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A B S T R A C T

In this work we present an inverse finite-element modeling framework for constitutive
modeling and parameter estimation of soft tissues using full-field volumetric deformation
data obtained from 3D ultrasound. The finite-element model is coupled to full-field
visual measurements by regularization springs attached at nodal locations. The free
ends of the springs are displaced according to the locally estimated tissue motion,
and the normalized potential energy stored in all springs serves as a measure of
model-experiment agreement for material parameter optimization. We demonstrate good
accuracy of estimated parameters and consistent convergence properties on synthetically
generated data. We present constitutive model selection and parameter estimation for
perfused porcine liver in indentation, and demonstrate that a quasilinear viscoelastic
model with shear modulus relaxation offers good model-experiment agreement in terms
of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm
RMS error).

c� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Computational models of organ and tissue mechanical re-
sponse are beginning to play a significant role inmodern com-
puterized medicine and have become integral components of
image-guided surgery and interventions (Carter et al., 2005;
Clatz et al., 2005; DiMaio and Salcudean, 2005; Alterovitz et al.,
2006; Cash et al., 2007; Archip et al., 2007). Such image-guided
tasks require close interplay of computational biomechani-
cal models with preoperative and intraoperative imaging. The
development of appropriate models is challenging for two
reasons. The first difficulty lies in the formulation of a suitable
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constitutive law capable of capturing the large-strain, non-
linear, viscoelastic response of tissues. The second challenge
involves the development of experimental testing protocols
appropriate for unique identification of the material parame-
ters. In addition, the significant subject-to-subject variability
contributes to a strong need for patient-specific (personal-
ized) models, which may be generated and parameterized
with clinically feasible testing protocols.

Material properties of soft tissues vary significantly
between in vivo and in vitro settings (Fung, 1993; Miller and
Chinzei, 1997; Miller et al., 2000; Gefen and Margulies, 2004;
Miller, 2005; Kerdok et al., 2006). Current in vivo soft tissue

1751-6161/$ - see front matter c� 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jmbbm.2008.08.006



Author's personal copy

J O U R N A L O F T H E M E C H A N I C A L B E H AV I O R O F B I O M E D I C A L M A T E R I A L S 2 ( 2 0 0 9 ) 1 9 2 – 2 0 1 193

testing is dominated by indentation due to the limited access
requirements, simplicity of the instrumentation, and low
risk of injury associated with the procedure (Balakrishnan
and Socrate, 2008). The single force–displacement history
obtained during conventional indentation experiments is
governed by the mechanical response of the whole material
domain, combining near-field (large strain) and far-field (low
strain) contributions. Much of the information related to
the interplay between shear and bulk compliance in the
complex deformation field beneath the indenter is lost
when capturing this single output. Therefore, supplemental
experimental methods, such as secondary indentation
sensors (Balakrishnan and Socrate, 2008), tissue surface
tracking (Einstein et al., 2005; Evans et al., 2007), or
independent tests of bulk compliance (i.e. confined tissue
compression) are necessary for well-conditioned parameter
identification. Image-based characterization methods are
a promising solution, as they provide the means for
noninvasive, in vivo estimation of material parameters and
offer improved sensitivity and uniqueness of recovered
parameters.

In this paper, we propose a general inverse finite-element
modeling framework for constitutive modeling and parame-
ter estimation of soft tissues using full-field volumetric de-
formation data obtained from 3D ultrasound. We validate
the parameter estimation method on synthetically generated
data and perform constitutive model selection for perfused
porcine liver in indentation. While we limit our investiga-
tion to an experimental protocol which involves a single in-
denter displacement rate, the volumetric imaging captures
local tissue strain rates in the range from zero to the max-
imum rate beneath the indenter. By exploring agreement
with the image-based internal tissue displacement field, we
determine an appropriate constitutive law and material pa-
rameters, which capture the time-dependent response of the
tissue.

2. Methods

In this paper we describe a liver indentation experimental
system and an inverse finite-element modeling framework,
which takes advantage of concurrent image data obtained
from 3D ultrasound imaging. While the liver is an
inhomogeneous organ with complex anatomical structure,
our model approximates it as a homogeneous and isotropic
material. The characteristic length of the hepatic lobules,
the functional units of the organ, is on the order of
1 mm. Therefore, the concept of homogenizing the tissue is
justifiable for deformation fields applied over longer length
scales (approximately 1 cm). In this work we also neglect the
effects of the liver capsule and minimize the contributions
from vasculature by examining the parenchyma with 3DUS
and avoiding the placement of the indenter over large vessels.
The proposed approach relies on the following components:
experimental indentation apparatus, volumetric imaging
system, a nonrigid registration algorithm for deformation
field estimation, and a nonlinear parameter optimization
algorithm. The design considerations and performance of
each component are described in the following sections. In

addition, we present a validation study and an application of
this framework to constitutive modeling of perfused porcine
liver in indentation.

2.1. Experimental setup

2.1.1. Liver perfusion apparatus
Due to changes in the liver’s mechanical properties ex
vivo (Kerdok, 2006; Nava et al., 2007), it is important to
measure the organ response in its physiological conditions.
Measurement of boundary conditions and instrument access
are often the limiting factors in in vivo testing. To address
these challenges, we used an ex vivo perfusion system,
described by Kerdok (2006) and depicted in Fig. 1. This system
allowed us to perform organ tests with control of boundary
conditions and near in vivo tissue state. The whole porcine
liver was perfused with a heated perfusate (five liters of
Dextrose 5% Lactated Ringers Solution (D5RL) and one liter of
6% Hetastarch (Henry Schein, Melville, NY)) under physiologic
pressures, with a mean portal venous pressure of 7.98 mmHg,
a mean hepatic arterial pressure of 94.77 mmHg, and at a
mean temperature of 33 ◦C.

Following the experimental protocol described in Kerdok
et al. (2006) and Kerdok (2006), the liver was indented at
2 mm/s to a depth of 9.2 mm with a 12 mm diameter,
flat, cylindrical indenter actuated by Electroforce ELF 3200
(Bose Corporation EnduraTEC Systems Group, Minnetonka,
MN, USA) material testing system. The system measures
displacement using a linear variable differential transformer
(Schaevitz MHR-250, Measurement Specialties, Hampton, VA,
USA) with ±6.3 mm travel (0.559 µm RMS alone, 3.9 µm RMS
with controller), force using a 22 N submersible load cell
(0.49 mN RMS alone, 13 mN RMS with controller) (Honeywell
Sensotec Sensors Model 31, Columbus Ohio), and acceleration
using a ±50 g accelerometer (0.024 V RMS alone, 0.204V RMS
with controller) (Kistler, Amherst, NY, USA).

2.1.2. Volumetric imaging
The volumetric deformation was imaged with the 3D
ultrasound probe (SONOS 7500, Philips Medical Systems,
Andover, MA, USA) placed below the tissue sample, as shown
in Fig. 1. The 2–4 MHz probe acquires data at the rate of
26 frames per second, which is subsequently streamed over
an Ethernet connection to a PC workstation for storage and
processing. The transducer was operated at a 7 cm depth of
focus to provide sufficient field of view, which contains the
organ surface, parenchyma, and the probe stand-off pad. The
resulting volumetric frames were rasterized at 128 × 48 × 204
voxels, corresponding to an axial resolution of approximately
0.3 mm/voxel and a lateral resolution of 0.5 mm/voxel. Two-
dimensional image slices of the volumetric sequence and
the associated indenter force and displacement histories,
acquired during a 2 mm/s load/unload cycle, are shown
in Fig. 2.

2.2. Nonrigid image registration and full-field constitutive
modeling

We use a nonrigid registration scheme (Fig. 3), described
in further detail in Jordan et al. (2008), to estimate the
deformation field captured by the concurrent 3DUS imaging.
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Fig. 1 – Left: liver perfusion system. Right: the experimental arrangement showing the indenter at the top surface of the

organ and the 3DUS probe beneath the organ.

Fig. 2 – The indenter force and displacement histories and force–displacement indentation response, acquired during

2 mm s−1
load/unload cycle. The associated 2D slices through the 3DUS sequence are shown at the bottom.

The volumetric image data obtained during organ indentation
contains relatively slow deformations (maximum tissue
displacement is less than 0.3 voxels per frame) and the
liver parenchyma produces rich textural content under 3DUS
(see Fig. 2). Given these conditions, the algorithm achieves
good accuracy and robustness. In Jordan et al. (2008) we
demonstrate the accuracy against manually tracked tissue
landmarks (mean magnitude error of less than 0.6 mm) in
ex vivo liver indentation and present a quantitative error
analysis using synthetic deformation sequences.

In the proposed nonrigid image registration scheme,
sparse image-based local motion estimates uOF and asso-
ciated confidence cOF are estimated with an adaptation of
the Lucas and Kanade (1981) optical flow algorithm described

in Appendix. These local motion estimates are enforced as
concentrated forces applied at the nodes of a deformable
finite-element organ model, enforcing physically admissible
deformations. The concentrated forces are generated by reg-
ularization springs, connected to the mesh nodes, as their
free ends are displaced according to local motion estimates.
The choice of each regularization spring stiffness reflects lo-
cal textural quality and associated local motion confidence.
This approach not only provides regularized estimate of or-
gan deformation field (uFEM) but also offers a measure of
model/experiment agreement in the form of normalized po-
tential energy (Φ) contained in regularization springs. The
displacement field uFEM is the equilibrium field computed by
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Fig. 3 – In the nonrigid image registration framework, sparse local motion estimates uOF
are coupled to a mechanical

finite-element model as lumped body forces applied by displaced regularization springs. This results in a mechanically

constrained deformation field uFEM
and regularization energy Φ.

the finite-element solver, minimizing the total potential en-
ergy of the system, which includes the strain energy stored
in the continuum model and the potential energy in the reg-
ularization springs. Consequently, noisy uFEM fields are pe-
nalized by the strain energy associated with the high local
displacement gradients of the continuum model and exces-
sively smoothed uFEM fields are penalized by the increased
potential energy of the regularization springs defined as

US =
N�

i=1

�

j

�
1
2
kij

�
dij

�2�
, (1)

where j = {x, y, z}, N is the number of attached regularization
springs, kij is the spring stiffness, and the spring distension

dij is defined as dij = uOF − uFEM. In order to relate the
image-based confidence values to physically relevant springs
stiffnesses, each stiffness is obtained not only as a function
of local image texture, but also of the local nodal stiffness
of the mechanical model. Therefore, the stiffness of each
regularization spring is computed as

kij = βKi
jc
OF
ij , (2)

where i is the node index, β is the regularization coefficient,
and Ki

j is the global stiffness of node i in direction j (obtained
from the diagonal members of the global stiffness matrix).

The image registration framework is suitable for two
types of fundamentally different applications. In the first
category of applications, the framework may be used to
obtain a mechanically admissible image registration, such
as between preoperative and intraoperative images. In
these applications, the biomechanical model and the image
similarity term are coupled via the regularization springs to
providemechanically consistent internal organ deformations.
Examples of such applications include the intraoperative
brain shift, tumor localization, mammogram registration, etc.
The second category consists of applications in constitutive
organ response characterization. When external forces and
boundary conditions are known or experimentally measured,
the registration framework may be used to optimize the
consistency between the chosen biomechanical model and
the experimental images. When measuring the constitutive
response of an organ, an objective function Φ

�
pn

�
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from the springs potential energy US, may be defined as
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and serves as an appropriate measure of model-experiment
agreement. The energy is normalized by the nodal stiffness
Ki
j to prevent artificial bias towards compliant models.

Additionally, the spring energy is normalized by the
regularization coefficient β. This parameter determines the
image-mechanics coupling balance in the conventional image
registration applications. When modeling the constitutive
response of an organ, we seek to identify mechanical models
which are consistent with the local unregularized motion
estimates uOF. Therefore, the choice of parameter β does
not affect the model-experiment fitting.1 Using the objective
function Φ

�
pn

�
defined in Eq. (3), imperfect models are

associated with higher levels of regularization energy. The
magnitude of the regularization energy, therefore, can be
considered a measure of the accuracy of a constitutive
formulation, and minimization algorithms can be used to
determine optimal material parameters.

In our experimental configuration, the force and dis-
placement histories at the tip of the indenter are acquired
with higher accuracy and lower noise in comparison to the
optical flowmeasurements. To incorporate these sensor mea-
surements into the optimization framework, we define an ob-
jective function Φ̇, which is the sum of a volumetric error
term Φ̇vol and an indenter error term Φ̇ind defined as

Φ̇vol
�
pn

�
= 1

NT

� T

0

N�

i=1
cOFi (t)

�
u̇OF
i (t) − u̇FEM

i (t)
�2

dt (4)

and

Φ̇ind
�
pn

�
= 1

T

� T

0

�
u̇exp
z (t) − u̇model

z (t)
�2

dt. (5)

The volumetric error term Φ̇vol is the mean squared
difference between the optical flow and the model velocity
fields over the time period T normalized by the number of
regularization springs N. The indenter error term Φ̇ind is
the mean squared difference between the vertical indenter
velocity u̇exp

z (t) and the modeled indenter velocity u̇model
z (t).

Such definition of the objective function scales the two error

1 The role of the regularization parameter (and corresponding
spring stiffness) is significant in scenarios where the framework
is used for estimation of the internal organ deformation fields
(i.e. brain shift problems, liver tumor localization, etc.). Details
regarding these applications may be found in Jordan et al. (2008).
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Fig. 4 – The deforming finite-element liver model with

simplified cylindrical geometry, experimentally measured

boundary conditions, and a coregistered 3DUS sequence.

components to comparable magnitudes and aids in obtaining
model fits consistent with experimental tissue displacement
field as well as the indenter force–displacement history.

Throughout this paper, we chose to use indenter and
nodal velocity histories as the measure of model-experiment
agreement. Objective functions based on velocity-based or
displacement-based model-experiment agreement are both
suitable choices for model optimization. The differential
optical flow estimates are frame-to-frame displacement
estimates (not absolute). Therefore, small estimation errors
may contribute to more significant accumulation error (Lim
and El Gamal, 2001) when integrated over long periods of
time. For this reason, we determined the velocity fields as
the more appropriate choice and were able to confirm their
improved convergence properties.

2.2.1. Liver finite-element model
The perfused ex vivo liver is modeled with a finite-element
model implemented in a commercial FE solver (ABAQUS 6.7,
Simulia, Providence, RI, USA). The model has a simplified
cylindrical geometry (10.0 cm diameter, 3.03 cm height)
shown in Fig. 4, as most of the contributions to the
indentation response are assumed to be local and not
significantly dependent on the whole organ geometry. The
mesh is generated automatically with increased density
beneath the indenter and consists of 1424 nodes and 804
quadratic tetrahedral elements. The bottom surface of the
organ is fully constrained, while the upper and side surfaces
are assumed to be stress-free boundaries. The force at the tip
of the indenter is prescribed to match the indentation force
history obtained experimentally.

2.3. Method validation: Synthetic volumetric data

To evaluate the sensitivity of the testing method to mate-
rial parameters, accuracy of the parameters recovered, and
to assess the convergence characteristics of the optimization
scheme, we conducted a parameter identification study on
a synthetically generated 3DUS sequence. We computed a
ground-truth deformation field from a forward finite-element

model of the indentation experiment with assumed consti-
tutive law and material parameters. We used a high density
mesh (4281 nodes, 2706 quadratic tetrahedral elements) in the
forward model to minimize field discretization artifacts. The
boundary conditions of the forward model were prescribed to
match the boundary conditions of the real experimental pro-
cedure. The displacement and force histories at the tip of the
indenter were recorded to mimic the measurements obtained
during the ex vivo experimental procedure. The resulting de-
formation field was used to warp a reference 3DUS volume,
generating a sequence of 100 volumes. The reference 3DUS
volume is a single frame acquired by imaging perfused ex
vivo liver. Consequently, the generated volumetric sequence
preserves the true texture and intensity distribution of liver
parenchyma under 3DUS. This synthetic study, however, ex-
cludes image artifacts and noise contributions from the imag-
ing sensor.

2.3.1. Biphasic poroelastic constitutive law
To mimic the nonlinear viscoelastic response of the perfused
porcine liver, we use a biphasic (mixture theory) constitutive
model (Suh and Spilker, 1994; Zhu and Wang, 1998).
Biphasic models account for viscous material effects through
momentum exchange effects between the solid and fluid
phases. The solid phase is formulated through the 2nd-order
reduced polynomial strain-energy defined as

U = C1
�
I1 − 3

�
+ C2

�
I1 − 3

�2 + 1
D1

�
Jel − 1

�2 (6)

where C1, C2, and D1 are the material parameters, I1 is the 1st
stretch invariant, and Jel is the elastic volumetric stretch. The
flux of the fluid phase is governed by Darcy’s law expressed as

q = κ∇P, (7)

where q is the flux, κ is the permeability coefficient, and ∇P is
the fluid pressure gradient.

Using the synthetic 3DUS sequence and force–
displacement indentation histories, we perform material pa-
rameter estimation in a way that is identical to the approach
used with true experimental liver measurements. The geom-
etry and boundary conditions of the FE model used in this
inverse process reflect the assumed experimental conditions.
The indentation force F(t) is applied at the tip of the indenter,
and the bottom surface of the organ is fully constrained. We
initialize material parameters with feasible parameter esti-
mates and use a nonlinear optimization algorithm, a bounded
downhill simplex method (Lagarias et al., 1998), to iteratively
evolve the material parameters (C1,C2,D1, κ) and minimize
the objective function Φ̇(pn).

2.3.2. Quasilinear viscoelastic constitutive law
In the second synthetic parameter recovery study we per-
form parameter identification using an alternative constitu-
tive material law, a 2nd-order reduced form polynomial hy-
perelastic lawwith a Prony series relaxation of the shearmod-
ulus (Holzapfel, 2000; Hibbit, Karlsson, Sorensen, 2007). The
hyperelastic strain energy of this constitutive law defined in
Eq. (6) and the relaxation of the shear modulus G(t) is cap-
tured by a 1st-order Prony series

G(t) = G0

�
g∞ + g1e

−t/τg1
�

, (8)
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Fig. 5 – Biphasic poroelastic CL: regularization energy evolution (left) and material parameter evolution (right) during

material parameter identification seeded from 3 different locations in the parameter space.

where G0 is the instantaneous shear strain modulus
(computed from Eq. (6)), G0g∞ is the equilibrium shear
strain modulus, g1 = 1 − g∞ is the relative amplitude of
the relaxation, and τg1 is the relaxation time constant. The
biphasic poroelastic constitutive law governing the response
of the synthetic deformation is known to exhibits bulk
relaxation. We evaluate the volumetric agreement with a
shear relaxation constitutive law to demonstrate the ability
to distinguish between materials with inherently different
modes of relaxation. We also evaluate the method’s ability to
consistently converge to the best possible fit under the given
assumptions.

2.4. Perfused porcine liver constitutive modeling

We perform constitutive modeling of perfused porcine liver in
indentation (2 mm s−1 load/unload cycle) using the proposed
inverse modeling framework. We constrain our attention to
the 2nd-order reduced polynomial hyperelastic form

U = C1
�
I1 − 3

�
+ C2

�
I1 − 3

�2 + 1
D1

�
Jel − 1

�2 + 1
D2

�
Jel − 1

�4 (9)

and shear and bulk relaxation components

G(t) = G0

�
g∞ + g1e

−t/τg1
�

(10)

K(t) = K0
�
k∞ + k1e

−t/τk1
�

. (11)

Under this general form, we explore 5 constitutive laws.
In the shear relaxation variant (SR), the relaxation of the
tissue is assumed to be captured by the relaxation of
the instantaneous shear modulus. The bulk compliance is
assumed to be linear (D2 = 0) and no bulk relaxation is
permitted (k1 = 0). In the subsets SRlow and SRhigh we enforce

low (D1 = 1.0 × 10−4) and high (D1 = 3.0 × 10−3) bulk
compliance, respectively, to investigate the effects of bulk
compliance on the full-field deformation fields.

To investigate the role of bulk relaxation we consider
two additional constitutive laws. First, we consider a bulk
relaxation (BR) model with 2nd- order bulk compliance and
no shear relaxation (g1 = 0). Second, we considered the full
constitutive law (SBR) with relaxation of both bulk and shear
moduli.

3. Results

3.1. Method validation: Synthetically generated volumet-
ric data

3.1.1. Biphasic poroelastic constitutive law
Using the synthetically generated deformation sequence
governed by biphasic poroelastic constitutive law, the
parameter estimation framework consistently converges to
the ground-truth parameter values. The evolution of the
objective function during the optimization processes seeded
from 3 distinct points in the parameter space is shown in
Fig. 5, left. The convergence of the material parameters for all
3 seeds is shown in Fig. 5, right. These results are summarized
in Table 1 and demonstrate that in the absence of imaging
noise (a consequence of synthetic data) themethod converges
consistently and recovers both bulk and shear response
parameters with good sensitivity.

3.1.2. Quasilinear viscoelastic constitutive law
The parameter estimation of the quasilinear viscoelastic
constitutive law using the deformation sequence with
assumed biphasic poroelastic response is summarized Fig. 6
and Table 2. These results suggest that the method converges
consistently for all 3 seed points and is able to obtain
excellent indenter response agreement with the ground-truth
data (see Fig. 7). However, when comparing the magnitudes
of the volumetric error, this form of constitutive law offers
lesser volumetric agreement with the data. This point is
further illustrated by comparing the nodal velocities of the
poroelastic (PE), viscoelastic (VE), and optical flow data in
Fig. 8. Since the PE model corresponds to the ground-truth
deformation, Fig. 8 demonstrates the volumetric disparity of
the VE model. In addition, the good agreement of the optical
flow estimates with the PE model serves as a validation of the
motion estimation scheme (in the absence of imaging system
noise). In addition, it serves as a basis for measuring the noise
floor of the motion estimation system. Minor oscillations in
the optical flow estimatesmay be observed at some nodes due
to voxel-to-element correspondence effects near the model
boundary.
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Table 1 – Biphasic poroelastic CL: recovered material parameters and associated regularization energy obtained from 3

independent parameter seed points (initial parameter values shown in parentheses)

Parameter Seed 1 Seed 2 Seed 3

C1 193.6 (150) 192.4 (300) 192.7 (200)
C2 4998 (4000) 4999 (6000) 5014 (5000)
D1 1.53 × 10−3 (2.0 × 10−4) 1.53 × 10−3 (5.0 × 10−3) 1.53 × 10−3 (1.5 × 10−3)

κ 0.96 × 10−7 (1.0 × 10−8) 0.93 × 10−7 (5.0 × 10−7) 0.95 × 10−7 (1.0 × 10−7)

Φ̇ 2.63 × 10−6 (6.39 × 10−6) 2.63 × 10−6 (9.10 × 10−6) 2.63× 10−6 (2.65× 10−6)

Φ̇ind 1.08 × 10−8 (2.54 × 10−6) 1.23 × 10−8 (5.12 × 10−6) 1.22× 10−8 (1.70× 10−8)

Φ̇vol 2.62 × 10−6 (3.85 × 10−6) 2.62 × 10−6 (3.98 × 10−6) 2.62× 10−6 (2.63× 10−6)

Ground-truth values: C1 = 200,C2 = 5000,D1 = 1.5 × 10−4, κ = 1.0 × 10−7.

Table 2 – Viscoelastic CL: recovered material parameters and associated regularization energy obtained from 3

independent parameter seed points (initial parameter values shown in parentheses)

Parameter Seed 1 Seed 2 Seed 3

C1 23.1 (200) 24.9 (500) 23.1 (50)
C2 2039 (5000) 2048 (1000) 2030 (6000)
D1 2.25 × 10−4 (1.5 × 10−3) 2.27 × 10−4 (1.0 × 10−4)) 2.24 × 10−4 (5.0 × 10−5)

g1 0.392 (0.400) 0.398 (0.600) 0.394 (0.200)
τ1 0.059 (0.100) 0.058 (0.500) 0.059 (0.010)
Φ̇ 1.57 × 10−5 (1.90 × 10−5) 1.51 × 10−5 (1.07 × 10−4) 1.56× 10−5 (6.01× 10−5)

Φ̇ind 9.32 × 10−6 (1.13 × 10−5) 8.82 × 10−6 (9.87 × 10−5) 9.18× 10−6 (5.54× 10−5)

Φ̇vol 6.39 × 10−6 (7.79 × 10−6) 6.32 × 10−6 (7.79 × 10−6) 6.38× 10−6 (4.69× 10−6)

Fig. 6 – Quasilinear viscoelastic CL: regularization energy evolution (top left) and material parameter evolution during

material parameter identification seeded from 3 different locations in the parameter space.

3.2. Perfused porcine liver constitutive modeling

The results of the constitutive modeling of perfused porcine
liver are summarized in Table 3 and Fig. 9. Several
observations should be noted regarding the methods ability
to characterize the material response and its contributions in
the constitutive law selection process.

The results of the quasilinear viscoelastic constitutive
law with shear modulus relaxation (SR) demonstrate that
the proposed parameter identification method is capable of
recovering the linear bulk compliance parameter D1, which is
not observable in conventional indentation tests. While the
indentation response (Fig. 9 top middle) is nearly identical
for all three SR models, the volumetric nodal velocities differ

significantly. This disparity is captured by comparing the SR
model’s volumetric error term (Φ̇vol = 2.15×10−5) to the SRlow
(Φ̇vol = 3.52 × 10−5) and SRhigh (Φ̇vol = 2.25 × 10−5) models
with assumed low and high bulk compliance D1, respectively.
These findings indicate that estimating the bulk compliance
parameter D1 from the full-field deformation data maximizes
the volumetric model/experiment agreement.

The parameter identification results using the BR and
SBR models suggest that bulk modulus relaxation does not
significantly improve the model fit (Φ̇vol = 3.8 × 10−5 for
BR, Φ̇vol = 2.20 × 10−5 for SBR). For this mode and rate
of deformation the simple SR constitutive form is able to
account for the material response both at the indenter as well
as volumetrically (within the precision of the imaging and
deformation tracking systems).
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Fig. 7 – The force–displacement indentation response of

the poroelastic model (PE) and viscoelastic model (VE)

showing excellent agreement with ground-truth data.

The agreement between the model and the experiment
was also quantified in terms of the root mean squared (RMS)
error of the indenter and of the nodal displacement histories.
While nodal velocity mean squared error (MSE) was found to
be the more appropriate objective function choice for model
optimization, the nodal displacement RMS errors provide an
intuitivemeasure of themodel-experiment agreement. Under
this metric, the SR model offers good indenter displacement
agreement (0.19 mm RMS error) and volumetric deformation
agreement (0.97 mm axial RMS error).

4. Conclusions

In this paper, we presented a method for constitutive
model selection and parameter identification using real-
time 3DUS volumetric imaging. This approach enriches
the traditional force–displacement indentation response

with the measurement of volumetric deformation and
provides good sensitivity to parameters governing the bulk
response of the material. These parameters are otherwise
not observable in conventional indentation. The ability
to decouple the bulk and shear components of the
deformation is important and we demonstrated that we can
reconstruct the parameters with precision and repeatability
in a validation study. Furthermore, the measurement of
full volumetric deformation histories offers the ability to
observe material response over a range of strain rates.
While the indenter is driven at a chosen displacement
rate, the local material strain rates throughout the tissue
sample vary from zero in the far-field to the maximum
levels beneath the indenter. The proposed method is
independent of imaging modality and constitutive law,
suggesting potential applications for other tissues and scales
(i.e. nanoindentation, confocal microscopy, etc.).

The proposed approach is a useful tool for constitutive
model selection, as suggested in our porcine liver indentation
modeling. The best experimental fits were attained with
a quasilinear viscoelastic model with 2nd-order reduced
polynomial instantaneous response and a Prony series
relaxation of the bulk and shear moduli. Using the full-field
measurements, we demonstrated that a simpler constitutive
form with shear relaxation provides comparable model-
experiment agreement. This observation suggests that shear
relaxation is the dominant mode of relaxation for liver in
indentation and that the SRmodel is appropriate (considering
the reduced number of parameters).

One of the advantages of the proposed method is the ease
of application in in vivo settings. The knowledge/observation
of boundary condition is one of the chief motivating factors
for ex vivo testing. Imaging the organ during indentation
testing, however, offers the ability to observe the in vivo
boundary conditions and account for them during the inverse
modeling process. Direct in vivo indentation tests of the liver
can be performed in the operating room due to the relatively

Fig. 8 – Ground-truth deformation sequence: mesh node velocity histories of the poroelastic (PE) and viscoelastic (VE)

models compared to optical flow estimates. Only the vertical component of velocity is shown. The selected nodes are

within 10 mm of the slice shown.
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Fig. 9 – Perfused liver sequence: indentation histories (top, middle) are virtually identical between SR, SRlow, and SRhigh.
The SR model provides significantly improved volumetric agreement illustrated with vertical node velocity histories.

Table 3 – Perfused porcine liver: estimated material parameters for the 5 constitutive laws considered

Parameter SRlow SRhigh SR BR SBR

C1 4.3 185.4 79.2 83.9 71.6
C2 47.0 612.6 257 40.9 218.3
D1 1.0 × 10−4 3.0 × 10−3 4.38 × 10−4 4.71 × 10−4 3.65×10−4

D2 – – – 2.22 × 10−5 6.7 × 10−3

g1 0.967 0.779 0.832 – 0.794
τg1 0.585 0.168 0.150 – 0.203
k1 – – – 0.890 0.032
τk1 – – – 0.134 0.176
Φ̇ 3.52 × 10−5 2.25 × 10−5 2.15 × 10−5 3.08 × 10−5 2.20×10−5

Φ̇ind 1.52 × 10−7 1.69 × 10−7 1.31 × 10−7 1.58 × 10−7 1.35×10−7

Φ̇vol 3.51 × 10−5 2.24 × 10−5 2.14 × 10−5 3.06 × 10−5 2.19×10−5

easy access to the organ within the abdominal cavity. The
method may also find suitable applications in noninvasive
(percutaneous) organ characterization. Such applications will
require proper image segmentation and mechanical models,
which incorporate the tissue inhomogeneities, layers, and
organ boundaries.

In our future work, we intend to incorporate constitutive
laws with higher complexity (Kerdok et al., 2006; Mazza et al.,
2007), which are capable of capturing the liver response
across the DC-2 Hz frequency range characteristic of surgical
manipulation.
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Appendix. Local optical flow estimation

In this section we describe a modified Lucas-Kanade
algorithm used for estimation of the local optical flow uOF.
The traditional differential optical flow technique proposed
by Lucas and Kanade (1981) relies on two fundamental
assumptions: frame-to-frame intensity constancy and local
intensity gradient constancy. Under these assumptions the
motion of each voxel is constrained by the optical flow
equation

∂I
∂x

ux + ∂I
∂y

uy + ∂I
∂z

uz + ∂I
∂t

= 0, (A.1)

where I
�
x, y, z, t

�
is the voxel intensity and

�
ux,uy,uz

�
are

vector components of the voxel velocity. Since the optical
flow constraint for a single voxel is ill-posed, the solution
of the Lucas-Kanade algorithm relies on additional motion
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assumptions within the local neighborhood. In our case
we sample the neighborhood of each mesh node (all
neighboring tetrahedra) and assemble a system of equations
weighted by the corresponding elemental shape functions
(see Zienkiewicz (1977) for the linear tetrahedral shape
function definition).

Ni
∂Ii
∂x

uOFx + Ni
∂Ii
∂y

uOFy + Ni
∂Ii
∂z

uOFz = −Ni
∂Ii
∂t

. (A.2)

Using the linear tetrahedral shape function as the nodal
neighborhood weighting functions, the local system of optical
flow equations can be rewritten as

AuOF = b, Aij = Ni
∂Ii
∂j

, bi = −Ni
∂Ii
∂t

, (A.3)

where i is the voxel index and j = {x, y, z}. The nodal
displacement can be recovered as the least-squares solution
to this linear system. Local motion uOF is computed at
each mesh node, providing a globally unconstrained set of
local motion estimates. Each nodal motion estimate has
an associated confidence cOF. Traditionally, this confidence
is computed from the three eigenvectors (direction of
confidence) and eigenvalues (level of confidence) of the
square ATA matrix. However, to account for the variability
of local neighborhood size throughout the mesh, we follow
an alternative approach in which we compute the texture-
dependent confidence by summing the absolute values of
image gradients in the nodal neighborhood, such that

cOFj =
n�

i=1
Ni

����
∂Ii
∂j

���� , (A.4)

where i = {1, . . . ,n} are all voxels contained in elements
surrounding the node of interest and j = {x, y, z}. The value of
cOFj is subsequently normalized by the largest value contained

in the image volume, such that cOFj ∈ [0,1].
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