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Abstract

Color constancy is almost exclusively modeled with di-

agonal transforms. However, the choice of basis under

which diagonal transforms are taken is traditionally ad

hoc. Attempts to remedy the situation have been hindered

by the fact that no joint characterization of the conditions

for {sensors, illuminants, reflectances} to support diagonal

color constancy has previously been achieved.

In this work, we observe that the von Kries compatibil-

ity conditions are impositions only on the sensor measure-

ments, not the physical spectra. This allows us to formulate

the von Kries compatibility conditions succinctly as rank

constraints on an order 3 measurement tensor. Given this,

we propose an algorithm that computes a (locally) optimal

choice of color basis for diagonal color constancy and com-

pare the results against other proposed choices.

1. Introduction

Color constancy refers to the visual system’s treatment

of color as an intrinsic material property. For a given scene,

the human visual system, post adaptation, will settle on the

same perceived color for an object despite changes in illu-

mination. Such an ability to discern illumination-invariant

material descriptors has clear evolutionary advantages and

also largely simplifies (and hence is widely assumed in) a

variety of computer vision algorithms.

To achieve color constancy, one must discount the ef-

fect of changing illumination through transformations of

an observer’s trichromatic sensor response values. While

many illumination-induced transformations are possible, it

is commonly assumed that each of the three sensors reacts

(uniformly across the visual field) with a form of indepen-

dent gain control (i.e., each sensor response value is simply

scaled by a multiplicative factor) [4, 10]. This is termed von

Kries adaptation. Represented in linear algebra, it is equiv-

alent to multiplying each column vector of sensor response

values by a shared diagonal matrix, and is therefore also

referred to as the diagonal model for color constancy.

Note that while the initial von Kries hypothesis applied

only to direct multiplicative adjustments of retinal cone sen-

sors, we follow [4] and use the term more loosely to allow

for general trichromatic sensors. We also allow for a change

of color basis to occur before the per-channel multiplicative

adjustment. (Finlayson et al. [4] refer to this as a general-

ized diagonal model for color constancy, and they term the

change of color basis a sharpening transform.)

The (generalized) diagonal model is at the core of the

majority of color constancy algorithms. Even a number of

algorithms not obviously reliant on the diagonal assumption

in fact rely on diagonal models following a change of color

basis [5, 4]; their choice of color basis is simply not explicit.

Yet, despite the widespread use of the diagonal model, good

choices of color bases under which diagonal transforms can

be taken are only partially understood.

The most theoretically-justified approach to choosing

a color space is predicated on the assumption that the

spaces of illuminant and reflectance spectra are each low-

dimensional. As shown by Finlayson et al. [5, 4], a

two-dimensional linear space of illuminants and a three-

dimensional linear space of reflectances (or vice versa) is

sufficient1 to guarantee diagonal color constancy. This is

an important observation because it provides a principled

method for choosing a von-Kries compatible color space

for a given set of sensors, illuminants, and reflectances.

While the work of Finlayson et al. [5, 4] is a signifi-

cant first step, both empirical and analytical observations re-

veal this characterization to be incomplete. Empirical stud-

ies suggest that diagonal color constancy is adequate un-

der more general conditions than the 2–3 model implies [7].

(This is good news for vision systems that seek color con-

stancy in the real world. While the space of natural illumi-

nants may be sufficiently small, the space of reflectances is

probably not [12].)

From an analytical standpoint, the 2–3 model is known

to be only sufficient1—not necessary—for von Kries adap-

tation. Indeed, once a specific color basis is chosen, one

can expand the set of compatible illuminants well beyond

a two-dimensional space by adding those illuminants that

integrate to zero against (i.e., are black with respect to) all

reflectances in the compatible set [7]. More surprisingly,

1For sufficiency, we must allow complex color bases. See section 4
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one can algorithmically grow the compatible illuminant set

to include additional non-black illuminants as well [16, 7].

This analysis, however, is still incomplete because given

color data, the analysis does not reveal a method for com-

puting the color space to begin with.

While these limitations have been well-documented, a

more complete characterization of the conditions for von

Kries compatibility has yet to be established. As a result,

the development of more powerful systems for choosing op-

timized color bases has been slow. This paper addresses

these issues by answering the following questions:

1. What are the necessary and sufficient conditions that

sensors, illuminants, and materials must satisfy to be

exactly von Kries compatible, and what is the structure

of the solution space?

2. Given measured spectra or labeled color observations,

how do we determine the color space that “best” sup-

ports diagonal color constancy?

We observe that the joint conditions are impositions only

on the sensor measurements, not the physical spectra. This

allows the von Kries compatibility conditions to be suc-

cinctly formulated as rank constraints on an order 3 mea-

surement tensor. Our analysis leads directly to an algorithm

that, given labeled color data, computes a locally optimal

choice of color basis in which to carry out diagonal color

constancy computations. The proposed framework also uni-

fies most existing analyses of von Kries compatibility.

2. Theory

We define two notions of color constancy. The first def-

inition captures the idea that a single adjustment to the sen-

sors will map all material colors seen under an illuminant

E1 to reference colors under (a possibly chosen standard)

illuminant E2. The second definition (also known as rela-

tional color constancy) captures the idea that surface colors

have a fixed relationship between each other no matter what

overall illumination lights the scene. As stated, these two

definitions are not interchangeable. One being true does not

imply the other.

To define the issues formally, we need a bit of notation.

Let R be the smallest linear subspace of L2 functions en-

closing the spectral space of materials of interest. Let E be

the smallest linear subspace of L2 functions enclosing the

spectral space of illuminants of interest. Let ~pR,E be the

color (in the sensor basis) of material reflectance R(λ) ∈ R
under illumination E(λ) ∈ E . In the following, D and D̄

are operators that take color vectors and map them to color

vectors. D is required to be independent of the material R;

likewise, D̄ is required to be independent of the illuminant

E. The ∗ denotes the action of these operators on color vec-

tors.

Figure 1. The 3xIxJ measurement tensor. The tensor can be

sliced in three ways to produce the matrices Ω(j), Λ(i), and Γ(k).

1. ∀E1, E2 ∈ E ,∃D(E1, E2) s.t. ∀R ∈ R
~pR,E2 = D(E1, E2) ∗ ~pR,E1

2. ∀R1, R2 ∈ R,∃D̄(R1, R2) s.t. ∀E ∈ E
~pR2,E = D̄(R1, R2) ∗ ~pR1,E

In the case that D and D̄ are linear (and hence identified

with matrices), ∗ is just matrix-vector multiplication. If D is

linear, we say that the world supports linear adaptive color

constancy. If D̄ is linear, we say the world supports linear

relational color constancy. D being linear does not imply

D̄ is linear, and vice versa. If both D and D̄ are linear, we

say the world supports doubly linear color constancy.

In particular, we shall be interested in the case when D

and D̄ are both furthermore diagonal (under some choice of

color basis). It is proven in [4] that for a fixed color space, D

is diagonal if and only if D̄ is diagonal. So the two notions

of color constancy are equivalent if either D or D̄ is diago-

nal, and we say the world supports diagonal color constancy

(the doubly modifier is unnecessary). The equivalence is

nice because we, as biological organisms, can likely learn

to achieve definition 1, but seek to achieve definition 2 for

inference.

Given a set of illuminants {Ei}i=1,...,I , reflectances

{Rj}j=1,...,J , and sensor color matching functions

{ρk}k=1,2,3, we define a measurement data tensor (see Fig-

ure 1):

Mkij :=

∫

ρk(λ)Ei(λ)Rj(λ)dλ (1)

For fixed values of j, we get 3xI matrices Ω(j) :=
Mkij that map illuminants expressed in the {Ei}i=1,...,I

basis to color vectors expressed in the sensor basis. Like-

wise, for fixed values of i, we get 3xJ matrices Λ(i) :=
Mkij that map surface reflectance spectra expressed in the

{Rj}j=1,...,J basis to color vectors. We can also slice the

tensor by constant k to get IxJ matrices Γ(k) := Mkij .

Since color perception can depend only on the eye’s

trichromatic color measurements, worlds (i.e., sets of illu-

minant and material spectra) giving rise to the same mea-

surement tensor are perceptually equivalent. To understand

diagonal color constancy, therefore, it is sufficient to ana-

lyze the space of measurement tensors and the constraints

that these tensors must satisfy. This analysis of von Kries

compatible measurement tensors is covered in section 2.1.

Given a von Kries compatible measurement tensor (e.g.,

an output from the algorithm in section 3), one may also



Figure 2. Core tensor form: a 3x3x3 core tensor is padded with

zeros. The core tensor is not unique.

be interested in the constraints such a tensor places on the

possible spectral worlds. This analysis is covered in section

4.

2.1. Measurement Constraints

The discussion in this section will always assume generic

configurations (e.g., color measurements span three dimen-

sions, color bases are invertible). Proofs not essential to the

main exposition are relegated to Appendix A.

Proposition 1. A measurement tensor supports doubly lin-

ear color constancy iff ∃ a change of basis for illuminants

and materials that reduces it to the core tensor form of Fig-

ure 2.

More specifically (as is apparent from the proof of Propo-

sition 1 in Appendix A.1), if a single change of illuminant

basis makes all the Ω(j) slices null past the third column,

the measurement tensor supports linear relational color con-

stancy. Likewise, a change of material basis making all the

Λ(i) slices null past the third column implies the measure-

ment tensor supports linear adaptive color constancy. Sup-

port for one form of linear constancy does not imply support

for the other.

The following lemma provides a stepping stone to our

main theoretical result and is related to some existing von

Kries compatibility results (see section 4).

Lemma 1. A measurement tensor supports generalized di-

agonal color constancy iff there exists a change of color ba-

sis such that, for all k, Γ(k) is a rank-1 matrix.

This leads to our main theorem characterizing the space

of measurement tensors supporting generalized diagonal

color constancy.

Theorem 1. A measurement tensor supports generalized

diagonal color constancy iff it is a rank 3 tensor. 2

An order 3 tensor (3D data block) T is rank N if

N is the smallest integer such that there exist vectors

{~an,~bn,~cn}n=1,...,N allowing decomposition as the sum of

outer products (denoted by ◦):

T =

N
∑

n=1

~cn ◦ ~an ◦~bn (2)

2There exist measurement tensors supporting generalized diagonal

color constancy with rank less than 3, but such examples are not generic.

Without loss of generality, let {~an} be vectors of length

I , corresponding to the illuminant axis of the measurement

tensor; let {~bn} be vectors of length J , corresponding to the

material axis of the tensor; and let {~cn} be vectors of length

3, corresponding to the color sensor axis of the tensor. Let

the vectors {~an} make up the columns of the matrix A, vec-

tors {~bn} make up the columns of the matrix B, and vectors

{~cn} make up the columns of the matrix C. Then the de-

composition above may be restated as a decomposition into

the matrices (A, B, C), each with N columns.

Proof. (Theorem 1). First suppose the measurement ten-

sor supports generalized diagonal color constancy. Then by

Lemma 1, there exists a color basis under which each Γ(k)

is rank-1 (as a matrix). This means each Γ(k) can be writ-

ten as an outer product, Γ(k) = ~ak ◦~bk. In this color basis

then, the measurement tensor is a rank 3 tensor in which the

matrix C (following notation above) is just the identity. We

also point out that an invertible change of basis (on any of

A,B,C) does not affect the rank of a tensor, so the origi-

nal tensor (before color basis change) was also rank 3. For

the converse case, we now suppose the measurement ten-

sor is rank 3. Since C is (in the generic setting) invertible,

multi-linearity gives us:

C−1 ∗

(

3
∑

n=1

~cn ◦ ~an ◦~bn

)

=

3
∑

n=1

(

C−1~cn

)

◦ ~an ◦~bn (3)

The right hand side of Equation (3) is a rank 3 tensor with

each Γ(k) slice a rank-1 matrix. By Lemma 1, the tensor

must then support diagonal color constancy.

In the proof above, note that the columns of C exactly rep-

resent the desired color basis under which we get perfect

diagonal color constancy. This theorem is of algorithmic

importance because it ties the von Kries compatibility crite-

ria to quantities (best rank 3 tensor approximations) that are

computable via existing multilinear methods.

3. Color Basis for Color Constancy

Given a measurement tensor M generated from real-

world data, we would like to find the optimal basis in which

to perform diagonal color constancy computations. To do

this, we first find the closest von Kries compatible measure-

ment tensor (with respect to the Frobenius norm). We then

return the color basis that yields perfect color constancy un-

der this approximate tensor.

By Theorem 1, finding the closest von Kries compatible

measurement tensor is equivalent to finding the best rank

3 approximation. Any rank 3 tensor may be written in the

form of equation (2) with N = 3. We solve for M ’s best

rank 3 approximation (decomposition into A, B, C) via Tri-

linear Alternating Least Squares (TALS) [8]. For a rank 3

tensor, TALS forces A, B, and C to each have 3 columns. It



then iteratively fixes two of the matrices and solves for the

third in a least squares sense.

Repeating these computations in lockstep guarantees

convergence to a local minimum. A, B, C can be used to

reconstruct the closest von Kries compatible tensor and the

columns of C exactly represent the desired color basis.

As a side note, the output of this procedure differs from

the best rank-(3,3,3) approximation given by HOSVD [11].

HOSVD only gives orthogonal bases as output and the rank-

(3,3,3) truncation does not in general yield a closest rank 3

tensor. HOSVD may, however, provide a good initial guess.

The following details on TALS mimic the discussion in

[14]. For further information, see [14, 8] and the references

therein. The Khatri-Rao product of two matrices A and B

with N columns each is given by

A ⊙ B :=
[

~a1 ⊗~b1,~a2 ⊗~b2, · · · ,~aN ⊗~bN

]

(4)

where ⊗ is the Kronecker product.

Denote the flattening of the measurement tensor M by

M̃ IJ×3 if the elements of M are unrolled such that the

rows of matrix M̃ IJ×3 loop over the (i, j)-indices with

i = 1, ..., I as the outer loop and j = 1, ..., J as the inner

loop. The column index of M̃ IJ×3 corresponds with the di-

mension of the measurement tensor that is not unrolled (in

this case k = 1, 2, 3). The notation for other flattenings is

defined symmetrically. We can then write:

M̃JI×3 = (B ⊙ A) CT (5)

By symmetry of equation (5), we can write out the least

squares solutions for each of the matrices (with the other

two fixed).

A =
[

(B ⊙ C)
†
M̃J3×I

]T

(6)

B =
[

(C ⊙ A)
†
M̃3I×J

]T

(7)

C =
[

(B ⊙ A)
†
M̃JI×3

]T

(8)

4. Relationship to Previous Characterizations

As mentioned in the introduction, there are two main

sets of theoretical results. There are the works of [7, 16]

that give necessary and sufficient conditions for von Kries

compatibility under a predetermined choice of color space,

and are able to build infinite dimensional von Kries com-

patible worlds for this choice. Then there are the works of

[5, 4] that prescribe a method for choosing the color space,

but only for worlds with low dimensional linear spaces of

illuminants and materials. We omit direct comparison to

the various spectral sharpening techniques [6, 3, 1] in this

Figure 3. The rows of a single Λ(1) slice are placed into a new mea-

surement tensor (rows are laid horizontally above) with all other

entries set to zero. The ∗ marks the nonzero entries.

section, as these methods propose more intuitive guidelines

rather than formal relationships.

Previous analyses treat the von Kries compatibility con-

ditions as constraints on spectra, whereas the analysis here

treats them as constraints on color measurements. In this

section, we translate between the two perspectives. To

go from spectra to measurement tensors is straightforward.

To go the other way is a bit more tricky. In particular,

given a measurement tensor with rank-1 Γ(k), there is not

a unique world generating this data. Any set of illumi-

nants {Ei}i=1,...,I and reflectances {Rj}j=1,...,J satisfying

Equation (1) (with M and ρk fixed) will be consistent with

the data. Many constructions of worlds are thus possible.

But if one first selects particular illuminant or material spec-

tra as mandatory inclusions in the world, then one can state

more specific conditions on the remaining spectral choices.

In [5, 4], it is shown that if the illuminant space is 3 di-

mensional and the material space is 2 dimensional (or vice

versa), then the resulting world is (generalized) von Kries

compatible. As a measurement tensor, this translates into

stating that any 3x3x2 measurement tensor is (complex)

rank 3. However this “3-2” condition is clearly not nec-

essary as almost every rank 3 tensor is not reducible via

change of bases to size 3x3x2. In fact, one can always ex-

tend a 3x3x2 tensor to a 3x3x3 core tensor such that the

Γ(k) are still rank-1. The illuminant added by this exten-

sion is neither black with respect to the materials, nor in the

linear span of the first two illuminants.

The necessary and sufficient conditions provided in [16]

can be seen as special cases of Lemma 1. The focus on

spectra leads to a case-by-case analysis with arbitrary spec-

tral preferences. However, the essential property these con-

ditions point to is that the 2x2 minors of Γ(k) must be zero

(i.e., Γ(k) must be rank-1).

One case from [16] is explained in detail in [7]. They fix

a color space, a space of material spectra, and a single ref-

erence illumination spectrum. They can then solve for the

unique space of illumination spectra that includes the ref-

erence illuminant and is von Kries compatible (in the fixed

color basis) with the given material space.

In our framework, this can be interpreted as follows. The

given input gives rise to a single Λ(1) measurement slice.

The three rows of this slice can be pulled out and placed



in a new measurement tensor of the form shown in Fig-

ure 3. This measurement tensor is then padded with an in-

finite number of zero Λ(i) matrices. The Γ(k) slices of this

new tensor are clearly rank-1 matrices, and thus this tensor

is von Kries compatible in the given color space. More-

over, any measurement tensor with rank-1 Γ(k) that include

the original Λ(1) slice in its span must have Λ(i) slices that

are spanned by the Λ(i) slices in Figure 3. With this fixed

tensor and the fixed material spectra, one can then solve

Equation (1) to obtain the space of compatible illumination

spectra. This space can be described by three non-black il-

luminants and an infinite number of black illuminants (giv-

ing zero measurements for the input material space). Since

the original Λ(1) measurement slice is in the span of the

Λ(i) slices, the original reference illuminant must be in the

solution space.

5. Results

We run our color basis algorithm on the SFU dataset

[2] and compare our resulting color basis against previous

choices (the cone sensor basis, 4 bases derived from differ-

ent low dimensional approximations of spectral data, that of

Barnard et. al. [1], and the “sensor sharpened” basis [6]).

This comparison is done in an experiment described below.

The SFU database provides 8 illuminants simulating

daylight, and 1,995 materials including measured spectra

of natural objects. Fluorescent spectra were removed from

the dataset in hopes of better modeling natural lighting con-

ditions since, in color matching experiments, fluorescent

lamps cause “unacceptable mismatches of colored materi-

als that are supposed to match under daylight” [17].

The low dimensional worlds to which we compare are

taken to have either 3 dimensional illuminant spaces and 2

dimensional material spaces (a 3-2 world) or vice versa (a

2-3 world); this allows computing color bases via the pro-

cedure in [4].

We take two different approaches to approximating spec-

tra with low dimensional vector spaces. In the first approach

(described in [4, 6]), we run SVD on the illuminant and ma-

terial spectra separately. We then save the best rank-3 and

rank-2 approximations. This is Finlayson’s “perfect sharp-

ening” method for databases with multiple lights [6].

As pointed out in [13], if error is to be measured in sen-

sor space, there are alternatives to running PCA on spec-

tra. Given a measurement tensor, the alternative (“tensor-

based”) approach instead applies SVD on the tensor flatten-

ings M̃J3×I and M̃3I×J to get the principal combination

coefficients of the spectral bases (to be solved for) that ap-

proximate the sample spectra. Refer to [13] for details.

For the experiments, color matching functions are taken

to be CIE 1931 2-deg XYZ with Judd 1951 and Vos 1978

modifications [17]. To resolve mismatches in spectral sam-

pling, we interpolate the data using linear reconstruction.

Cone fundamentals are taken to be the Vos and Walraven

(1971) fundamentals [17]. Experiments are run with illumi-

nant spectra normalized with respect to the L2 norm.

We run the same white-patch normalization experiment

as in [4]. As input, we are given a chosen white material W

and an illuminant E. For every other material R, we com-

pute a descriptor by dividing each of its 3 observed color

coordinates by the 3 color coordinates of W (the resulting

3 ratios are then transformed as a color vector to XYZ co-

ordinates so that consistent comparisons can be made with

different choices of color space). In a von Kries world, the

descriptor for R would not depend on the illuminant E. To

measure the non von Kries-ness of a world, we can look at

how much these descriptors vary with the choice of E.

More formally, we define the desriptor as:

d̄
W,R
E = C

[

diag
(

C−1~pW,E
)]−1

C−1~pR,E (9)

The function diag creates a matrix whose diagonal ele-

ments are the given vector’s components. C is a color basis.

C, ~pR,E , ~pW,E are given in the CIE XYZ coordinate system.

To compute a non von Kries-ness error, we fix a canon-

ical illuminant E′ and compute descriptors d̄
W,R
E′ for every

test material R. We then choose some different illuminant

E and again compute descriptors d̄
W,R
E for every test mate-

rial R. Errors for every choice of E and R are computed

as:

Error = 100 ×
||d̄W,R

E′ − d̄
W,R
E ||

||d̄W,R
E′ ||

(10)

For each instance of the experiment, we choose one SFU

test illuminant E and compute the errors over all test materi-

als (canonical illuminant E′ is kept the same for each exper-

imental instance). Each time, the color basis derived from

running our method (labeled as “Optimized”) performed

the best. Figure 4 shows the cumulative histograms for in-

stances in which the stated basis performs the best and worst

relative to the next best basis. Curves represent the percent-

age of material color vectors satisfying the von Kries hy-

pothesis versus the allowable error. Relative performance

between two bases is measured as a ratio of the areas under

their respective histogram curves. The entire process is then

repeated for another canonical E′ to give a total of 4 graphs.

The basis labeled as “Barnard” requires a choice of

canonical illuminant for its specification. Figure 4 shows

two sets of graphs. One in which the canonical illuminant

for testing matches the “Barnard” canonical, and one set in

which the canonical illuminants differ. The second canoni-

cal illuminant is chosen to illustrate the best worst-case rel-

ative performance of our algorithm. “Barnard” optimizes

with respect to a particular canonical illuminant, while our

method effectively optimizes over all light pairs. We also

tested against Finlayson’s “database sharpening” method



Figure 4. Percent vectors satisfying von Kries mapping versus percent allowable error. Each curve represents a different choice of color

space. For low dimensional worlds, the dimension of the illuminant space precedes the dimension of the material space in the abbreviated

notation. Low dimensional approximations were obtained either by running PCA on spectra or by tensor methods described in text. We

show the experimental instances in which our derived basis performs the best and worst relative to the next best basis. The left and right

halves differ in choice of canonical illuminant for testing. Unlike “Barnard”, our method effectively optimizes all pairs of lights.

[6] (using PCA on lights to handle multiple lights). The

results were nearly identical to both of the 2-3 methods.

The SFU optimized color basis given in normalized XYZ

coordinates is:

~c1 = 0.3332 ~X + 0.9386 ~Y + 0.08914 ~Z (11)

~c2 = 0.8779 ~X + 0.4787 ~Y − 0.01423 ~Z (12)

~c3 = 0.1668 ~X + 0.06716 ~Y + 0.9837 ~Z (13)

For baseline comparison, the cone basis (Vos and Walraven)

[17], given in normalized XYZ coordinates is:

~c1 = 0.2741 ~X + 0.9595 ~Y − 0.0654 ~Z (14)

~c2 = −0.3209 ~X + 0.9451 ~Y + 0.0614 ~Z (15)

~c3 = ~Z (16)

6. Discussion

We have argued for a new data-driven choice of color

basis for diagonal color constancy computations. We show

that with respect to some existing metrics, the new choice

leads to a better diagonal model.

While a linear change of color basis poses no problem to

those concerned simply with algorithmic modeling, those

who seek relevance to human biological mechanisms might

object (on theoretical grounds) that sensor measurement ac-

quisition may involve nonlinearities that disrupt the brain’s

ability to linearly transform the color basis downstream.

Fortunately, experimental results based on single-cell re-

sponses and psychophysical sensitivity suggest that any ex-

isting nonlinearities at this level are negligible [15, 12].

Future work includes investigating positivity constraints

on the transformed sensors [3] and running an updated set

of color constancy evaluations as in [9]. Human perceptual

experiments also need to be run to test the perceptual effi-

cacy of the proposed bases.
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A. Proofs

For simplicity, we only consider generic conditions.

A.1. Proof of Proposition 1

We first show that if a measurement tensor supports dou-

bly linear color constancy, then it can be transformed into

the core tensor form of Figure 2 via changes in illuminant

and material bases.

Lemma 2. If ∀j, j′,∃D̄(Rj , Rj′) satisfying the definition

of linear relational color constancy, then ∃ a single change

of basis for the space of illuminants, E , such that ∀j ∈
{1, ..., J} the 3xI matrix Ω(j) is zero past the third column.

Proof. (Lemma 2) By definition of linear relational color

constancy, we have D̄(Rj , Rj′) is linear, and ∀E ∈ E , its

corresponding coordinate vector (in the basis of illuminant

spectra used to create the measurement tensor) ~ε satisfies

Ω(j′)~ε = D̄(Rj , Rj′)Ω(j)~ε. Let Nj ⊆ E be the subset of

E whose coordinate vectors (also in the basis of illuminant

spectra used to create the measurement tensor), {~n}, con-

stitute the null space of Ω(j). Since Ω(j) is rank-3, N⊥
j is 3

dimensional. Given the above, we have that ∀~n

Ω(j′)(~ε + ~n) = D̄(Rj , Rj′)Ω(j)(~ε + ~n) (17)

Ω(j′)~ε + Ω(j′)~n = D̄(Rj , Rj′)Ω(j)~ε + 0 (18)

Ω(j′)~n = 0 (19)

So Nj ⊆ Nj′ . By symmetry under interchange of j and

j′, Nj′ ⊆ Nj , so Nj = Nj′ ∀j, j′. Fix a j, and choose a

basis with the first three vectors spanning N⊥
j and orthog-

onal to Nj , and the rest of the basis vectors spanning Nj

and orthogonal to N⊥
j . Under this choice, every Ω(j) will

have zeros past the third column since the decompositions

Ker(Ω(j))
⊥ ⊕ Ker(Ω(j)) are the same for all j.

By symmetry of Lemma 2, we have a similar statement for

D(Ei, Ei′) and a change of basis for R. Hence we can get

the core tensor form via change of illuminant and material

bases.

Figure 5. Following a change of illuminant basis, the 3xI mea-

surement tensor slice Ω(j) is partitioned into a nonzero 3x3 sub-

block Ω̃(j) and a zero 3x(I − 3) sub-block as shown.

We now prove the converse direction. The ability to

achieve the core tensor form of Figure 2 implies there is

a single change of illuminant basis transforming the mea-

surement tensor’s Ω(j) slices into the block form in Figure

5. Denote the nonzero 3x3 sub-block of Ω(j) as Ω̃(j). Now

define for every pair j, j′ the linear operator Ω̃(j′)Ω̃
−1
(j) . Ob-

serve that this operator maps the columns of matrix Ω(j)

(color vectors of material Rj) to the corresponding columns

of Ω(j′) (color vectors of material Rj′). The nonzero

columns are mapped appropriately by construction, and the

zero columns are mapped to zero by linearity. This means

the that for all basis illuminant spectra of E , the operator

Ω̃(j′)Ω̃
−1
(j) correctly maps the associated material Rj colors

to the appropriate material Rj′ colors. Since color measure-

ments are linear in the illuminant, and the colors associated

with each basis illuminant spectrum are mapped correctly,

we can conclude that Ω̃(j′)Ω̃
−1
(j) acts as D̄(Rj , Rj′) does on

all color vectors. This implies:

D̄(Rj , Rj′) = Ω̃(j′)Ω̃
−1
(j) (20)

Hence, D̄ is linear. Since D̄ does not depend on illumi-

nants, it is invariant to any illuminant basis change and so

the initial change of illuminant basis did not alter whether

the measurement tensor supports linear relational color con-

stancy. Likewise, a change of material basis making all the

Λ(i) slices null past the third column implies D is linear,

and the tensor supports doubly linear color constancy.

A.2. Proof of Lemma 1

Our argument will proceed in two steps. We first prove a

version of the lemma (referred to as Lemma 3) in which

“measurement tensor” is replaced by “core tensor of the

form in Figure 2”. We then prove Lemma 1 using this core

tensor version (Lemma 3).

Lemma 3. A core tensor of the form in Figure 2 sup-

ports generalized diagonal color constancy iff there exists

a change of color basis such that core tensor slice Γ(k) is a

rank-1 matrix ∀k.

Proof. (Lemma 3) We first prove that if the core tensor has

rank-1 Γ(k) slices under some change of color basis, then

D̄(Rj , Rj′) is diagonal ∀j, j′ (under that same color ba-

sis). This implies the core tensor supports generalized di-

agonal color constancy. By equation (20), D̄(Rj , Rj′) =



Ω̃(j′)Ω̃
−1
(j) . Denote the rows of slice Ω̃(j) as ~uT

1 , ~uT
2 , ~uT

3 .

Since the Γ(k) slices are rank-1 matrices, the rows of an-

other slice Ω̃(j′) are γ1~u
T
1 , γ2~u

T
2 , γ3~u

T
3 for some scales

γ1, γ2, γ3. Let ~u∗
k denote the column vector that is dual to

the row ~uT
k (i.e., ~uT

k ~u∗
k′ = δkk′). We then have:

D̄(Rj , Rj′) = Ω̃(j′)Ω̃
−1
(j) (21)

=





γ1~u
T
1

γ2~u
T
2

γ3~u
T
3





[

~u∗
1 ~u∗

2 ~u∗
3

]

(22)

=





γ1 0 0
0 γ2 0
0 0 γ3



 (23)

Thus D̄(Rj , Rj′) is diagonal.

We now prove that support for generalized diagonal

color constancy implies the core tensor has rank-1 Γ(k)

slices under an appropriate change of color basis. If the

core tensor supports generalized diagonal color constancy,

then there exists a change of color basis such that the linear

map D̄(Rj , Rj′) := Ω̃(j′)Ω̃
−1
(j) is in fact diagonal ∀j, j′. It

then suffices to show that D̄(Rj , Rj′) being diagonal for all

j, j′ implies Γ(k) is a rank-1 matrix ∀k. Denote the rows of

slice Ω̃(j) as ~uT
1 , ~uT

2 , ~uT
3 . As before, let ~u∗

1, ~u
∗
2, ~u

∗
3 be their

duals. Denote the rows of slice Ω̃(j′) as ~vT
1 , ~vT

2 , ~vT
3 . Let

γ1, γ2, γ3 be the diagonal elements of D̄(Rj , Rj′). From

equation (20), D̄(Rj , Rj′) being diagonal implies:

~vT
k ~u∗

k′ = γkδkk′ (24)

The uniqueness of the dual relationship implies the row vec-

tors ~uT
k and ~vT

k must be the same up to scale. So the Γ(k)

slices are rank-1 matrices.

Proof. (Lemma 1) We will make use of the following 3 ob-

servations which are not hard to show: (1) changing mate-

rial and illuminant bases does not affect whether the Γ(k)

slices are rank-1 matrices; (2) changing illuminant, mate-

rial, and color bases does not affect whether a tensor sup-

ports generalized diagonal color constancy; (3) the order

in which one changes illuminant, material, and color bases

does not matter – the resulting tensor is the same.

Forward direction: Support for generalized diagonal

color constancy implies rank-1 Γ(k) in some color basis. A

measurement tensor supporting generalized diagonal color

constancy must also support doubly linear color constancy

(which is a looser restriction). The tensor can then be re-

duced to the core tensor form of Figure 2 via changes in

illuminant and material bases (and the core tensor must also

support generalized diagonal color constancy). By the for-

ward direction of Lemma 3, the core tensor has rank-1 Γ(k)

slices under some color transform. This implies the original

measurement tensor has rank-1 Γ(k) slices under the same

color transform.

Backward direction: Rank-1 Γ(k) in some color basis

implies support for generalized diagonal color constancy.

First transform to the color basis in which the Γk slices are

rank-1 matrices. We now show that a measurement tensor

with rank-1 Γ(k) ∀k can be transformed into the core ten-

sor form of Figure 2 via changes in illuminant and material

bases; the resulting core tensor also has rank-1 Γ(k) slices

by observation 1.

Without loss of generality we consider the Ω(j) slices.

The Λ(i) slices proof is symmetric. The following compu-

tation shows that any column i of the 3xI matrix Ω(j) can

be (in the generic case) written as a linear combination of

the first 3 columns. Let ~uT
k be a row vector consisting of

the first 3 elements of the k-th row of Ω(j). Let vk be the

k-th element of the i-th column of Ω(j). We seek weights

w1, w2, w3 such that:





~uT
1

~uT
2

~uT
3









w1

w2

w3



 =





v1

v2

v3



 (25)

Since the leftmost matrix is a 3x3 invertible matrix, there

exists a unique solution. Suppose we chose a different slice

Ω(j′). The rows of this matrix are scales of the original Ω(j)

rows because Γ(k) is a rank-1 matrix ∀k. Let the scales

be γ1, γ2, γ3. The new system of equations to solve (with

unknown weights w′
1, w

′
2, w

′
3) is:





γ1~u
T
1

γ2~u
T
2

γ3~u
T
3









w′
1

w′
2

w′
3



 =





γ1v1

γ2v2

γ3v3



 (26)

This is the same linear system as (25) and therefore pos-

sesses the same unique solution. We get that w′
k = wk.

If we replace the i-th illuminant spectrum Ei(λ) with the

spectrum Ei(λ) − w1E1(λ) − w2E2(λ) − w3E3(λ), then

the transformation is an invertible change of basis (since

the initial illuminant samples were linearly independent),

the resulting set of illuminant spectra spans the same linear

space, and the i-th column of Ω(j) is now zero for all j. Re-

peating this for every i > 3 makes Ω(j) zero past the third

column for all j.

By symmetry of the argument for the Λ(i) slices, we re-

duce the measurement tensor to the core tensor form of Fig-

ure 2 via changes in illuminant and material bases. Note

furthermore that the core tensor’s Γ(k) slices must also be

rank-1 matrices since the Γ(k) slices before changes in illu-

minant and material bases were. By the backward direction

of Lemma 3, the core tensor supports generalized diagonal

color constancy. This implies that the original measurement

tensor also supports generalized diagonal color constancy.


