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Abstract
Complex reflectance phenomena such as specular reflec-
tions confound many vision problems since they produce
image ‘features’ that do not correspond directly to intrinsic
surface properties such as shape and spectral reflectance.
A common approach to mitigate these effects is to explore
functions of an image that are invariant to these photomet-
ric events. In this paper we describe two such invariants—
one invariant to specular reflections, and the other invari-
ant to both specular reflections and diffuse shading—that
result from exploiting color information in images of dichro-
matic surfaces. These invariants are derived from sub-
spaces of RGB color space, and they enable the application
of Lambertian-based vision techniques to a broad class of
specular, non-Lambertian scenes. Using implementations
of recent algorithms taken from the literature, we demon-
strate the practical utility of these invariants for a wide va-
riety of applications, including stereo, shape from shading,
material-based segmentation, and motion estimation.

1. Introduction
An image is the product of the shape, reflectance and illu-
mination in a scene. For many visual tasks, we require only
a subset of this information, and we wish to extract it in
a manner that is insensitive to variations in the remaining
‘confounding’ scene properties. For 3D reconstruction, for
example, we seek accurate estimates of shape, and we de-
sign systems that are insensitive to variations in reflectance
and illumination.

One practical approach to these problems is to compute a
function of the input images that is invariant to confounding
scene properties but is discriminative with respect to desired
scene information. Such functions yield so-called invari-
ants, and a number of examples are described in the litera-
ture. Perhaps the simplest example for a Lambertian scene
is a normalized-RGB image. The normalized RGB color
vector at each pixel depends on the spectral reflectance
of the corresponding surface patch but not its orientation,
which makes it useful for material-based segmentation.

Like normalized-RGB, many existing invariants seek to
isolate information about the material properties in a scene
and are therefore designed to be invariant to local illumi-
nation and viewing geometry. In contrast, we consider a

Figure 1. Left: Two frames of an RGB video of a scene with mixed
illumination. A blue light on the right and a yellow light on the left
induce complex specular effects. Right: Projecting these images
onto the one-dimensional subspace orthogonal to the source color
vectors in RGB space, yields an invariant to specular reflections
that preserves diffuse shading and spectral reflectance information.
(The complete video is included as supplemental material.)

class of invariants that deliberately preserve geometry in-
formation in a way that is invariant to specular reflections.
These invariants give direct access to surface shape in the
form of diffuse shading effects, and since diffuse shad-
ing is often well approximated by the Lambertian model,
they satisfy the ‘constant-brightness assumption’ underly-
ing most approaches to stereo reconstruction and structure-
from-motion. In addition, these invariants provide access to
surface normal information, which can be recovered using
Lambertian-based photometric reconstruction methods.

This work is motivated in part by the work of Mallick
et al. [9], who propose a transformation of color space for
use in photometric stereo. Their work shows that when
surfaces are well-described by the dichromatic model [14],
a specular-free image can be computed by projecting the
RGB color vector at each image point onto the two-
dimensional subspace orthogonal to the illuminant color.

Inspired by these results, we:

1. Derive a general class of specular invariants based on
color subspaces. These invariants can be applied to
dichromatic surfaces under mixed illumination envi-
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ronments (see Fig. 1.)
2. Derive a second class of functions that, in addition

to specular reflections, are invariant to diffuse shad-
ing. They depend only on the spectral reflectance of a
dichromatic surface.

3. Demonstrate that these invariants can enhance many
existing Lambertian-based vision techniques, vastly
expanding their domain of applicability.

2. Related Work
A number of photometric invariants have been proposed for
Lambertian scenes without specularity. Normalized-RGB,
r-g chromaticity, and hue/saturation images are all exam-
ples of representations that are independent of ‘diffuse shad-
ing’ (the geometric relation between a surface normal and
the illumination direction) and depend only on the spectral
reflectance of the surface and the spectral power distribu-
tion (SPD) of the illuminant. Additional invariants to ei-
ther local geometry or spectral reflectance can be computed
when multiple images of a scene are available (e.g., [18]),
or when the reflectance of the surface is spatially coherent
(e.g. [11]); and an invariant to both local geometry and il-
luminant SPD can be computed from a single image under
appropriate imaging conditions [4].

Invariants for scenes with more general reflectance func-
tions are developed by Narasimhan et al. [10]. They de-
scribe a general model of reflectance consisting of a prod-
uct of a “material” term (Lambertian albedo, Fresnel coeffi-
cient, etc.) and a “geometry” term that encodes the relation-
ship between the surface normal, light-source, and viewing
direction. Invariants to both of these terms can be computed
from either multiple observations of a single point under
variable view or illumination, or from one observation of a
spatially-coherent scene. The geometry invariant is of par-
ticular interest, since it can be used directly for material-
based segmentation [10].

2.1. Invariants for Dichromatic Surfaces

A substantial body of work is devoted to exploiting the
dichromatic model of reflection [14] in order to separate
diffuse and specular reflection components, which are in-
dependent of specular and diffuse reflection effects, respec-
tively. According to the dichromatic model, the observation
of a surface point is written

Ik = σdDk + σsSk, (1)

where σd and σs are geometric scale factors that depend on
surface shape and material properties and

Dk =

∫

E(λ)R(λ)Ck(λ)dλ (2)

Sk =

∫

E(λ)Ck(λ)dλ. (3)

Here, E(λ) is the SPD of the incident illumination, R(λ)
is the spectral reflectance of the surface, and Ck(λ) is the
spectral sensitivity of a linear sensor. A typical RGB cam-
era yields three such observations, and in this case we write
IRGB = {Ik}k=R,G,B and define D = {Dk}k=R,G,B and
S = {Sk}k=R,G,B to be the diffuse color and specular
color, respectively. These are conventionally assumed to
be vectors of unit length.

There is practical utility in separating the diffuse and
specular components in an image. Since diffuse reflec-
tions are typically well-represented by the Lambertian
model, this separation allows the application of powerful
Lambertian-based vision algorithms to a broad class of non-
Lambertian scenes. Unfortunately, computing such a sepa-
ration is ill-posed. It traditionally requires additional con-
straints such as texture-less surfaces [6], knowledge about
(e.g., segmentation of) diffuse colors, constraints on the
neighborhood of a pixel [8, 15] or specific parametric mod-
els for specular reflectance [13].

When the source color is known and constant over a
scene, one can compute invariants to specular reflections
that are based on transformations of RGB color space and
do not require explicit specular/diffuse separation. Tan and
Ikeuchi [15] obtain such a specular invariant using a non-
linear combination of the RGB values IRGB at a pixel and
the RGB color vector of the source S. The transformation
is computed independently at each point, and it yields a
positive grayscale image that depends only on diffuse re-
flections (σd and D) and is independent of specular effects
(σs). Park [12] defines an alternative, linear transformation
providing two color channels that, while not pure invari-
ants, are highly insensitive to specular reflections. In this
transformation, one of the coordinate axis of color space is
aligned with the source color S, leaving the remaining two
channels to be predominantly diffuse.

A third transformation is proposed by Mallick et al. [9],
who define the SUV color space using ISUV = RIRGB ,
where R is any rotation of R

3 satisfying RS = (1, 0, 0).
Like Park’s transformation, this rotation aligns one of the
color axes (the S-axis) with the source color S, but unlike
Park’s transformation, the components along the remaining
two axes are indeed invariant to specular reflections. This
is easily seen by applying the transformation to Eq. 1 and
verifying that the U and V components are given by [9]

IU = σdr
>

2 D, IV = σdr
>

3 D, (4)

where r
>
2 and r

>
3 denote the 2nd and 3rd rows of the ro-

tation matrix R. Since they are independent of the specu-
lar geometric scale factor σs, these components constitute
a specular invariant. An important feature of this transfor-
mation is that it preserves and isolates the diffuse shading
information (σd).



3. Color Subspaces
The SUV color transformation can be viewed as a projec-
tion of RGB color vectors onto the two-dimensional sub-
space orthogonal to the source color S. (See left of Fig. 2.)
This interpretation provides the main motivation for this pa-
per, and in this section we show that it: 1) can be general-
ized to mixed illuminants and hyper-spectral images; and 2)
leads naturally to a notion of generalized hue.

The SUV color transformation is based on Eq. 1, which
in turn is premised on the assumption that the illuminant
SPD is constant over the incident hemisphere of a surface
point (i.e., that the illuminant ‘color’ is the same in all di-
rections.) Notationally, if L(ωi, λ) represents the incident
radiance at a surface point, where ωi = (θi, φi) ∈ Ω param-
eterizes the hemisphere of incident directions, the model re-
quires that this input radiance field can be factored (with a
slight abuse of notation) as L(ω)E(λ). To relate this to the
terms in Eq. 1, we let f(θ, λ) with θ = (θi, φi, θo, φo, λ)
denote the BRDF of the surface, and we write the image
formation equation as

Ik =

∫

λ

∫

Ω

f(θ, λ)L(ωi, λ)Ck(λ) cos θi dωidλ.

According to the dichromatic model, the BRDF of the sur-
face can be decomposed according to

f(θ, λ) = fd(θ)S(λ) + ksfs(θ), (5)

where ks is a constant, and this yields the expressions

σd =

∫

Ω

fd(θ)L(ωi) cos θi dωi

σs = ks

∫

Ω

fs(θ)L(ωi) cos θi dωi

Dk =

∫

S(λ)E(λ)Ck(λ) dλ

Sk =

∫

E(λ)Ck(λ) dλ.

To generalize the model, we consider a mixed illumina-
tion environment whose spectral content can be written in
terms of a finite linear basis:

L(ωi, λ) =
N
∑

j=1

Lj(ωi)Ej(λ). (6)

An example withN = 2 is an office environment where the
illumination can be described as a solid angle of daylight
in the direction of the window and a distinct solid angle of
fluorescent light in the direction of the ceiling. When the
input radiance field can be decomposed in this manner, the
BRDF decomposition of Eq. 5 yields

Ik =

N
∑

j=1

σ
(j)
d D

(j)
k + σ(j)

s S
(j)
k , (7)

with

σ
(j)
d =

∫

Ω

fd(θ)Lj(ωi) cos θi dωi

σ(j)
s = ks

∫

Ω

fs(θ)Lj(ωi) cos θi dωi

D
(j)
k =

∫

S(λ)Ej(λ)Ck(λ) dλ

S
(j)
k =

∫

Ej(λ)Ck(λ) dλ.

Equation 7 suggests the existence of a specular invari-
ant that is analogous to the two-dimensional subspace used
by Mallick et al. [9]. In their formulation, the illuminant
color is assumed constant over the input hemisphere (which
corresponds to N = 1 in Eq. 7) and the specular invari-
ant subspace computed from a three-channel RGB image is
two-dimensional. In general, given anM -channel (possibly
hyper-spectral) image and an N -dimensional spectral basis
{Ej(λ)}j=1...N for the incident illumination, there exists
a subspace of dimension (M − N) that is independent of
all σ(j)

s and therefore invariant to specular reflections. Let-
ting {rl}l=1...(M−N) represent an orthonormal basis for this
specular invariant subspace, the lth component (or ‘chan-
nel’) of the specular invariant image is given by

Jl =

N
∑

j=1

σ
(j)
d r

>

l D
(j). (8)

A specular invariant image with (M −N) channels defined
by this equation can be treated as an image with (M −N)
‘colors’, but these ‘colors’ can assume negative values. In
some cases it is more convenient to use a grayscale specular
invariant given by

Jinv(M−N) =

(

M−N
∑

l=1

I2
l

)

1
2

, (9)

where the subscript Jinv(u) is used to indicate that the
grayscale invariant is derived from a u-dimensional invari-
ant subspace.

Since the vast majority of cameras record three (RGB)
channels, the most interesting case to consider is N = 2.
An example is shown in Fig. 1, where light comes from
two sources with different SPDs. These SPDs induce two
source color vectors S

(1) and S
(2) in RGB space, and by

projecting the RGB color vectors of the input image onto
the one-dimensional subspace orthogonal to these vectors,
we create an image that is void of specular reflection effects.

An essential feature of the specular invariants of Eqs. 8
and 9 is that they preserve diffuse reflection effects encoded
in the geometric scale factors σ(j)

d . For many surfaces,
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Figure 2. Left: Projecting RGB color vector IRGB onto the 2D
subspace orthogonal to the source color S results in a specular
invariant that preserves diffuse shading. The ratio between the
channels in this subspace represents generalized hue (ψ), which
provides a second invariant depending only on spectral reflectance.
Right: For two source colors, the specular invariant subspace is
one-dimensional. By projecting RGB color vectors onto this line,
a specular invariant can still be computed (see Fig. 1.)

the diffuse component is well approximated by the Lam-
bertian model, meaning that the term fd(θ) in Eq. 7 is a
constant function of θ and the geometric scale factors σ(j)

d

do not change with viewpoint. This implies that the specu-
lar invariant images defined by Eqs. 8 and 9 often: 1) sat-
isfy the ‘constant-brightness assumption’ underlying most
stereo and structure-from-motion systems; and 2) provide
access to surface normal information through Lambertian-
based photometric reconstruction methods such as shape-
from-shading. As a result, by computing these invariants as
a pre-processing step, we can expand the domain of appli-
cability of many Lambertian-based algorithms to include a
much broader class of specular, non-Lambertian surfaces.

Applications are explored in Sect. 4. Next, we define a
second class of invariants that can be computed from the
color subspaces defined above.

3.1. Generalized Hue

Returning to the case of uniform source color (N = 1 in
Eq. 6), we derive a second invariant by taking the ratio be-
tween specular invariant channels in Eq. 8. The result,

J1/J2 = r
>

1 D/r>2 D,

is independent of both the diffuse and specular geometric
scale factors σd and σd. As shown in Fig. 2, it is instructive
to interpret this ratio as an angle and define

ψ = tan−1 (J1/J2) = tan−1
(

r
>

1 D/r>2 D
)

. (10)

We refer to ψ as the generalized hue, since it reduces to the
standard definition of hue when the source color S is white.

Examples of generalized hue images are shown in Fig. 3
for a specular globe under two different source colors. In
each case, the known source color is used to compute a two-
channel subspace image according to Eq. 8, and the ratio
between the two channels is used to compute ψ. Since it

Figure 3. Generalized hue images (bottom), each computed from a
single RGB image (top) of a globe. Generalized hue is invariant to
both specularities and diffuse shading, and is discriminative only
with respect to the spectral reflectance of the surface.

depends only on D, each country on the globe appears ‘flat’
and is free of both specular reflections and diffuse shading.

It is interesting to note that this isolation of spectral
reflectance can be generalized to mixed illumination and
hyper-spectral images, albeit at the expense of requiring ei-
ther multiple images, spatial coherence, or both. As an illus-
tration, consider an illumination environment with two dif-
ferent source colors (N = 2 in Eq. 6), and suppose we ac-
quire two RGB images with altered illumination directions.
(The SPDs of the sources remain the same.) In this case,
the specular invariant subspace is one-dimensional, and the
specular invariant images J and J̄ of a surface point under
the two lighting configurations are given by (see Eq. 8)

J = σ
(1)
d r

>
D

(1) + σ
(2)
d r

>
D

(2)

J̄ = σ̄
(1)
d r

>
D

(1) + σ̄
(2)
d r

>
D

(2).

Here, we have suppressed the subscript corresponding to the
invariant channel index, since there is only a single channel.

Now, suppose we have identified two additional im-
age points (p2 and p3) that correspond to surface points
having the same geometric configurations (e.g., the same
surface normal under distant lighting) but distinct spectral
reflectance. This yields a total of six specular invariant
observations—three points under two illuminations—that
can be assembled into a 3×2 observation matrix. As shown
by Narasimhan et al. [10], such a matrix can be factored as




Jp1 J̄p1

Jp2 J̄p2

Jp3 J̄p3



 =







r
>
D

(1)
p1 r

>
D

(2)
p1

r
>
D

(1)
p2 r

>
D

(2)
p2

r
>
D

(1)
p3 r

>
D

(2)
p3







[

σ
(1)
d σ̄

(1)
d

σ
(2)
d σ̄

(2)
d

]

,

from which it follows that the ratio of determinants of its
two 2 × 2 sub-matrices satisfies

Jp1 J̄p2 − J̄p1Jp2

Jp2 J̄p3 − J̄p2Jp3

=
D

(1)>
p1 D

(2)
p2 −D

(2)>
p1 D

(1)
p2

D
(1)>
p2 D

(2)
p3 −D

(2)>
p3 D

(1)
p2

, (11)



which depends only on the spectral reflectance of the sur-
face points and is invariant to the geometric scale factors.

While this example relies on the identification of three
surface points (p1, p2, p3), a similar invariant can be com-
puted using a single surface point and multiple specular
invariant channels collected from a hyper-spectral image.
Determinant-based invariants of this form have been well
studied by Narasimhan et al. [10], who apply them directly
to RGB images and obtain invariants for relatively general
reflectance functions under monochromatic environments.
The analysis presented here can be viewed simultaneously
as an extension of their approach to mixed-illumination en-
vironments as well as a specialization to the dichromatic
model. The latter is an important difference, because it en-
ables the distinction between specular and diffuse material
properties in the resulting invariants.

3.2. Practical Limitations

The utility of the proposed invariants relies on the angu-
lar separation between the diffuse and source colors (D(j)

and S
(j)) in color space. When this separation is small,

the signal-to-noise ratio (SNR) in the subspace image can
be prohibitively low. This is evident, for example, in the
generalized hue image of the globe in the bottom-right of
Fig. 3, where the hue variation within the People’s Repub-
lic of China is seen to be large. In practice, this can be
improved using high dynamic range images. Additionally,
surface points with low SNR can be detected by monitoring
the angle between the source colors S

(j) and the input color
vectors IRGB , and this information can be incorporated into
any robust vision algorithm (see, e.g., [17]).

It is also important to note that in order to compute the
invariants described in the previous sections, we require
knowledge of the source colors S

(j). In a controlled setting,
these colors can be measured by imaging a ‘white’ surface
under the given illuminants; and estimates of the illuminant
colors in an uncontrolled settings can be obtained using ex-
isting methods (e.g., [1,16]). From a practical standpoint, it
is difficult to provide a meaningful quantitative evaluation
of the sensitivity of these invariants to errors in the source
colors since it depends on the spectral reflectance and il-
luminant SPD of a particular scene. We leave a statistical
evaluation for future work, and instead, in the next section
we assess the practical utility of these invariants by evaluat-
ing their performance in a very broad range of applications.

4. Applications and Evaluation
This section demonstrates the utility of the proposed invari-
ants using RGB images for a number of vision algorithms
and compares the results to those obtained using standard
grayscale images Ig = (R +G + B)/3. For RGB images,
when the illumination is a mixture of two known colors, the

Figure 4. Stereo reconstruction under mixed illumination. Top left:
One image of an input stereo pair with blue and yellow illumina-
tion. Top center: Single-color invariant image Jinv(2) from Eqs. 8
and 9 with S in the direction of the blue source. Top right: Two-
color invariant Jinv(1) obtained by projecting to the 1D subspace
orthogonal to both sources. Bottom row: depth map obtained us-
ing the stereo algorithm of Boykov et al. [3] in each case.

two-color specular invariant J1 from Eq. 8 is grayscale and
is equal to Jinv(1) from Eq. 9. On the other hand, a single-
color specular invariant computed from an RGB image in-
cludes two diffuse channels {J1, J2}, which can be com-
bined into a grayscale invariant Jinv(2) using Eq. 9. (This is
equivalent to the representation of Mallick et al. [9].) The
results in this section show that Jinv(2) is effective in situa-
tions where the source color is uniform, and that it performs
much better than Ig . In situations where the scene illumi-
nation is a mixture of two colors, however, Jinv(2) is not
invariant to all specular reflections, and significantly better
results can be obtained using the invariant Jinv(1), which is
derived from the one-dimensional subspace orthogonal to
both source colors.

This section also includes an application of generalized
hue to the problem of material-based segmentation.

4.1. Stereo

The vast majority of stereo algorithms are based (either ex-
plicitly or implicitly) on the assumption that surfaces are
Lambertian. Since specular reflections violate this assump-
tion, stereo reconstructions of specular surfaces are often
inaccurate. In cases of significant specular reflections and
complex illumination conditions, we can improve the accu-
racy of existing stereo algorithms by computing the spec-
ular invariant as a pre-process. This is demonstrated in
Fig. 4, which compares binocular stereo results obtained us-
ing conventional grayscale images Ig , the single-illuminant
(2D subspace) invariant Jinv(2), and the two-color (1D sub-
space) invariant Jinv(1). In this figure, the grayscale and
invariant images are computed from a rectified RGB stereo
pair (top of Fig. 4) and are used as input to the binocular



stereo algorithm of Boykov et al. [3]. The original RGB
image includes two specular highlights caused by blue and
yellow illuminants. The blue highlight is largely eliminated
in the single-color invariant Jinv(2), while image Jinv(1) is
invariant to specular reflections of both colors. As expected,
the results from the grayscale and single-color invariant im-
ages are poor in specular regions, and the depth map ob-
tained using Jinv(1) is significantly improved.

4.2. Optical Flow

Motion estimation through the computation of optical flow
is another example of an application that can benefit from
specular invariance. Recovering dense optical flow relies
on the ‘constant-brightness assumption’, which is violated
when an observer moves relative to a static, specular scene.
As demonstrated by the results in Fig. 5, optical flow in the
presence of specular reflections in a complex illumination
environment can be improved by computing a specular in-
variant as a pre-processing step.

In Fig. 5, an RGB image sequence is captured by a cam-
era translating horizontally relative to a static scene. The
sequence is used to compute a conventional grayscale se-
quence Ig(t), a single-color invariant sequence Jinv(2)(t),
and a two-color invariant sequence Jinv(1)(t). These three
videos are used as input to Black and Anandan’s algorithm
for robust optical flow [2]. The left of Fig. 5 shows a single
image from each sequence, and the right shows the recov-
ered flows in the indicated window. Since the camera un-
dergoes pure translation, the ‘ground-truth’ flow lies along
parallel horizontal lines. The flow recovered using the con-
ventional grayscale and single-color invariant sequences are
shown in green and blue, respectively; and as expected,
these flows are severely corrupted by specular highlights.
In contrast, the flow computed from the mixed-illuminant
invariant (shown in red) is close to the ground truth and is
largely unaffected by these non-Lambertian effects.

4.3. Shape from Shading

The previous two sections demonstrate the utility of the
specular invariant for stereo matching and optical flow, both
of which benefit from the fact that the specular invariant
does not change with viewpoint. Here we show that since
it also preserves diffuse (ideally Lambertian) shading infor-
mation, these specular invariants can also be used to en-
hance photometric reconstruction methods.

As an example, we consider the special case of a single
point light-source in direction l̂, so the specular invariant
image of Eq. 9 reduces to

Jinv(2) = fd

(

(r>1 D)2 + (r>1 D)2
)

1
2
n̂ · l̂.

It is the image formation equation for a Lambertian surface
with an effective albedo given by the first two terms, and it

 

 

Figure 5. Optical flow comparison. An RGB image sequence (top
left) is captured by a camera translating left relative to a specular
apple under yellow and blue illumination. Derived conventional
grayscale Ig(t), yellow-invariant Jinv(2)(t) (left middle), and two-
color invariant Jinv(1)(t) (left bottom) sequences are computed
and used as input to Black and Anandan’s robust optical flow algo-
rithm [2]. Right: flows obtained in the three cases. Green and blue
flows are from grayscale and yellow-invariant sequences, respec-
tively, and both are corrupted by specular reflections. Red flow
is computed from the two-color invariant and is much closer to
ground truth, which is horizontal and to the right.

suggests that the specular invariant can be used directly as
input to Lambertian-based shape from shading algorithms.

The benefit of this approach is demonstrated in Fig. 6,
where we assess the performance of Zheng and Chellappa’s
shape from shading algorithm [20] for both a conven-
tional grayscale image Ig and a single-color invariant image
Jinv(2). The top of the figure shows grayscale and specular
invariant images computed from an RGB image of a pear,
and the middle row shows the surfaces that are recovered
by applying the same algorithm in the two cases. The solid
blue profile in the bottom graph shows that specular reflec-
tions cause severe artifacts when the algorithm is applied to
the grayscale image. In contrast, as shown by the dashed
red profile, one can obtain vastly improved results using the
same algorithm by computing the specular invariant as a
pre-processing step.

4.4. Photometric/Geometric Reconstruction

More generally, the specular invariant can be used to im-
prove the performance of a broad class of Lambertian-based
reconstruction systems in the presence of specular, non-
Lambertian surfaces. This includes, for example, methods
that combine both geometric and photometric constraints
to obtain accurate surface shape [5, 7, 19]. To provide an
example, we use the passive photometric stereo algorithm
described by Lim et al. [7]. This method begins with an
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Figure 6. Shape from shading comparison. An RGB image of a
pear is used to compute conventional grayscale (top-left) and spec-
ular invariant (top-right) images, and these are input to Zheng and
Chellappa’s shape from shading algorithm [20]. Middle row: sur-
faces recovered in both cases. Bottom row: cross-sections of the
recovered surfaces along the indicated horizontal lines.

approximate, piece-wise planar reconstruction obtained by
tracking a small number of features across a video sequence
under (possibly varying) directional illumination. Then, an
iterative method based on uncalibrated Lambertian photo-
metric stereo simultaneously refines the reconstruction and
estimates the unknown illumination directions.

Figure 7 compares the results obtained from an image se-
quence that consists of a moderately specular cylinder mov-
ing under fixed illumination and viewpoint. The shape is es-
timated by applying the same algorithm to both the conven-
tional grayscale sequence (Ig(t)) and the specular invariant
sequence (Jinv(2)) computed from the same RGB data. The
right-most surface in Fig. 7 shows that the reconstruction
obtained using the specular invariant is nearly cylindrical,
while that computed from the conventional grayscale se-
quence is severely corrupted by specular reflections.

4.5. Material-based Segmentation

Sections 4.1–4.4 demonstrate the utility of the first class of
specular invariants for a variety of visual tasks. In this sec-
tion, we demonstrate an applications of the second class of
invariants, which is independent of both the specular reflec-
tions and diffuse shading in an image. Potential applications
of this invariant include tracking and recognition. Here, we

Figure 7. Comparison of shape from combined photometric and
geometric constraints. Left: three RGB frames of a specular cylin-
der moving under fixed view and illumination. Right frame: result
of simultaneous tracking and photometric reconstruction (as de-
scribed by Lim et al. [7]) using both the conventional grayscale
(left) and specular invariant (right) sequences.

consider the application of generalized hue to the problem
of material-based segmentation.

Figure 8 shows an RGB image of a dichromatic scene
under uniform source color (N = 1) as well as a number of
pseudo-colored representations related to the invariants pre-
sented in Sect. 3. The top row shows conventional grayscale
and specular invariant images, and in the latter, the specular
effects (most notably on the green apples, the pumpkin, and
the red pepper) are largely eliminated. The bottom-right of
Fig. 8 shows the generalized hue image given by Eq. 10,
which is invariant to diffuse shading in addition to specu-
lar reflections, and therefore depends only on the spectral
reflectance. The fact that the generalized hue within each
region is relatively constant suggests that it is a useful rep-
resentation for segmentation. The same is not true for the
conventional hue image (shown on the bottom-left) because
the illuminant is not white.

5. Conclusion
This paper presents two classes of photometric invariants
that are derived from color subspaces. They are efficiently
computed from a single image of a dichromatic scene and
are valid in cases of mixed (i.e., spectrally-varying) illumi-
nation environments. The invariants are computed point-
wise and therefore place no restriction on scene texture.

Computation of these invariants requires that the source
color(s) be known a priori, but in the future, we plan to
investigate methods that exploit these representations to re-
cover this information from the data. For scenes such as that
in Fig. 8, for example, it is possible that the entropy of the
generalized hue image provides an indicator of the accuracy
of the estimated source color.

The practical utility of these invariants is demonstrated
by their ability to improve the performance of a wide variety
of vision algorithms, including those for stereo and motion
estimation. As a result, they provide a means for extending
the applicability of existing Lambertian-based algorithms to
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Figure 8. Generalized hue for material-based segmentation. Each
panel shows a pseudo-colored representation that is computed
from the RGB image on the top-left. The generalized hue image
on the bottom-right is useful for segmentation because it depends
only on the spectral reflectance of the surfaces. The same is not
true for a conventional hue image (bottom-left) unless the illumi-
nant is white.

a more general class of non-Lambertian scenes.
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