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Abstract

We present a method for simultaneously recovering

shape and spatially varying reflectance of a surface from

photometric stereo images. The distinguishing feature of

our approach is its generality; it does not rely on a specific

parametric reflectance model and is therefore purely “data-

driven”. This is achieved by employing novel bi-variate

approximations of isotropic reflectance functions. By com-

bining this new approximation with recent developments in

photometric stereo, we are able to simultaneously estimate

an independent surface normal at each point, a global set

of non-parametric “basis material” BRDFs, and per-point

material weights. Our experimental results validate the ap-

proach and demonstrate the utility of bi-variate reflectance

functions for general non-parametric appearance capture.

1. Introduction

Capturing the “appearance” of objects from images has

become increasingly important in recent years, especially

as computer graphics applications demand a level of photo-

realism unattainable by hand modeling. By “appearance”,

we mean a model that is able to predict images of the ob-

ject under all possible view and illumination conditions. To

adequately sample the appearance of an object which truly

varies arbitrarily in both shape and reflectance would re-

quire images from every combination of view and illumi-

nant, which is impractical in most situations. Fortunately,

objects in the real world typically exhibit regularity that

can be exploited to drastically reduce the number of im-

ages required. Choosing constraints that are valid (or close

to valid), yet powerful enough to be useful in practical sys-

tems is thus essential to appearance capture.

In this paper, we consider the special case of photometric

stereo – recovering an explicit appearance model (i.e., sep-

arate shape and reflectance models) from images taken at a

single viewpoint under varying, known illumination. This

is an important special case of appearance capture, since it

Figure 1: (Left) One of 102 single-viewpoint input images.

(Right) Rendering from a novel viewpoint, using shape and

reflectance acquired by our algorithm.

relies solely on photometric cues, avoids solving the cor-

respondence problem, and is relatively simple to extend to

multiple views if necessary. It is also important because ex-

plicit appearance models of this kind have been shown to be

useful for visual tasks such as face recognition [3]. Simul-

taneously recovering surface normals and reflectance from

such input data remains a challenging problem, however.

Typically, the form of the reflectance function is restricted

by either assuming a parametric model or by the existence

of a set of homogeneous reference objects in the scene. The

obvious downside to these methods is reduced generality –

if the materials in the object being measured differ from the

assumed reflectance models, the accuracy of the recovered

appearance model will be poor.

Our technique differs from most previous approaches

in that we do not impose a parametric model on the re-

flectance function. Rather, we restrict the form of the re-

flectance function to satisfy empirically observed physical

properties shared by many materials. These physical prop-

erties allow us to reduce the domain of the bi-directional

reflectance distribution function (BRDF) from a function

of four variables to a function of two variables without a

significant loss in accuracy. This approximation has both

theoretical and empirical motivation. Theoretically, Stark

et al. [23] have shown that many of the parametric BRDF
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models commonly used in computer graphics are in fact bi-

variate functions, which suggests that bi-variate approxima-

tions can have at least some level of accuracy. They also

show impressive empirical results for (an albeit small) set

of measured isotropic BRDFs. We provide additional anal-

ysis in this paper, both theoretical and empirical, to further

support the validity of bi-variate BRDF approximations.

Our main contributions are (1) to present a tech-

nique capable of simultaneously recovering shape and non-

parametric reflectance from photometric stereo, and (2) to

introduce bi-variate representations of reflectance as a use-

ful tool for vision applications.

2. Background and Related Work

Photometric stereo has long been an active area of re-

search in computer vision. Early work, such as that by

Woodham [27] and Silver [22] made strong assumptions on

the reflectance function across the surface, typically requir-

ing either explicit knowledge of the BRDF or simple para-

metric models.

Much of the emphasis in subsequent research has been

to weaken constraints on the reflectance function, thus en-

abling photometric stereo to work on broader classes of ob-

jects. For example, it has been observed that the reflectance

of many materials is well approximated by the sum of a

specular and a diffuse lobe, which has motivated an entire

line of research [4, 2, 11, 15]. Many of these approaches as-

sume a Lambertian diffuse lobe, while not imposing a para-

metric form on the specular lobe. Examples include Cole-

man and Jain [4] and Barsky and Petrou [2] who treat spec-

ular pixels as outliers as well as Schlüns and Wittig [20],

Sato and Ikeuchi [19], and Mallick et al. [14] who assume

the color of the specular lobe differs from the color of the

diffuse lobe, allowing separation of the specular and diffuse

components.

A different approach is to place reference objects in the

scene that have similar reflectance to the test object. This

method was used in early photometric stereo research [22]

and was later reexamined by Hertzmann and Seitz [8, 9].

The basic idea is that the reference objects provide a di-

rect measurement of the BRDFs in the scene, which is then

matched to points on the test object. This works for arbi-

trary BRDFs, but requires reference objects of the same ma-

terial as the test object. Spatially varying BRDFs can also

be handled by assuming that the BRDF at each point on the

test object is a linear combination of the “basis” BRDFs de-

fined by the set of reference objects. This approach to spa-

tially varying BRDFs is similar in spirit to work by Lensch

et al. [13], although their method uses parametric (Lafor-

tune) BRDFs and assumes known surface shape.

Building upon the idea of considering the reflectance at

each surface point to be a linear combination of a small set

of BRDFs, Goldman et al. [7] removed the need for refer-

ence objects by iteratively estimating the basis BRDFs and

surface normals. Their method assumes an isotropic Ward

model for each basis material, whose parameters are esti-

mated at each iteration. While it requires the solution of a

difficult optimization problem, their approach is still one of

a very few capable of recovering surface normals and rela-

tively flexible parametric BRDFs in tandem.

While parametric models are very good at reducing the

complexity of BRDFs, they are usually only valid for a lim-

ited class of materials [16, 23]. An alternative is to exploit

physical properties common to large classes of BRDFs.

For example, it is well known that all real-world BRDFs

satisfy energy conservation, non-negativity, and Helmholtz

reciprocity. Utilizing these properties, while not as sim-

ple as utilizing parametric models, is nonetheless possi-

ble. Helmholtz stereopsis, introduced by Zickler et al.

[28, 29], is one such technique, exploiting reciprocity to

obtain (multi-view) surface reconstruction with no depen-

dence the BRDF. Isotropy is another physical property

which holds for materials without “grain”. While isotropy

is implicitly assumed in almost all parametric models used

in computer vision, only recently has it been explicitly uti-

lized for photometric stereo. Tan et al. [24] use both sym-

metry and reciprocity present in isotropic BRDFs to resolve

the generalized bas-relief ambiguity. More relevant to this

paper is work by Alldrin and Kriegman [1], who show that

isotropy, with no further assumptions on surface shape or

BRDF, can be utilized to recover the surface normal at each

surface point up to a plane. In particular, no parametric

model is used and the BRDF is allowed to vary arbitrarily

across the surface.

Another recent development in non-parametric BRDF

acquisition is the concept of factorizing sampled BRDF val-

ues into the product of a material weight matrix and a BRDF

matrix. The most prominent of these approaches is work by

Lawrence et al. [12] who solve the factorization problem

using alternating constrained least squares. Their algorithm

is again based on the assumption that spatially varying re-

flectance can be represented as a weighted sum of a small

set of materials. Although their technique is primarily fo-

cused on BRDF acquisition, they also show limited exam-

ples of surface normal estimation.

In this paper, we build upon and improve three recent

advances. First, we exploit isotropy, as in [1], to constrain

surface normals to a single degree of freedom. Second,

we utilize a non-parametric bi-variate approximation of the

BRDF. Finally, we assume that surfaces are composed of a

small number of “basis” materials and solve a factorization

problem similar to that of Lawrence et al. [12], but tailored

to our differing setup (single viewpoint, recovery of surface

geometry, fewer image measurements).



3. Imaging Setup and Assumptions

Consider a photometric stereo setup with fixed object,

fixed orthographic camera, and m images taken under dis-

tant point source illumination, with known source positions

scattered about the sphere of incident directions. From this

set of images, we wish to recover the surface normal and

BRDF at each point on the object’s surface. Recent work

by Alldrin and Kriegman shows how to reliably recover the

azimuthal component of each surface normal (relative to the

camera coordinate frame), by assuming that the BRDF at

each point is isotropic [1]. The primary advantage to their

approach is that the BRDF is allowed to vary arbitrarily in

both the spatial and angular domain, so long as the BRDF

is isotropic. We seek to recover the elevation angle of the

normal by imposing two additional constraints : (1) that the

surface be composed of a small set of fundamental mate-

rials, and (2) that the BRDF at each point is well approxi-

mated by a bi-variate function.

More specifically, suppose the BRDF at each surface

point is a linear combination of a small set of basis BRDFs.

Then the BRDF at each point can be compactly represented

as the product of two rank-constrained matrices,

H = WB
⊤ (1)

where H ∈ R
n×d is a discretization of the BRDF at each

of n surface points, B ∈ R
d×k contains a discretization

of k basis BRDFs, and W ∈ R
n×k weights the contribu-

tion of each basis BRDF at each surface point. For this

decomposition to be physically valid, W and B should be

non-negative and B should satisfy BRDF constraints such

as energy conservation and reciprocity.

3.1. Bivariate BRDF Assumption

A general isotropic BRDF is a function of three dimen-

sions, and is typically written ρ(θi, θo, |φi − φo|), where

(θi, φi) and (θo, φo) are the spherical coordinates of the di-

rections of incident and reflected flux relative to a local co-

ordinate system. (The absolute value, |φi − φo|, is some-

times discussed as a separate property called bilateral sym-

metry, but we do not do so here.) In what follows, it will

also be convenient to represent the incident and exitant di-

rections using unit vectors s and v in the same coordinate

system.

An alternative parameterization is the halfway/difference

parameterization of Rusinkeiwicz [18]. Here, an isotropic

BRDF is expressed as ρ(θh, θd, φd), where θh (the half-

angle) is the angle between the surface normal and the bi-

sector vector s + v, and (θd, φd) are the spherical coordi-

nates of the source vector computed relative to the bisector.

In particular, θd (the difference angle) is the angle between

the source vector and the bisector vector.

Both of these parameterizations represent all three di-

mensions of the isotropic BRDF domain. The possibility

that general isotropic BRDFs might be well-represented by

simpler bi-variate functions was first formally studied by

Stark, Arvo and Smits [23]. Their work is motivated by

the observation that a number of parametric BRDF models

(Lafortune, Phong, Blinn, and Ward) are inherently bivari-

ate functions. Drawing from a combination of empirical

observations and theoretical insights, they propose the ‘ασ-

parameterization’ for bivariate BRDFs and show this to rep-

resent a small number of measured BRDFs [26] with high

fidelity. In this paper, we use an alternative bivariate pa-

rameterization based on the half-way and difference angles,

ρ(θh, θd). One can show that there is a bijective mapping

between (θh, θd) and (α, σ).

3.2. Image Formation Model

Suppose we know the true surface normal at each sur-

face point. Then this imputes a half-angle for each surface

point and light source direction from which we form a data

matrix, E ∈ R
n×m. The i, jth entry is simply the image

intensity at the ith surface point illuminated by the jth light

source. If we assume the BRDF at each point is a linear

combination of a set of basis BRDFs, then the BRDF of the

ith point can be expressed as H
⊤

i = w
⊤

i B
⊤ ∈ R

1×d, where

wi ∈ R
k×1 is a set of material weights and B ∈ R

d×k con-

tains a discretization of the basis BRDFs. The image inten-

sity at the ith point under the jth illuminant is then modeled

as,

eij = H
⊤

i Φij max{0,n⊤

i sj}

= H
⊤

i Φ̃ij

= w
⊤

i B
⊤
Φ̃ij (2)

where max{0,n⊤

i sj} accounts for shading and Φij ∈
R

d×1 is an interpolation vector mapping the domain of

BRDF Hi to the half-angle / difference angle of the ijth

measurement.

Equation 2 is easily extended to multiple color channels

by slightly altering the BRDF matrix B and interpolation

matrices, Φ̃ij . Suppose we wish to handle c color channels;

then we simply fold each color channel into the BRDF dis-

cretization (e.g., B ∈ R
dc×k) and modify the interpolation

matrices appropriately. Alternatively, color can be encoded

in the weight matrix W, which allows arbitrary color scal-

ing per point. This may be useful for surfaces that vary in

color, but not in monochromatic reflectance.

4. Alternating Constrained Least Squares

If W = (w1, ...,wn)
⊤

and B are unknown, then we can

estimate them using the method of alternating constrained

least squares (ACLS), as described by Lawrence et al. [12].



Figure 2: Surface plot showing discretization of one color

channel of a basis BRDF (red channel of the 2nd basis

BRDF recovered from the APPLE dataset).

ACLS works by alternately updating W and B to minimize

the residual between measured intensities and predicted in-

tensities. In each iteration, the material weights W are up-

dated by fixing B and solving the resulting constrained con-

vex optimization problem after which B is updated by fix-

ing W and solving another constrained convex optimization

problem. ACLS is guaranteed to find a local minimum since

each update step is guaranteed to not increase the resid-

ual. While this means the algorithm may not converge to

a global minimum, in practice one can perform multiple tri-

als with random initialization or use domain knowledge to

initialize W and B near the optimal solution.

Since the elevation angles of the surface normals are also

unknown, we also need to incorporate this into our opti-

mization procedure. The simplest thing to do is to simply

alternate between all three sets of parameters. However,

since the normals are constrained to a single degree of free-

dom, it’s possible to find a global minimum over material

weights and surface normals simultaneously. This vastly

improves convergence over three-way alternating optimiza-

tion. We cover each step of our optimization procedure in

the following subsections.

4.1. Initialization and Pre­Processing

The first step of our algorithm is to recover the azimuth

angle of the surface normals using the technique of Alldrin

and Kriegman [1]. Their algorithm is based on the fact that

the 2D reflectance field (image intensity as a function of

source direction) is symmetric about the plane spanned by

the normal and viewing direction. This plane, which corre-

sponds to the azimuth angle of the surface normal, can be

estimated from a cone of light source directions parallel to

and centered about the image plane. Thus, our algorithm

also requires at least a cone of light source directions cen-

tered about the optical axis. More details on this step can be

found in their paper [1].

Before starting the optimization process we also ran-

domly initialize W, B, and θn (the elevation component

of the surface normals).

4.2. Update B with Fixed n and W

In this step, we solve for the BRDF matrix B that min-

imizes the L2 error between image measurements eij and

our image formation model w
⊤

i B
⊤
Φ̃ij . From equation 2,

we set up the following constrained least squares problem,

arg min
x

‖Ax − b‖2

Subject to,

x ≥ 0 (3)

where x ∈ R
dk×1 is a vector encoding the entries of B in

column-major order. A and b can be constructed as,

A =




A1

...

An


 b =




b1

...

bn




Ai =w
⊤

i ⊗ Φ̃
⊤

i bi =E
⊤

i (4)

where ⊗ denotes the Kronecker product.

4.3. Update W and n with Fixed B

For the moment, suppose both n and B are fixed.

From equation 2, we set up the following constrained least

squares problem for each surface point,

arg min
wi

‖Aiwi − bi‖
2

Subject to,

wi ≥ 0 (5)

where,

Ai =Φ̃
⊤

i B bi =E
⊤

i (6)

with Ei = (e1, ..., em) the set of measurements at the ith

surface point and Φ̃i ∈ R
d×m the corresponding interpola-

tion matrix. The solution to this optimization problem is the

set of weights that minimizes the L2 error of image mea-

surements to intensities predicted by the image formation

model, subject to non-negativity.

Since the weights for each point are estimated indepen-

dently, the size of each constrained least squares problem is

quite small (k variables). The global minimum with respect

to both the weights and surface normal can be obtained by

exhaustively searching over all possible n (tractable since

there is only one degree of freedom).



5. Additional Constraints

In practice, we found it necessary to impose additional

regularization constraints based on domain knowledge of

our problem. Specifically, we impose smoothness and

monotonicity over the BRDF domain, and we re-weight the

constraints in Equations 3 and 5 to prevent specular high-

lights from dominating the solution. Empirically, these con-

straints improved convergence as well as the visual quality

of the recovered basis BRDFs.

The need for regularization is caused by a number of fac-

tors. First, specularities usually occur in a very compact re-

gion of the BRDF domain, and within this region the BRDF

value can vary by orders of magnitude. As a result, these

regions of the BRDF domain are very sensitive to misalign-

ment of light sources; a very small misregistration can lead

to large changes in predicted intensity. This is exacerbated

by the fact that memory constraints prevent us from using

all available pixel measurements when updating the BRDF

matrix B.

To introduce a bias toward smooth BRDFs, let D1 ∈
R

d×d be a discrete operator approximating the gradient over

the BRDF domain. We add the following quadratic penalty

term to our objective function:

λD1(D1Bl)
⊤(D1Bl), for l = 1...k. (7)

This can be incorporated into Equation 3 by augmenting A

and b with rows,

AD1 =
√

λD1

(
Ik ⊗ D

⊤

1

)
bD1 =0 (8)

where Ik is a k × k identity matrix and ⊗ denotes the Kro-

necker product. In our experiments, we non-linearly weight

the smoothness penalty so that specular regions (i.e., near

θh = 0) are penalized less strongly than non-specular re-

gions.

Monotonicity can be enforced by adding the following

inequality constraints:

Bh,l ≥ Bh+1,l, for l = 1...k. (9)

It is also quite simple to enforce monotonicity over a por-

tion of the domain (e.g., θh ∈ [0, π/4]) by only including

inequalities from the desired subset of the domain. Mono-

tonicity is particularly important in specular portions of the

BRDF domain, where undersampling and registration er-

rors could otherwise cause unnatural visual artifacts in re-

covered BRDFs.

5.1. Confidence Weights

While there are relatively few measurements of specular-

ities, such measurements carry a lot of weight since specu-

lar pixels typically have intensities more than an order of

magnitude stronger than other pixels. To prevent such mea-

surements from overly biasing the final solution, we weight

each constraint in Equations 3 and 5 according to the inten-

sity of the corresponding measurement. In our experiments,

we found the following ad-hoc weights to work well,

cij = (log(1 + eij)/eij)
3. (10)

6. Discussion on ACLS Procedure

While our optimization procedure is computationally

similar to that of Lawrence et al. [12], our methods dif-

fer in important ways. At a high level, our primary goal is

to recover shape and reflectance in order to extrapolate ap-

pearance to novel viewpoints. Lawrence et al., on the other

hand, assume they have data from multiple viewpoints as

input and seek to obtain compact and separable representa-

tions of SVBRDFs for editing purposes. Our data is also

very different from [12] in that we consider rather arbitrary

geometry instead of focusing on near-planar surfaces.

The two approaches also differ at a more technical level.

In their optimization, Lawrence et al. alternate between

three sets of variables : BRDF basis, material weights, and

surface normals. In this paper, we alternate over only two

sets of variables because we find globally optimal material

weights and surface normals in each iteration of our op-

timization algorithm. As a result, our method should be

less prone to local minima. In addition, in order to boot-

strap their reconstruction, Lawrence et al. use a parametric

BRDF model (the Ward model), while in our work we have

purposefully avoided the use of parametric BRDF models at

any stage of the process. This yields an acquisition system

for isotropic surfaces that is as general as possible. Another

difference is how scattered data is handled. In [12], mea-

surements are interpolated into the BRDF domain, while in

our method, the BRDF domain is interpolated onto the mea-

surements. The effects of this change are twofold : (1) each

measurement counts equally in our method, and (2) interpo-

lation of the basis BRDFs is more numerically stable than

interpolation of the measured data. A similar interpolation

strategy is described in [25], although our method was de-

rived independently.

7. Experimental Validation

To validate our approach, we ran experiments on two

datasets consisting of images of a gourd and an apple, re-

spectively. For each dataset, we acquired high-dynamic

range images in a dark room (see Figure 5) with the cam-

era and light sources placed between 1.5 and 2 meters from

the test object (both test objects have diameter between 5

and 10 centimeters). Light source directions and intensities

were measured from specular and diffuse spheres placed in

the scene with sources spanning much of the upper hemi-

sphere of lighting directions. 102 images were acquired for
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Figure 3: GOURD (top) / APPLE (bottom) shape reconstruction results. (a,e) Phase map showing the azimuthal components

of the surface normal field, recovered as in [1]. (b,f) Recovered normal map, encoded to RGB as r = (nx + 1)/2, g =
(ny + 1)/2, b = nz . (c,g) Surface obtained by integrating the recovered normal field. (d,h) Detail of the surface; note the

recovered mesostructure.

the GOURD dataset and 112 for the APPLE dataset. For

both datasets, we assumed three basis BRDFs during re-

construction.

Figure 3 shows the shapes recovered by our algorithm

on the GOURD and APPLE datasets. While the overall

shape of each surface is simple (we sought to avoid cast

shadows and interreflections which are not modeled by our

algorithm), note that we accurately recover both the coarse

and fine-scale geometric structure (i.e., macrostructure and

mesostructure) of the object. In terms of appearance cap-

ture, recovery of surface mesostructure plays an important

role (observe specular highlights in Figures 5 and 6).

Figure 4 shows the recovered basis BRDFs and material

weight maps for the GOURD and APPLE datasets. Note the

clear separation of materials visible in the material weight

maps as well as the varying shape of specular lobes and

body color in the recovered BRDFs.

The most important test of our algorithm is the ability

to accurately generate novel views of the test objects. As

seen in Figure 5, we are capable of rendering novel views

that closely match real photographs. In particular, note the

accurate reproduction of specular highlights which depend

strongly on both the BRDF at each surface point as well

as the surface mesostructure. As a final test, we rendered

each object from a variety of viewpoints under complex il-

lumination conditions (see Figures 1 and 6 as well as the

supplementary material). While this is purely qualitative,

the resulting images are convincing.

8. Conclusion

Simultaneously estimating shape and reflectance of a

surface from a limited set of images is a challenging prob-

lem that has traditionally been solved by restricting the re-

flectance function to a limited, parametric model. While

this works as long as the surface does not deviate from

the assumed model, it is clearly desirable to relax these

restrictions. In this paper we demonstrated a technique

which is truly non-parametric, and can yield more “data-

driven” solutions. Our approach combines and builds upon

recent work in photometric stereo and related fields, and ad-

vances the state-of-the-art in appearance capture from a sin-

gle viewpoint. We also demonstrate the utility of bi-variate

approximations of reflectance functions for appearance cap-

ture.



(a) (b)

(c) (d)

Figure 4: (Top) Material weight maps recovered from the

GOURD and APPLE datasets. Red, green, and blue chan-

nels correspond to (normalized) weights of the first, second,

and third basis BRDFs, respectively. (Bottom) Spheres ren-

dered with the first, second, and third basis BRDFs recov-

ered from the GOURD and APPLE datasets.
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Figure 5: (Top) Real images of the GOURD and APPLE test objects. (Bottom) Images rendered using recovered shapes and

BRDFs. Images in columns 1 and 3 are taken from the training data. Images in columns 2 and 4 are from novel viewpoints.

Figure 6: Images rendered in novel view and illumination conditions using shape and reflectance acquired by our algorithm.




