
which the diffuse and source color vectors are distinct. A quantitative investigation
of the sensitivity with respect to noise in the measured source colors is provided in
Sect. 5.4.2.

5.1 Binocular Stereo

The vast majority of binocular stereo algorithms are based (either explicitly or
implicitly) on the assumption that surfaces are Lambertian. Since specular reflec-
tions violate this assumption, stereo reconstructions of specular surfaces are often
inaccurate. The most common approach to handle specular effects in binocular
stereo is to treat them as outliers. These outliers can be either explicitly detected
and removed (Brelstaff and Blake, 1988) or handled implicitly using robust tech-
niques (Yoon and Kweon, 2006b). Instead of treating them as outliers, one may
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also reduce specular reflection effects by modifying the stereo matching function
to permit a more general relationship between matched regions (Kim et al., 2003).
Alternatively, one can use enhanced acquisition systems that allow the effects of
specularities to be reduced or eliminated. Examples include multi-view acquisi-
tion schemes (Bhat and Nayar, 1998; Li et al., 2002; Jin et al., 2005), and binocular
schemes with active illumination (Zickler et al., 2003; Tu and Mendonça, 2003;
Davis et al., 2005b).

More directly related to the present work are reconstructions systems that ad-
dress specular reflection effects using color information.One approach is to solve
the (ill-posed) problem of explicit specular/diffuse separation and use the diffuse
images for stereo correspondence. This is explored by Lin etal. (2002), who show
that the problem can be more manageable when additional viewpoints are avail-
able. Another approach is to use stereo matching based on specular invariants.
For the case of monochromatic illumination, binocular stereo using a non-linear
specular invariant (which does not preserve diffuse shading information) has been
explored by Yoon and Kweon (2006a), and a method that exploits color informa-
tion in a multi-view system with monochromatic illumination is presented by Yang
et al. (2003).

Here we investigate the use of the proposed invariants, which are based on
linear transformations and are applicable in both monochromatic and mixed illu-
mination environments. In cases of significant specular reflections and complex
illumination conditions, we can improve the accuracy of existing stereo algorithms
by computing these specular invariants as a pre-process. Figure 6 compares the
results of two binocular stereo algorithms (Birchfield and Tomasi, 1998; Boykov
et al., 1998) applied to grayscalee and single-illuminant invariantjinv(2) images
derived from a rectified RGB stereo pair. There is a dramatic improvement in the
quality of reconstruction when specular invariant images are used. This point is
further emphasized in Fig. 7, which compares binocular stereo results obtained us-
ing conventional grayscale images, the single-illuminant(2D subspace) invariant
jinv(2), and the two-color (1D subspace) invariantjinv(1). In this case, the original
RGB image includes two specular highlights caused by blue and yellow illumi-
nants. The blue highlight is largely eliminated in the single-color invariantjinv(2),
while imagejinv(1) is invariant to specular reflections of both colors. As expected,
the results from the grayscale and single-color invariant images are poor in specular
regions, and the depth map obtained usingjinv(1) is significantly improved.

5.2 Optical Flow

Motion estimation through the computation of optical flow isanother example of
an application that can benefit from specular invariance. Recovering dense opti-
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Figure 6: Stereo reconstructions under a single-color illuminant. Both conventional
grayscale images and specular invariant images (Eq. 7) are computed from a rectified stereo
pair (top) and these are used as input to existing binocular stereo algorithms. Middle row:
disparity maps obtained from the grayscale (left) and specular invariant (right) images us-
ing the method of Birchfield and Tomasi (1998). Bottom row: those obtained using the
method of Boykov et al. (1998).

cal flow relies on the ‘constant-brightness assumption’, which is violated when an
observer moves relative to a static, specular scene.

As is the case with stereo, existing work has shown that colorinformation
can be exploited to deal with violations of the constant-brightness assumption (see
Barron and Klette (2002) for a survey). Most existing algorithms exploit color by
computing either a shading invariant (e.g., normalized RGB) or a white-illuminant
specular invariant (e.g., hue) as a pre-process, and studies have shown that these
can provide improved estimates of the optical flow field.

We approach the problem of optical flow in a similar spirit using the invariants
defined in Sect. 4, which have the advantages of handling non-white illuminants
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Figure 7: Stereo reconstruction under mixed illumination. Top left:One image of an
input stereo pair with blue and yellow illumination. Top center: Single-color invariant
imagejinv(2) from Eqs. 13 and 14 withs in the direction of the blue source. Top right:
Two-color invariantjinv(1) obtained by projecting to the 1D subspace orthogonal to both
sources. Bottom row: depth map obtained using the stereo algorithm of Boykov et al.
(1998) in each case.

and mixed lighting environments. Figure 8 shows a comparison of optical flow es-
timation in the presence of specular reflections under a single-color illuminant. An
RGB image sequence is captured by a camera translating horizontally relative to a
static scene. The sequence is used to compute a conventionalgrayscale sequence
e(t) and a single-color invariant sequencejinv(2)(t), and these are used as input to
a robust optical flow algorithm (Black and Anandan, 1993). Since the camera un-
dergoes pure translation, the ‘ground truth’ flow lies alongparallel horizontal lines.
As the figure shows, in regions that are predominantly diffuse, the flow obtained in
both cases is close to the ground truth. In regions of specularity, however, there is
a significant improvement in the quality of estimated flow when specular invariant
images are used.

More interesting is the case of optical flow estimation undermixed illumina-
tion, which is shown in Fig. 9. A similar sequence is capturedunder illumination
that is a mixture of two distinct SPDs, and the sequence is used to compute a con-
ventional grayscale sequencee(t), a single-color invariant sequencejinv(2)(t), and
a two-color invariant sequencejinv(1)(t). These three videos are used as input to
the same optical flow algorithm (Black and Anandan, 1993). The left of Fig. 9
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Figure 8:Optical flow under a single-color illuminant. An RGB image sequence is cap-
tured by a camera translating left relative to a specular apple. Both conventional grayscale
and specular invariant images (Eq. 7) are computed from thisRGB sequence, and these
are used as input to Black and Anandan’s robust optical flow algorithm (Black and Anan-
dan, 1993). Left: Single frame from the grayscale sequence.Right: flows obtained for
regions that are highly specular and predominantly diffuse. Red flow is computed from
the grayscale sequence and is severely corrupted by specular reflection. Blue flow is com-
puted from the specular invariant sequence and is much closer to ground truth, which is
horizontal and to the right.

shows a single image from each sequence, and the right shows the recovered flows
in the indicated window. The flow recovered using the conventional grayscale and
single-color invariant sequences are severely corrupted by specular highlights. In
contrast, the flow computed from the mixed-illuminant invariant (shown in red) is
close to the ground truth and is largely unaffected by these non-Lambertian effects.

5.3 Shape from Shading

The previous two sections demonstrate the utility of the specular invariant for
stereo matching and optical flow, both of which benefit from the fact that the spec-
ular invariant images do not change with viewpoint. The nextthree sections show

20



 

 

Figure 9: Optical flow under mixed illumination. An RGB image sequence(top left)
is captured by a camera translating left relative to a specular apple under yellow and blue
illumination. Derived conventional grayscalee(t), yellow-invariantjinv(2)(t) (left middle),
and two-color invariantjinv(1)(t) (left bottom) sequences are computed and used as input
to Black and Anandan’s robust optical flow algorithm (Black and Anandan, 1993). Right:
flows obtained in the three cases. Green and blue flows are fromgrayscale and yellow-
invariant sequences, respectively, and both are corruptedby specular reflections. Red flow
is computed from the two-color invariant and is much closer to ground truth, which is
horizontal and to the right.

that since they preserve diffuse (ideally Lambertian) shading information, these
invariants can also be used to enhance photometric reconstruction methods.

In shape from shading, one seeks to recover surface shape from the photometric
information available in a single image. The vast majority of the existing methods
assume Lambertian reflectance, and even then the problem is adifficult one. Of
the small number of methods that consider non-Lambertian effects, most assume
reflectance to be of a specific parametric form—such as the Torrance-Sparrow or
Oren-Nayar models—which must be knowna priori (Ahmed and Farag, 2006;
Bakshi and Yang, 1994; Ragheb and Hancock, 2001). The use of color in shape
from shading is rare. One notable example is the work of Tian and Tsui (1997),
which considers reflectance that is a linear combination of aLambertian diffuse
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Grayscale

Specular invariant

Figure 10: Shape from shading comparison. Top: An RGB image of a pear is used to
compute conventional grayscale (left) and specular invariant (right) images, and these are
input to a shape from shading algorithm (Zheng and Chellappa, 1991) yielding the surfaces
shown in green. Bottom row: cross-sections of the recoveredsurfaces along the indicated
horizontal lines.

component and an ideal specular spike.
The invariants presented in Sect. 4 provide a means for considering a much

broader class of surfaces. By combining these invariants with existing Lambertian-
based methods for shape from shading, one can recover shape for surfaces having
rather arbitrary specular components (i.e., generalfs(θ) in Eq. 10) which need not
be well-represented by any known parametric form. All that is required is that the
surface conforms to the dichromatic model.

When illumination can be described as a single point source in directionl (say)
and the diffuse reflectance at a surface point is Lambertian,we can writeσd =
fdn

⊤l, wheren is the surface normal at the point andfd is the albedo. When this
is true, the specular invariant image of Eq. 14 reduces to

jinv(2) = fd

(

(r⊤1 d)2 + (r⊤2 d)2
)

1
2
n⊤l, (18)

which is the image formation equation for a Lambertian surface with an effective
albedo given by the first two terms. Thus, the specular invariant can be used directly
as input to any Lambertian-based shape from shading algorithm.

The benefit of this approach is demonstrated in Fig. 10, wherewe assess the
performance of a conventional shape from shading algorithm(Zheng and Chel-
lappa, 1991) for both a grayscale imagee and a single-SPD invariant imagejinv(2).
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The top of the figure shows grayscale and specular invariant images computed from
an RGB image of a pear, and the middle row shows the surfaces that are recovered
by applying the same algorithm in the two cases. The solid blue profile in the
bottom graph shows that specular reflections cause severe artifacts when the algo-
rithm is applied to the grayscale image. In contrast, as shown by the dashed red
profile, one can obtain improved results using the same algorithm by computing
the specular invariant as a pre-processing step.

5.4 Photometric Stereo

In photometric stereo, one seeks to recover shape from a set of images acquired
from a fixed viewpoint under multiple illumination conditions. Like shape from
shading, photometric stereo requires the inversion of the image formation process,
and as a result, existing methods also require significant knowledge about the re-
flectance of surfaces in a scene. Many photometric stereo techniques assume that
surfaces are Lambertian (Woodham, 1978), and others assumethe reflectance to
be givena priori by a reference object (Silver, 1980), a linear basis of reference
objects (Hertzmann and Seitz, 2003), or by a parametric BRDFmodel (Ikeuchi,
1981; Nayar et al., 1990; Tagare and deFigueiredo, 1991). When these reflectance
assumptions are not satisfied, the accuracy of the recoveredshape can be compro-
mised.

Coleman and Jain (1982) were perhaps the first to present a photometric tech-
nique for reconstructing non-Lambertian surfaces withoutan explicit reflectance
model. In their method, the BRDF is assumed to be a linear combination of a
Lambertian diffuse component and an undefined specular component with limited
angular support. When four point-source illuminations areavailable, specular mea-
surements can be treated as outliers and discarded, provided that the illumination
directions are far from one another relative to the angular extent of the specular
lobe. (This ensures that the specular reflectance componentis zero for three of
the four observations of each surface point.) Barsky and Petrou (2003) refine this
technique by using color information to improve the detection of specular mea-
surements. Like the original work, however, specular measurements are treated as
outliers, and the specular component is assumed to have limited angular support.

Another approach to photometric stereo for non-Lambertiansurfaces is to as-
sume dichromatic surfaces, and to explicitly separate the diffuse and specular com-
ponents as a pre-processing step. This is the approach takenby Schlüns and Wit-
tig (1993), who assume homogeneous dichromatic surfaces, and separate the dif-
fuse and specular components using color histogram analysis techniques similar
to Klinker et al. (1988). Sato and Ikeutchi (1994) take a similar approach, but
avoid the restriction to homogeneous surfaces by using a large number of light
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source directions to compute a distinct color histogram at each point. Because
these methods explicitly recover the diffuse and specular components, they have
the additional benefit of providing an estimate of the diffuse colord at each point
in addition to recovering the surface shape. Since they are based on explicit spec-
ular/diffuse separation, however, they are subject to the restrictions discussed in
Sect. 2. Most importantly, they assume that the specular lobe is narrow relative
to the surface curvature, an assumption similar to that underlying the four-source
method of Coleman and Jain (1982).

By using the invariants from Sect. 4 in conjunction with existing Lambertian-
based methods for photometric stereo, many of these limitations can be overcome.
In fact, this provides a reconstruction method that operates completely indepen-
dent of specular reflections (i.e., independent offs(θ) in Eq. 10) and therefore
requires no additional assumptions regarding the specularbehavior of a surface. In
this sense, this approach to photometric stereo is related to other recent reconstruc-
tion methods that exploit physical properties such as reflectance isotropy (Lu and
Little, 1999), reciprocity (Magda et al., 2001; Zickler et al., 2002), the constancy
of radiance in free space (Magda et al., 2001; Koudelka et al., 2001), and light
transport constancy (Davis et al., 2005a) to enable accurate reconstructions of very
broad classes of surfaces. An important difference, however, is that the photomet-
ric stereo method described here requires a simple acquisition system and is quite
easy to implement.

To use the proposed invariants for photometric stereo, we assume directional
monochromatic illumination as in the previous section. Letj1, j2, j3 be three two-
channel color vectors produced by observing a single point under three different
lighting directionsl1, l2, l3. specular invariants are computed from the RGB im-
ages according to Eq. 13. Assuming Lambertian diffuse reflectance, we see that

jk =
[

jk1 , j
k
2

]⊤

= (n⊤lk)ρ, (19)

with

ρ = [ρ1, ρ2]
⊤ = fd

[

r⊤1 d, r⊤2 d
]⊤

being an effective two-channel albedo, and it follows that these specular invariant
images can be used as input to a Lambertian photometric stereo algorithm. In what
follows, we adapt the algorithm of Barsky and Petrou (2001) that was originally
designed to handle RGB images of Lambertian scenes.

Similar to Barsky and Petrou (2001), ashading vectoris defined ash =
[

h1, h2, h3
]⊤

= [l1 l2 l3]⊤n, and the invariant images resulting from the three
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Figure 11:Photometric stereo procedure. Three or more RGB images are acquired under
known illumination conditions, and specular invariantsj are computed according to Eq. 13.
The invariants represent diffuse images of the object, and these are used with standard
photometric stereo techniques to estimate the surface normal at each pixel. The normals
are integrated to recover the surface.

lighting directions are combined in anintensity matrixsatisfying

J =





j11 j12
j21 j22
j31 j32



 =





h1ρ1 h1ρ2

h2ρ1 h2ρ2

h3ρ1 h3ρ2



 = hρ⊤. (20)

The least-squares estimate of the shading vectorh is computed from the intensity
matrix; it is the principal eigenvector ofJJ⊤. Once the shading vector is deter-
mined, the surface normal is found by solving the matrix equationh = [l1 l2 l3]⊤n.
This reconstruction procedure is outlined in Fig. 11, and itcan be applied without
change to any number of images larger than three.

5.4.1 Experimental Results

Photometric stereo provides a convenient means for quantitative analysis of the
proposed invariant, since we can directly measure the accuracy of reconstructed
shapes having different material properties. To perform such an analysis, we painted
five identical spheres, shown in Fig. 12, with standard latexpaints that were mixed
to have approximately the same color pigment and five different levels of glossy
finish: flat, eggshell, satin, semi-gloss, and high-gloss. The observed incident-
plane BRDFs of these spheres are shown in Fig. 13.

For each sphere, a set of four high dynamic range (HDR) imageswere captured
from a fixed viewpoint and four known illumination directions. The source color
was calibrated by imaging a Macbeth color checker, and it wasused to compute the
specular invariantsj andjinv(2) according to Eqs. 13 and 14. The second column
of Fig. 12 confirms that the specular invariantjinv(2) depends largely on the diffuse
reflectance.
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INPUT INVARIANT RGB: ALL RGB: BEST 3 INVARIANT INTEGRATED SURFACE

Actual Surface

SUV

RGB: all

RGB: best 3

Figure 12:Comparison of photometric stereo methods. Five red sphereswith increasing
specular reflectance are each observed under four illumination directions, and these images
are used to recover the surface. From left to right, each row shows: i) an input RGB image,
ii) the corresponding specular invariantj from Eq. 13, iii) surfaces integrated from the
surface normals estimated by three photometric stereo methods, and iv) cross-sections of
the surfaces overlaid on the true shape.

Using the two-channel specular invariant images, the surface normals of each
sphere were estimated using the photometric stereo method described above. As
a means of comparison, we implemented two alternative RGB-based photomet-
ric techniques. The first method uses all four RGB images and assumes Lamber-
tian reflectance (Barsky and Petrou, 2001). The second method assumes Lamber-
tian+specular reflectance and reconstructs the surface by choosing the three ‘least
specular’ RGB measurements at each pixel (Barsky and Petrou, 2003; Coleman
and Jain, 1982). The results are shown in Figs. 12 and 13. The recovered sur-
faces, including cross-sections overlaid on the true shape, are displayed in Fig. 12.
Quantitative results are shown in Fig. 13, with the bottom ofthat figure display-
ing the angular difference between the true and estimated surface normals as a
function of increasing specularity. These results demonstrate that the invariant-
based reconstruction is largely independent of the specular reflectance, whereas
both the four-image and three-image RGB methods are affected by it. The four-
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Figure 13:Comparison of photometric stereo methods. Left: Relative BRDFs (in deci-
bels) of the five red spheres of Fig. 12 as a function of half-angle. Right: Mean-square
angular error in the recovered surface normals as a functionof increasing specularity using
both the proposed specular invariants and existing RGB methods.

image method (Barsky and Petrou, 2001) assumes Lambertian reflectance and its
performance degrades monotonically as gloss increases; and while the three-image
RGB method (Barsky and Petrou, 2003; Coleman and Jain, 1982)performs well
for the high-gloss (narrow specular lobe) spheres, it performs less well when the
angular support of the specular lobe is large relative to theseparation of the light
source directions.

Figure 14 shows the results of applying the invariant-basedphotometric stereo
method to two natural objects (a pear and a pumpkin.) Since the computation of
the specular invariant is purely local, the method requiresno spatial coherence in
the image, and it performs well for surfaces with arbitrary texture. This is not true
for alternative photometric stereo techniques that rely onexplicit diffuse/specular
separation (e.g., (Schlüns and Wittig, 1993)), since these methods generally require
some form spatial coherence in the spectral reflectance of a surface.

5.4.2 Sensitivity to Illuminant Color

Photometric stereo also provides an opportunity to quantitatively evaluate the sen-
sitivity of the proposed invariants to perturbations in themeasured illuminant color.
This compliments the qualitative analysis presented in Sect. 4.2. To measure sensi-
tivity, we repeated the photometric reconstruction procedure in Fig. 13 using invari-
ants computed with perturbed source vectors. When the source vector is perturbed
from its true value, the specular invariant images are contaminated by specular
effects, and the reconstruction error in the Lambertian-based photometric stereo
result is expected to increase.

Figure 15 shows the result of this experiment using the red sphere from the
second row of Fig. 12. Depicted is the angular mean-square error (in degrees)
resulting from perturbations of the unit source vector. Since source vectors are are
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Figure 14: Invariant-based photometric stereo applied to natural surfaces. Left: Input
RGB images show significant specular reflectance and texture. By computing the specular
invariant, the specular effects are removed, enabling accurate recovery of shape. Middle,
Right: Surfaces recovered by integrating the estimated surface normals.

of unit length, the domain of the error function is the unit sphere, and the figure
shows the stereographic projection of this error function centered at the true source
color (indicated by+). Concentric circles in Fig. 15 correspond to angular source
perturbations of5◦, 10◦ and15◦, and the diagonal black line is the projection of
the dichromatic plane, which is the plane spanned by the diffuse vector of the
homogeneous surface and the true source vector.

The qualitative analysis from Sect. 4.2 reveals that the specular invariant is
more sensitive to source perturbations within the dichromatic plane than it is to
perturbations away from the plane. This effect is also observed in Fig. 15, where a
10◦ perturbation within the plane causes the error to increase by nearly a factor of
two, while the same angular perturbation in the orthogonal direction induces only
a 25% increase.

While this experiment provides some insight into the sensitivity of the pro-
posed invariants, one must be cautious about the conclusions one draws. Since
photometric stereo is an active illumination technique, one typically has the op-
portunity to directly measure the source color. When this isthe case, the noise in
the source estimate will be much smaller than the15◦ error considered here. For
other applications (stereo, optical flow, etc.) in which thesource color is difficult to
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Figure 15:Sensitivity of a photometric stereo reconstruction with respect to errors in es-
timated source color. The field of surface normals of a spherefrom Fig. 12 is recovered
using invariant-based photometric stereo with source vectorss perturbed from truth, and
the angular MSE in the normal field is recorded. Shown is a contour plot of the stereo-
graphic projection of this error (in degrees) as a function of the angular perturbation to the
source vector. Concentric circles are cones of source vectors displaced by5◦, 10◦ and15◦

from the true vector (+), and the diagonal line is the projection of the dichromaticplane
for this homogeneous surface. The angular MSE for the true source vector is3.98◦. The
reconstruction is more sensitive to source perturbations within the dichromatic plane than
those orthogonal to it.

measure or is time-varying, one would need to rely on existing image-based meth-
ods for illuminant estimation as discussed in Sect. 2. Angular source errors may
be larger in this case—some empirical studies suggest that errors of 10◦ are not
uncommon Barnard et al. (2002b,a)—and these errors will depend very strongly
on the particular materials and illuminants that are present in the scene, the sen-
sitivity functions of the camera being used, and the color constancy algorithm(s)
being employed.

5.5 Photometric/Geometric Reconstruction

In addition to the applications presented thus far, the specular invariant can be used
to improve the performance of a broad class of Lambertian-based reconstruction
systems in the presence of specular, non-Lambertian surfaces. This includes meth-
ods that combine both geometric and photometric constraints to obtain accurate
surface shape (Jin et al., 2004; Lim et al., 2005; Zhang et al., 2003). To provide an
example, we use the passive photometric stereo algorithm described by Lim et al.
(2005). This method begins with an approximate, piece-wiseplanar reconstruction
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Figure 16:Comparison of shape from combined photometric and geometric constraints.
Left: three RGB frames of a specular cylinder moving under fixed view and illumination.
Right frame: result of simultaneous tracking and photometric reconstruction (Lim et al.,
2005) using both the conventional grayscale (left) and specular invariant (right) sequences.

obtained by tracking a small number of features across a video sequence under
(possibly varying) directional illumination. Then, an iterative method based on un-
calibrated Lambertian photometric stereo simultaneouslyrefines the reconstruction
and estimates the unknown illumination directions.

Figure 16 compares the results obtained from an image sequence that consists
of a moderately specular cylinder moving under fixed illumination and viewpoint.
The shape is estimated by applying the same algorithm to boththe conventional
grayscale sequence (e(t)) and the specular invariant sequence (jinv(2)) computed
from the same RGB data. The right-most surface in Fig. 16 shows that the re-
construction obtained using the specular invariant is nearly cylindrical, while that
computed from the conventional grayscale sequence is severely corrupted by spec-
ular reflections.

5.6 Material-based Segmentation

Sections 5.1–5.5 demonstrate the utility of the proposed specular invariants for
a variety of visual tasks. This section demonstrates an applications of the sec-
ond invariant, generalized hue, which is independent of both the specular reflec-
tions and diffuse shading in an image. We consider its application to the prob-
lem of material-based segmentation, although other potential applications include
lighting-insensitive tracking and recognition.

30



Input RGB Conventional Grayscale Specular Invariant

Conventional Hue Generalized Hue

Figure 17:Generalized hue for material-based segmentation. Each panel shows a pseudo-
colored representation that is computed from the RGB image on the top-left. The general-
ized hue image on the bottom-right is useful for segmentation because it depends only on
the spectral reflectance of the surfaces. The same is not truefor a conventional hue image
(bottom-left) unless the illuminant is white.

Figure 17 shows an RGB image of a dichromatic scene under uniform source
color (N = 1) along with a series of pseudo-colored representations related to
the invariants presented in Sect. 4. The top row shows conventional grayscale and
specular invariant images, and in the latter, the specular effects (most notably on the
green apples, the pumpkin, and the red pepper) are largely eliminated. The bottom-
right of Fig. 17 shows the generalized hue image given by Eq. 8, which is invariant
to diffuse shading in addition to specular reflections, and therefore depends only
on the spectral reflectance. The fact that the generalized hue within each region is
relatively constant suggests that it is a useful representation for segmentation. The
same is not true for the conventional hue image (shown on the bottom-left) because
the illuminant is not white.

6 Conclusion

This paper presents photometric invariants that are derived from color subspaces.
They can be efficiently computed from a single image of a dichromatic scene and
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can be applied in cases of both monochromatic and mixed illumination environ-
ments. Two important features of these invariants are that:1) they are free of
specular reflectance effects; and 2) they preserve the diffuse shading information
in an image. The latter means that they can be used directly for Lambertian-based
photometric analysis including shape from shading and photometric stereo.

The invariants are computed point-wise and therefore placeno restriction on
scene texture. Additionally, while they require knowledgeof the effective source
color(s), they place no restrictions on the angular distribution of incident light.

The utility of these invariants is demonstrated by their ability to improve the
performance of a wide variety of vision algorithms, including those for binocular
stereo, motion estimation, and photometric reconstruction. They are directly ap-
plicable in cases where the source color is measured or known, and in these cases,
they are shown to allow many Lambertian-based algorithms tobe applied more
successfully to a much broader class of surfaces.

An important next step is to explore applications in uncontrolled environments,
where illumination spectra cannot be measured or are time varying. By combining
the proposed invariants with existing methods for illuminant estimation and robust
Lambertian-based vision algorithms, they may prove to be useful in these cases as
well.
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