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Abstract. We present a modular framework for mechanically regular-
ized nonrigid image registration of 3D ultrasound and for identification
of tissue mechanical parameters. Mechanically regularized deformation
fields are computed from sparsely estimated local displacements. We en-
force image-based local motion estimates by applying concentrated forces
at mesh nodes of a mechanical finite-element model. The concentrated
forces are generated by the elongation of regularization springs connected
to the mesh nodes as their free ends are displaced according to local
motion estimates. The regularization energy corresponding to the po-
tential energy stored in the springs is minimized when the mechanical
response of the model matches the observed response of the organ. We
demonstrate that this technique is suitable for identification of mate-
rial parameters of a nonlinear viscoelastic liver model and demonstrate
its benefits over traditional indentation methods in terms of improved
volumetric agreement between the model response and the experiment.

1 Introduction

Mechanically accurate nonrigid registration of volumetric medical image data
is an increasingly important aspect of guiding surgical procedures involving de-
formations of solid organs. Image-guided tasks, such as MRI tumor localization
during brain shift, needle biopsy, prostate brachytherapy and others require a
close interplay of computational biomechanical models with preoperative and
intraoperative imaging. Considering the complexity of the mechanical response
of solid organs, it is necessary to use properly formulated biomechanical organ
models capable of capturing a nonlinear, rate-dependent, viscoelastic response
under large deformation. Additionally, the significant subject-to-subject biolog-
ical variability contributes to a strong motivation and clinical need for patient-
specific (personalized) models, which may be generated and parameterized with
clinically feasible testing protocols.

A wide array of sophisticated methods has been developed for mechanically
constrained nonrigid registration of intraoperative brain [1][2][3] and liver [4]
deformations, cardiac motion [5][6], breast deformation during mammography
[7], as well as applications for prostate [8], and other organ systems. At the
moment, the use of state-of-the-art biomechanical organ models in nonrigid im-
age registration is hindered by the requirement of custom finite-element solvers,



Fig. 1. In the proposed mechanical regularization framework, sparse local motion esti-
mates are coupled to a mechanical finite-element model as lumped body forces applied
by displaced regularization springs. This results in a mechanically constrained defor-
mation field uF EM and regularization energy Φ.

mandated by the inherent coupling between the image-domain components of
the algorithm and the biomechanical computational methods.

To address these limitations, we propose a modular registration framework,
which relies on mechanical springs attached at nodal mesh locations to couple
image-based motion estimates to a mechanical finite-element model. Such ap-
proach results in a separation of the image motion estimation scheme and offers
the flexibility to use commercial finite-element solvers and complex constitutive
material laws from the biomechanics community. Therefore, the most significant
contribution of this method is in applications with complex constitutive laws.

2 Methods

Our general regularization framework (Fig. 1) links local image motion to a me-
chanical model to provide a global and mechanically accurate dense motion field.
We propose to deform a mechanical model by applying concentrated forces at
nodal locations. Three regularization springs attached to each node of the model
apply lumped body forces in the 3 orthogonal coordinate directions. The free-
end regularization springs displacements uOF are obtained from a local motion
estimate, which, in our implementation, is derived from the Lucas-Kanade opti-
cal flow method [9]. The spring stiffness is adjusted to reflect local nodal stiffness
of the mechanical model and the motion estimate confidence cOF , which reflects
the textural content in the neighborhood. The mechanically regularized field
uFEM is the displacement field obtained from the solution of the mechanically
deformed finite-element model.

2.1 Local Optical Flow Estimation

In this modular architecture, any algorithm can be used to estimate the local
optical flow uOF . As an example, we use a modified Lucas-Kanade algorithm.
The traditional differential optical flow techniques, such as the Lucas-Kanade



method, rely on two fundamental assumptions: frame-to-frame intensity con-
stancy and local intensity gradient constancy. Under these assumptions the mo-
tion of each voxel is constrained by the optical flow equation

∂I

∂x
ux +

∂I

∂y
uy +

∂I

∂z
uz +

∂I

∂t
= 0, (1)

where I (x, y, z, t) is the voxel intensity and {ux, uy, uz} are vector components
of the displacement. Since the optical flow constraint for a single voxel is ill-
posed, the solution of the Lucas-Kanade algorithm relies on additional motion
assumptions within the local neighborhood. We sample the neighborhood of
each mesh node (all neighboring tetrahedra) and assemble a system of equations
weighted by the corresponding elemental shape functions Ni (see [10] for the
linear tetrahedral shape function definition).

Ni
∂Ii

∂x
uOF

x + Ni
∂Ii

∂y
uOF

y + Ni
∂Ii

∂z
uOF

z = −Ni
∂Ii

∂t
(2)

Using the linear tetrahedral shape function as the nodal neighborhood weighting
functions, the local system of optical flow equations can be rewritten as

AuOF = b, Aij = Ni
∂Ii

∂j
, bi = −Ni

∂Ii

∂t
, (3)

where i is the voxel index and j = {x, y, z}. The nodal displacement can be
recovered as the least-squares solution to this linear system. Local motion uOF

is computed at each mesh node, providing a globally unconstrained set of local
motion estimates. Each nodal motion estimate has an associated confidence cOF .
Traditionally, this confidence is computed from the three eigenvectors (direction
of confidence) and eigenvalues (level of confidence) of the square ATA matrix.
However, to account for the variability of local neighborhood size throughout
the mesh, we follow an alternative approach in which we compute the texture-
dependent confidence by summing the absolute values of image gradients in the
nodal neighborhood, such that
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where i = {1, .., n} are all voxels contained in elements surrounding the node of
interest and j = {x, y, z}. The value of cOF

j is subsequently normalized by the

largest value contained in the image volume, such that cOF
j ∈ [0, 1].

2.2 Mechanically Regularized Deformation

Once the local motion estimates and the associated confidence levels are com-
puted, the mechanical model is deformed by the forces applied through regu-
larization springs with one end attached to the nodes of the mechanical mesh,
and one end constrained to match the displacement corresponding to local image
motion. To provide a conceptual interpretation of this registration approach, the



deformation of a simple one-dimensional continuum mechanics model (beam) is
described in Fig. 2. We address two types of problems: the class of problems
where boundary conditions are unknown (shown in Fig. 2, left) and well-posed
boundary value problems with fully specified boundary conditions (Fig. 2, right).

The displacement field uFEM is the equilibrium field computed by the finite-
element solver, minimizing the total potential energy of the system, which in-
cludes the strain energy stored in the continuum model and the potential energy
in the regularization springs. Noisy uFEM fields are penalized by the strain
energy associated with the high local displacement gradients of the continuum
model (beam) and excessively smoothed uFEM fields are penalized by the in-
creased potential energy of the regularization springs defined as
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where j = {x, y, z}, N is the number of attached regularization springs, ki
j is the

spring stiffness, and the spring distension di
j is defined as di

j = uOF −uFEM . In
order to relate the image-based confidence values to physically relevant springs
stiffnesses, each stiffness is obtained not only as a function of local image texture,
but also of the local nodal stiffness of the mechanical model. Therefore, the
stiffness of each regularization spring is computed as

ki
j = βKi

jc
OF
ij , (6)

where i is the node index, β is the regularization coefficient, and Ki
j is the nodal

stiffness of the mechanical model. Nodal stiffness values are the diagonal mem-

1

Fig. 2. Deformation of a continuum mechanics model (beam) with image-based forces
in the form of elongated regularization springs. The class of problems where boundary
conditions are unknown is shown on the left. A well-posed boundary value problem
with fully specified boundary conditions is shown on the right.



bers of the global stiffness matrix, assembled from contributions of elemental
stiffness matrices (see [10] for details). The time-evolving nodal stiffness is com-
puted by the finite-element solver and is updated at every solution increment.

The balance between image-based and mechanics-based contributions of the
final regularized displacement is governed by the stiffness of the attached reg-
ularization springs. As shown in Eq. 6, the spring stiffness contains a scaling
parameter β. A judicious choice of the parameter β ensures that an optimal
balance between the continuum body strain energy and spring potential en-
ergy costs is achieved. For problems in which the optical field data is the only
available information, the parameter β must be sufficiently high to impose the
deformation on the body. Conceptually, for the schematic in Fig. 2, if the de-
formation of the beam is only driven by the displacement of the free ends of
the springs, excessive compliance of the springs will result in underestimation
of the deformation. For well-posed boundary value problems (BVPs), in which
either traction or displacements are known over the entire boundary, the defor-
mation of the continuum (finite-element) model could be driven entirely by these
boundary conditions. We consider two applications of the proposed framework,
where 3DUS imaging can be combined with surface (boundary) information to
provide (1) accurate reconstruction of organ inner field deformation and (2) en-
hanced measurement of the constitutive response of an organ. For inner field
reconstruction, the boundary conditions drive the global deformation, while the
regularization springs impose local constraints. The spring stiffness does not need
to exceed the model stiffness, therefore values of β ≈ 1 are more appropriate.
When measuring the constitutive response of an organ, the normalized potential
energy in the springs, defined as
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is a measure of model-experiment agreement. The energy is normalized by model
stiffness to prevent artificial bias towards compliant models. Imperfect models
are associated with higher levels of regularization energy. In principle, if the
model were perfect, the regularization energy would be a measure only of the
noise in the optical flow. The magnitude of the regularization energy, therefore,
can be considered a measure of the accuracy of a constitutive formulation, and
minimization algorithms can be used for optimal tissue parameter selection.

2.3 Porcine Liver Parameter Identification

In this tissue parameter estimation study, we demonstrate that material pa-
rameters obtained from traditional indentation studies may not be unique even
for relatively simple material constitutive laws, as numerous parameter combina-
tions may be selected to obtain a good force-displacement agreement between the
model response and the experiment. A perfused porcine liver was indented (0.2
mm/s load-unload cycle, 10mm total displacement) with a cylindrical indenter
(12mm diameter) actuated by Bose Electroforce ELF 3200 material testing sys-
tem (Bose Corporation, Eden Prairie, MN, USA). The volumetric deformation of



the liver was acquired with 3D ultrasound probe (SONOS 7500, Philips Medical
Systems, Andover, MA, USA) placed below the tissue sample. The volumetric
image data contains relatively slow deformations (maximum tissue displacement
is less than 0.3 voxels per frame) and the liver parenchyma produces rich textural
content under 3DUS (see Figure 3). In our related work, we demonstrate that
our method has good tissue tracking accuracy against manually tracked tissue
landmarks in ex vivo liver indentation and present a quantitative error analysis
using synthetic deformation sequences [11].

The 3DUS volume was registered to finite-element model (Abaqus 6.7, SIMU-
LIA, Providence, RI, USA) with simplified cylindrical geometry (10cm diameter,
3cm height). The geometry, the boundary conditions (force F (t) applied at the
tip of the indenter, and constrained displacement at the bottom surface of the
organ), and the constitutive law were incorporated into the regularizer, while
initializing the material parameters with an appropriate initial estimate. We se-
lected a relatively simple nonlinear viscoelastic constitutive relationship in the
form of a 2nd-order reduced polynomial hyperelastic formulation for the instan-
taneous response and a 1st-order Prony series relaxation of the shear modulus
[12]. The hyperelastic strain energy of this constitutive law is defined as

U = C1 (I1 − 3) + C2 (I1 − 3)2 +
1

D1

(Jel − 1)2 (8)

where C1, C2, and D1 are the material parameters, I1 is the 1st stretch invariant,
and Jel is the elastic volumetric stretch. The relaxation of the shear modulus
G(t) is captured by a 1st-order Prony series

G(t) = G0

(

g∞ + g1e
−t/τ1

)

(9)

where G0 is the instantaneous shear strain modulus (computed from Eq. 8),
G0g∞ is the equilibrium shear strain modulus, g1 = 1 − g∞ is the relative
amplitude of the relaxation, and τ1 is the relaxation time constant.

We used a nonlinear optimization scheme, a bounded downhill simplex method,
to iteratively evolve the material parameters (C1, C2, D1, g1, τ1) and minimize
the rate form of the regularization energy Φ(pn).

3 Results

Traditionally, tissues are characterized based on time-displacement-force rela-
tionships obtained in a specific mode of deformation (tension, compression,
shear, indentation, etc.). In this study we present 3 model parameter sets, which
exhibit nearly identical indentation force-displacement response (Fig. 4, left).
Their volumetric response, however, is significantly different, and our method
offers means for differentiating between these models. The parameter set #3
was obtained by fitting all parameters of the model, maximizing the volumetric
model-experiment agreement (material velocities at 3 selected locations shown
in Fig. 4, right). In contrast, the parameter sets #1 and #2 were identified
without image data by fitting the force-displacement indentation response only.
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Fig. 3. Left: A cut through the deforming finite-element model and 3DUS sequence.
Middle: Slice through the undeformed 3DUS volume. Right: Slice through the deform-
ing volume (t=1.2 s), showing the local optical flow and the 3 locations evaluated.
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Fig. 4. While the indentation response is virtually identical (left) for the 3 parame-
ter sets chosen, the volumetric material deformation provides unique tissue response
signature. The vertical component of mesh node velocity is shown on the right.

Since the volumetric compliance D1 cannot be observed directly in conventional
indentation, D1 was assumed to be comparatively low and high, with respect to
parameter set #3. When image data is considered, minimizations seeded from
parameter sets #1 and #2 both converge to parameter set #3, suggesting that
the volumetric parameter identification method may remove degeneracies in the
parameter space and may offer an objective function with a unique minimum.

4 Discussion

We have presented a nonrigid registration algorithm regularized by a mechanical
finite-element model suitable for applications in 3D ultrasound tissue tracking
and material parameter estimation. One of the key contribution of this method
is the image-mechanics coupling approach, which uses regularization springs at-



tached at nodal locations to enforce image-based motion estimates. This ap-
proach avoids the need for direct computation of image forces and provides
an intuitive assignment of image-based motion confidence, reflecting the spatial
variations in texture quality. Additionally, a key feature of this approach is the
modular nature of its formulation, under which the choices of image similar-
ity measure, local search algorithm, image-mechanics confidence mapping, and
most importantly, the mechanical model’s material law, are completely inde-
pendent. The implementation of this method is not significantly more complex
than similar methods, as it leverages the power of commercially available finite-
element solvers. This is of high importance, as it enables the use of nonlinear,
viscoelastic material models of arbitrary complexity without the need for a reli-
able custom-made FEM solver. This flexibility becomes increasingly important
with the ongoing progress and increasing complexity of constitutive mechanical
models formulated for large-strain behavior of soft tissues.

The proposed registration framework is suitable for applications in mechan-
ical parameter identification and provides good accuracy and sensitivity to the
bulk and shear components of the material response. This ability is of high im-
portance to future characterization of complex constitutive laws and is appealing
for in vivo applications, where organ boundaries cannot be directly controlled.
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