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Abstract

Different materials reflect light in different ways, and re-
flectance interacts with shape, lighting, and viewpoint to
determine an object’s image. Common materials exhibit di-
verse reflectance effects, and this is a significant source of
difficulty for radiometric image analysis. One strategy for
dealing with this diversity is to build computational tools
that exploit reflectance symmetries, such as reciprocity and
isotropy, that are exhibited by broad classes of materials.In
this paper, we advocate the real projective plane as a tool
for representing and exploiting these symmetries. In this ap-
proach, each point in the plane represents a surface normal
that is visible from a fixed viewpoint, and reflectance sym-
metries are analyzed in terms of the geometric structures
that they induce. We provide an overview of these struc-
tures and explore applications to both calibrated and un-
calibrated photometric stereo.

1. Introduction
Radiometric methods for image analysis, including photo-
metric shape analysis and reflectometry, seek to infer scene
information from measurements of image irradiance. The
difficulty of this task stems from two facts: 1) surface re-
flectance varies dramatically between materials; and 2) it is
tightly coupled with shape, illumination, and viewpoint in
image measurements. One way to deal with these complex-
ities is to exploit reflectance symmetries that are common
to many materials. By taking advantage of isotropy, bilat-
eral symmetry, reciprocity, and other symmetries, one can
develop radiometric techniques that succeed for very broad
classes of materials.

This paper presents a geometric framework for describ-
ing the joint constraints on shape, viewpoint and illumina-
tion that are induced by symmetries in surface reflectance.
We represent the hemisphere of surface normals that are
visible from a fixed orthographic view by the real projec-
tive plane (Fig.1), and we analyze reflectance symmetries
in terms of the geometric structures that they induce in this
plane. This representation provides concise and intuitive
descriptions of the symmetries, and it provides a convenient

Figure 1. The hemisphere of surface normals visible from direction
v is represented by a plane obtained by gnomonic projection. This
is the real projective plane, where great circles map to lines and the
equator maps to a line at infinity. Reciprocity, isotropy, and other
reflectance symmetries can be studied in terms of the geometric
structures that they induce in this plane.

tool for developing new techniques for image analysis.
To demonstrate the utility of this framework we use

it to develop new techniques for both calibrated and un-
calibrated photometric stereo. In uncalibrated photomet-
ric stereo, we build upon existing work to show that con-
straints induced by isotropy and reciprocity in a single im-
age are sufficient to resolve the generalized bas-relief am-
biguity. This builds upon the work of Tan et al. [10],
who require combined constraints fromtwo images to pro-
duce the equivalent result. In the calibrated case, we show
that isotropy and reciprocity constraints can be used to re-
cover full Euclidean structure from images captured un-
der a known, view-centered cone of light sources. This is
achieved by completing the partial reconstruction provided
by the method of Alldrin and Kriegman [1].

2. Background and related work
At an appropriate scale, the reflectance of opaque materi-
als is described by the bi-directional reflectance distribu-
tion function, or BRDF. The BRDF describes the manner
in which incident radiant flux is modulated by a uniform
surface patch. It is a positive function of four angular di-
mensions and is writtenf(ωi, ωo), whereωi andωo are
unit vectors on the hemisphere centered about the patch nor-
mal. These are the directions of incident and reflected flux,
respectively, and they are often expressed in spherical coor-
dinates:(θi, φi) and(θo, φo).
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Many materials exhibit reflectance symmetries.
Reciprocity, for example, guarantees that the BRDF
is symmetric about the input and output directions:
f(ωi, ωo) = f(ωo, ωi). In many cases, the BRDF
domain (θi, φi, θo, φo) can be further ‘projected’ onto
the 3D domain(θi, θo, φi − φo) and then folded onto
(θi, θo, |φi − φo|). The projection is acceptable whenever
a BRDF is unchanged by rotations of the input and output
directions (as a fixed pair) about the surface normal; and
additional folding is acceptable whenever it is unchanged
by reflecting the output direction about the incident plane.
Materials that satisfy these two criteria are said to be
isotropicandbilaterally-symmetric, respectively. (It is also
common to useisotropic to mean both, and we will do
so here.) Finally, in a number of cases [6, 8], the BRDF
domain can be further reduced because it is unchanged
when the input and output directions are rotated (again, as
a fixed pair) about thehalf-vector, or the vector that bisects
them. Materials that exhibit this last symmetry might be
described as beinghalf-vector symmetric.

When one or more of these symmetries is satisfied, ra-
diance measurements that are captured at symmetrically-
equivalent local view and illumination directions must be
equal, and this induces joint constraints on shape, viewpoint
and illumination. This has been exploited, for example, for
surface reconstruction using isotropy [5], bilateral symme-
try [1, 10], reciprocity [12], and half-vector symmetry [2].
The advantage of such symmetry-based approaches is that
they avoid the use of low-parameter BRDF models (Lam-
bertian, Ward, Cook-Torrance, etc.), which are often inac-
curate and/or introduce inconvenient non-linearities.

The main goal of this paper is to provide an intuitive
framework for analyzing the constraints induced by re-
flectance symmetries in the hopes of facilitating the devel-
opment of new symmetry-based methods for image analysis
as well as a better understanding of those that already exist.

3. Reflectance symmetries on the plane
The real projective plane provides an effective tool for an-
alyzing reflectance symmetries, of which we focus on reci-
procity and isotropy in this paper. (We use the termisotropy
to include bilateral-symmetry, as discussed above.) As
shown in Fig.1, we represent each visible normaln =
(n1, n2, n3)

⊤ as a point in the 2D projective plane created
by a gnomonic (or central) projection of the unit hemisphere
onto the tangent plane passing through the viewing direc-
tion v = (0, 0, 1)⊤. In this mapping, great circles map
to lines, and the equator maps to a line at infinity. Both
points and lines are represented using homogenous three-
vectors, for which we use the notationx = (x1, x2, x3),
while noting thatx ≃ αx represent the same point for any
α ∈ R/{0}. (We use≃ to indicate equality up to scale.)
The plane is equipped with an elliptic metric: the distance

between any two points is given by the angular difference
between the corresponding rays inR

3, and the angle be-
tween lines is given by the angle between corresponding
planes inR3. (It has thus been termed theelliptic plane[4].)
In this paper we use bold font to represent normalized vec-
tors, i.e.,x , x/||x||.

We are interested in geometric structures induced by
reciprocity and isotropy for images captured with direc-
tional lighting. Letv be the direction of an orthographic
observer, and letsbe the direction of the source. (For illus-
trative purposes, we assumes lies in the upper hemisphere
and can be associated with a point on the projective plane.
This assumption can be relaxed.) We refer to the line con-
nectingv ands as theprincipal meridianand use the nota-
tion vs , v × s. We also refer to the midpoint on the line
segmentvs as thehalf-vectorand use the notationh , v+s.

3.1. Isotropic pair
Following the definition of Tan et al. [10], a pair of nor-
malsn andn′ is defined as anisotropic pair if and only if
their local view and lighting conditions are equivalent up
to isotropy. If the surface reflectance is the same at two
surface points whose normals form an isotropic pair, the ra-
diant exitance (BRDF multiplied by the cosine foreshorten-
ing factor) will be equal at these two points. For a scene
illuminated from directions and observed from directionv
necessary and sufficient conditions for two normals to form
an isotropic pair with respect to sourcesare [10]:

s⊤n = s⊤n′, v⊤n = v⊤n′.

In the sequel, we find it useful to provide the following al-
ternative set of conditions which, as shown in Proposition6
of AppendixA, are equivalent to those above:

(v × s)⊤(n + n′) = 0, (1)

s⊤n
v⊤n

=
s⊤n′

v⊤n′
. (2)

Equations (1) and (2) can be interpreted geometrically
as saying that the principal meridianvs is the perpendicular
bisector of the line segmentnn′. Specifically, Eq.1 says
that the mid-point of the line segmentnn′ (given byn +
n′) lies on the principal meridianvs, and Eq.2 saysnn′ is
perpendicular tovs (see Proposition8 of AppendixB). In
Fig. 2, both(n, n′) and(m, m′) are isotropic pairs.

3.2. Reciprocal pair
Following the definition of Tan et al. [10], a pair of normal
directionsn andm is defined as areciprocal pair, if and
only if their local view and lighting conditions are equiva-
lent up to isotropy and reciprocity. If the surface reflectance
is the same at two surface points whose normals form a re-
ciprocal pair, the BRDF value (radiant exitance divided by
the cosine foreshortening factor) that is sampled at those
two points will be equal. Necessary and sufficient condi-
tions for two normals to form a reciprocal pair with respect
to sourcesare [10]:



s⊤n = v⊤m, v⊤n = s⊤m.

As for isotropic pairs, it is helpful to consider an alter-
native, equivalent (see Proposition7 of AppendixA) set of
conditions:

s⊤(n + m) = v⊤(n + m), (3)

s⊤(n × m) = v⊤(n × m), (4)

that can also be interpreted geometrically. Equation3 says
the line connecting pointn + m and the halfway vectorh is
perpendicular to the principal meridian (multiply the equa-
tion by v⊤(v + s) = s⊤(v + s) and apply Proposition8
of AppendixB). Equation4 says the linenm intersects the
principal meridian at the point(v+s)×(v×s) = h×(v×s)
(multiply the equation byv⊤(v + s) = s⊤(v + s) and ap-
ply Proposition9 in AppendixB). Notably, this intersection
point is independent ofm andn. In Fig. 2, both(n, m) and
(n′, m′) are reciprocal pairs.

Given any pointn, its reciprocal correspondencem can
be determined as follows. First, find the pointn + m as
the intersection of two lines: 1) the join of pointsn and
h × (v × s); and 2) the line throughh that is perpendicular
to the principal meridian. Then, using the elliptic metric,m
is uniquely determined byn andn + m.

3.3. Isotropic-reciprocal quadrilateral
As shown in Fig.2, four normals(n, m, m′, n′) form an
isotropic-reciprocal quadrilateralwith respect tos if and
only if both (n, m) and (n′, m′) are reciprocal pairs and
both (n, n′) and(m, m′) are isotropic pairs. An isotropic-
reciprocal quadrilateral consists of four normals with lo-
cal lighting and view directions that are equivalent up to
isotropy and reciprocity. Thus, for a surface with uniform
reflectance (or one with a uniform separable component)
that is isotropic and reciprocal, the (uniform component of
the) BRDF values observed at four surface points whose
normals form such a quadrilateral will be equal.

According to the discussion above, bothnn′ andmm′

are perpendicular to the principal meridian, and bothnm
andn′m′ intersect the principal meridian ath × (v × s).
So the quadrilateral is an isosceles trapezoid. Further, the
center of the quadrilateral is the half-vectorh because the
diagonals of the quadrilateral intersect there.

4. Transformations
The geometric structures described in previous section exist
whenever an isotropic surface is observed orthographically
under directional illumination, and they may be exploited
for compression, reflectometry, reconstruction, or any other
visual task. In the following, we focus on reconstruction
via photometric stereo and show how these structures can
be used to resolve shape ambiguities in both uncalibrated
and calibrated cases. These applications often involve lin-
ear transformations of a surface’s normal field. In uncali-
brated Lambertian photometric stereo, for example, a linear

Figure 2. In projective plane, an isotropic-reciprocal quadruplet is
an isosceles trapezoid centered ath with two sides perpendicular
to vs and two sides intersect ath× (v× s).

algorithm yields the normal field up to an arbitrary linear
transformation, and for differentiable surfaces, this ambigu-
ity can be further reduced to a three-parameter generalized
bas-relief (GBR) transformation [3].

Linear transformations of the normal field correspond to
projective transformations of the plane, so this section dis-
cusses the behavior of our symmetry-induced structures un-
der projective transformations. We show that only a uni-
form scaling of the plane (i.e., a classic bas-relief trans-
formation) and rotation about the view direction preserve
isotropic pairs, and that only an identity transformation pre-
serves both isotropic and reciprocal pairs.

Proposition 1. A rotation (about the origin) and a uni-
form scaling are the only linear transformations that pre-
serve isotropic pairs with respect to two or more lighting
directions that are non-coplanar with the view direction.

Proof. Start with an arbitrary projective transformation.
Two isotropic pairs(n1, n′

1) and(n2, n′
2) with respect to the

same lighting direction define a point on the line at infin-
ity n1n

′
1 × n2n

′
2. Thus, from two lighting directions non-

coplanar with the view direction, two distinct points can be
located on the line at infinity, and the transformation can
be reduced to an affinity by restoring the line at infinity.
Affine transformations preserve the mid-point of a line seg-
ment. The join of the mid-point ofn1n

′
1 with the mid-point

of n2n
′
2 is a line l perpendicular ton1n

′
1. This provides

a pair of perpendicular directions, i.e.l andn1n
′
1. From

two lighting directions non-coplanar with the view direc-
tion, two such perpendicular pairs can be identified, which
reduces the affine transformation to a similarity. Similari-
ties preserve the perpendicular bisector of a line segment.
As the original is on the perpendicular bisector ofn1n

′
1,

it can be determined by intersecting two such perpendicular
bisectors from two lighting directions non-coplanar with the
view direction. Hence, the translation can be resolved and
the similarity is reduced to a rotation about the origin and
uniform scaling. Finally, it is easy to verify that isotropic
pairs are preserved under a rotation and uniform scaling.�

This proof provides an 8-normal algorithm (two isotropic



pairs in each of two images) for reducing an arbitrary pro-
jective ambiguity to a scale and rotation.

Proposition 2. If the principal meridianvs is known, a
classic bas-relief transformation is the only linear transfor-
mation that preserves isotropic pairs with respect to two or
more sources that are non-collinear with the view direction.

Proof. In the projective plane, the classical bas-relief trans-
formation is a uniform scaling. Given Proposition1, we
need only prove that the principal meridianvs fixes the
rotation. This is straight-forward, as the rotation angle is
determined by rotating the perpendicular bisector of any
isotropic pair to align it withvs. �

Proposition 3. If the lighting directions are known, the
identity transformation is the only linear transformationthat
preserves isotropic-reciprocal quadrilaterals with respect to
two or more lighting directions that are non-collinear with
the view direction.

Proof. Sinces is known,vs can be determined by its join
with v, the origin. Given Proposition2, the only remain-
ing transformation is a uniform scaling. Ifs is known, the
scaling factor can be determined by requiring the center of
isosceles trapezoid locating ath = v + s. �

5. Applications
In photometric stereo, we seek 3D shape from multiple im-
ages recorded at a fixed viewpoint with variable illumina-
tion. Methods are referred to as being ‘calibrated’ or ‘un-
calibrated’ depending on whether the lighting is known or
unknowna priori. We address both cases in this section.

5.1. Uncalibrated photometric stereo
In uncalibrated photometric stereo, the shape of a smooth
Lambertian surface can only be recovered up to a three-
parameter family of surfaces, all of which are related by
so-called generalized bas-relief (GBR) transformations [3].
Tan et al. [10] demonstrated that the constraints induced by
isotropy and reciprocity are sufficient to resolve the GBR
ambiguity when one considers the combined constraints
from two different images; and they presented an auto-
calibrating method that produces a Euclidean reconstruc-
tion from images of any smooth surface having a spatially-
varying BRDF with a uniform separable component (e.g., of
the formf(x, y, ωi, ωo) = f1(x, y)+f2(θi, θo, |φi−φo|)).
In this section, we use the insights from the previous section
to prove that constraints from asingle image are sufficient
to obtain the same result.

Following Belhumeur et al. [3], a GBR transformation
affects the normals and source directions according to

n̄ = G−⊤n/||G−⊤n||, s̄ = Gs/||Gs||,

with

Figure 3. In the projective plane, the original isotropic-reciprocal
quadruplet is transformed by a scaling followed with a translation.
The illumination direction is transformed separately.

G =





1 0 0
0 1 0
µ ν λ



 , G−⊤ ≃





λ 0 −µ
0 λ −ν
0 0 1



 .

In the projective plane, this simplifies tōn ≃ G−⊤n, mean-
ing that a GBR consists of a uniform scaling of the surface
normals byλ and a translation by(−µ,−ν), as shown in
Fig. 3. The view directionv is unchanged by the transfor-
mation, and the light direction transforms ass̄ ≃ Gs. Fur-
thermore, sincevs = v × s = v × s̄, the principal meridian
is also unchanged by a GBR. It follows immediately from
Proposition2, that isotropy alone is sufficient to reduce the
GBR to a classic bas-relief ambiguity from two images.

In order to completely resolve the GBR ambiguity from
a single image, we consider one isotropic-reciprocal quadri-
lateral. Prior to a GBR transformation, the quadrilateral
nmm′n′ is an isoceles trapezoid centered ath and symmet-
ric about thevs. A GBR transformation scales and trans-
lates the quadrilateral tōnm̄m̄′n̄′ and moves the source to
a different point̄son the principal meridian (see Fig.3). To
resolve the GBR ambiguity, we must find the transforma-
tion that maps̄nm̄m̄′n̄′ back to its canonical position.

The unknown transformation can be determined from the
isotropic and reciprocal constraints described in the previ-
ous section because the required geometric structures are
destroyed by a GBR. While the transformed line segment
n̄n̄′ is still perpendicular to the principal meridianvs̄, its
midpointn̄+ n̄′ no longer lies upon it. Similarly, the join of
point n̄+ m̄ and the transformed half-vectorh̄ = v+ s̄ is no
longer perpendicular to the principal meridianvs̄, and the
intersection of lines̄mn̄ andm̄′n̄′ is no longer at̄h×(v× s̄).

Mathematically, this means that while Eq. (2) is invariant
under a GBR transformation, Eqs. (1,3,4) are not. There are
three equalities destroyed by the GBR, and each provides
a constraint on the unknown transformation. Since this
transformation has exactly three degrees of freedom, the
GBR can be uniquely determined using a single isotropic-
reciprocal quadrilateral that is detected in a single image.

Proposition 4. The GBR ambiguity is resolved by the



isotropy and reciprocity constraints in a single image.

Proof. By isotropy and reciprocity, an isotropic-reciprocal
quadrilateral(n, m, n′, m′) with respect tos, satisfies:

(v × s)⊤(n + n′)=0,

s⊤(n + m)=v⊤(n + m),

s⊤(n × m)=v⊤(n × m).

Substitutingn = G⊤n̄/||G⊤n̄||, s = G−1s̄/||G−1s̄||, we
obtain three equations in the unknown parametersµ, ν, λ1:

(v, s̄, g) +
(v, s̄, n̄ + n̄′)

v⊤(n̄ + n̄′)
=0, (5)

s̄⊤(diag(λ2, λ2, 0) + gg⊤ )̄s=

(

s̄⊤(n̄ + m̄)

v⊤(n̄ + m̄)

)2

, (6)

s̄⊤(diag(λ2, λ2, 0) + gg⊤)(n̄ × m̄)=λ(g, n̄, m̄). (7)

Here, diag(·) represents a3 × 3 diagonal matrix,(·, ·, ·)
is the triple scalar product of its arguments, andg is the
translation vector[−µ,−ν, 1]⊤. These equations represent
three independent constraints on the GBR parameters.�

According to this proposition, the GBR ambiguity is
resolved once we have identified a quadrilateraln̄m̄n̄′m̄′

whose pre-imagenmn′m′ is an isotropic-reciprocal quadri-
lateral with respect to the pre-image ofs̄. It still remains
to discuss how to identify such a quadrilateral in an input
image. Given an arbitrary normaln̄, we must locate the
appropriate corresponding normalsn̄′ andm̄ (computation-
ally, m̄′ is not required.) These two normals can be located
sequentially by making use of the fact that the BRDF (or
intensity) must be equal to that atn̄.

Since the GBR includes only translation and scale, the
isotropic match̄n′ must lie on the (known) line that passes
throughn̄ and is orthogonal to the principal meridian (this
line is the “isotropic curve” described in [10]). The match
can be obtained as the intersection of this line and the iso-
intensity contour on the plane that passes throughn̄. Once
n̄′ is determined, the symmetry axis of the sought trape-
zoid is determined as the bisector ofn̄n̄′, and by finding the
translation that takes this to the principal meridian, we re-
solve one degree of freedom in the GBR ambiguity. Specifi-
cally, if we re-parameterize Eqs. (5–7) usingµ′ = s̄2µ−s̄1ν
andν′ = s̄1µ + s̄2ν, the first equation depends only onµ′,
and it is this translational degree of freedom that is resolved.

Next, we locate the reciprocal match,m̄, and resolve the
remaining parametersν′ andλ using the re-parameterized
Eqs. (6) and (7). This is achieved via exhaustive 2D search
as follows. A hypothesis(ν′

1, λ1) yields hypotheses for the
point h × (v × s) and BRDF value at each point. These in
turn induce a hypothesis for the reciprocal matchm̄ as the

1Since G⊤ is an affine, the midpoint ofab is mapped to the mid-
point of āb̄. Thus, we can useG⊤a/||G⊤a|| + G⊤b/||G⊤b|| =
G⊤(ā + b̄)/||G⊤(ā + b̄)||. We also useG⊤a×G⊤b/||G⊤a×G⊤b|| =
G−1(a× b)/||G−1(a× b)||.

intersection of the iso-BRDF curve and the join ofn and
the hypothesizedh× (v× s). Along with the known values
of n̄ andn̄′, this hypothesis for̄m induces its own estimate
(ν′

2, λ2) of the unknown GBR parameters through Eqs. (6)
and (7). In this way, the expression(ν′

1− ν′
2)

2 +(λ1−λ2)
2

provides a measure of inconsistency, and the exhaustive 2D
search is used to minimize this inconsistency.

Relation to previous work. This analysis sheds new light
on the method of Tan et al. [10]. First, Prop.2 shows that
their two-image method for reducing the ambiguity to a
classic bas-relief ambiguity using isotropy alone is mini-
mal in the sense of requiring the fewest possible images
and matched normals. But Prop.4 shows that a method
with significantly fewer requirements can be obtained by
considering isotropy and reciprocityjointly. To obtain a
Euclidean reconstruction, [10] requires five normals in two
images (one isotropic pair in each image, and one reciprocal
match in either). In contrast, the proposed method requires
only three normals in one image. Thus, like any method
that requires minimal data, the proposed method will have
particular advantages when used in conjunction with robust
estimation techniques such as RANSAC.

Experimental Results. Results of the proposed procedure
are in Fig.4. Following [10], each input image was decom-
posed into diffuse and specular components [7], and dif-
fuse images were used to obtain a surface up to the GBR
ambiguity [11]. Then, the specular component ofa sin-
gle image(top) was assumed to be spatially homogeneous
and was mapped onto the projective plane via the Gaussian
sphere. The GBR ambiguity was resolved by locating a sin-
gle quadrilateral in this plane as described above.

The second row of Fig.4 shows linearly-coded normal
fields, where horizontal, vertical, and out-of-page compo-
nents are represented by red, green, and blue, respectively.
The third row shows the surface depth computed by inte-
grating the recovered normals, and the bottom row shows
the recovered surfaces. Columns from left to right show
results of: 1) calibrated photometric stereo (with known
lighting directions); 2) uncalibrated reconstruction up to
the GBR; and 3) our auto-calibrated result. The proposed
method resolves the GBR and yields a reconstruction that is
very close to the calibrated result. (The median angular er-
ror in the normal field is7.95 degrees, which is comparable
to the results obtained in [10] using two images.)

5.2. Calibrated Photometric Stereo
The auto-calibrated approach described in the previous sec-
tion can be applied whenever the BRDF (or a separable
component of it) is isotropic and spatially uniform on the
surface. More general reflectance can be accommodated
when more information is available about the light sources.
A very general method is that of Alldrin and Kriegman [1],



Figure 4. Resolving the GBR from a single image.Top: One in-
put image and its diffuse and specular components.Second row:
recovered normal fields, linearly-coded in RGB.Third row: depth
maps from integrated normal fields.Fourth row: Reconstructed
surfaces. Columns from left to right correspond to: “groundtruth”
obtained using calibrated sources; uncalibrated reconstruction up
to a GBR; and our auto-calibrated result.

which provides a partial reconstruction for surfaces with
isotropic reflectance that variesarbitrarily between surface
points. Given a set of imagesI(x, y, t) captured using a
cone of known source directionss(t), t ∈ [0, 2π) centered
about view directionv, this method yields one component
of the normal at every image point(x, y). Specifically, for
each pixel it provides the plane spanned by the unknown
surface normal and the view direction, but the remaining de-
gree of freedom in each normal cannot be recovered without
additional information. In other words, if the surface is dif-
ferentiable, the surface gradient direction can be recovered
at each point, but the gradient magnitude is unknown. This
means that one can recover the ‘iso-depth contours’ of the
surface, but that these curves cannot be ordered [1].

In this section, we use reflectance symmetries on the pro-
jective plane to complete this partial reconstruction. Con-
sider a surfaceS = {x, y, z(x, y)} that is described by a
height fieldz(x, y) on the image plane. A surface point with
gradientzx, zy is mapped via the Gaussian sphere to point
n ≃ (zx, zy,−1) in the projective plane, and the ambiguity
in gradient magnitude from [1] corresponds to a transforma-
tion of normal fieldn̄(x, y) ≃ diag(1, 1, λ(x, y))n(x, y),
where the per-pixel scalingλ(x, y) is unknown. As depicted

Figure 5. In calibrated photometric stereo, one component of
each surface normal is recovered by exploiting isotropy at each
point [1]. Determining the remaining degree of freedom at each
point can be interpreted as finding an unknown translation ofthe
normal along the line throughv on the projective plane.

in Fig. 5, this can be interpreted as a per-pixel bas-relief
transformation, where each normaln is translated arbitrar-
ily along the linevn. Now, an isotropic pair(n, n′) has
two properties: 1)n, n′ are equally distant from the origin;
and 2) linesvn andvn′ are symmetric across the princi-
ple meridian. The per-pixel transformation destroys the first
property but preserves the second. In what follows, we seek
to resolve the shape ambiguity by restoring the former.

Having equal distance tov, isotropic pairs lie on cir-
cles centered about the view direction. Any two normals
on such a circle is necessarily an isotropic pair with re-
spect to one of the sources in{s(t)}. Thus, for any nor-
mal n, the view-centered circle on which it lies can be in-
terpreted as the union of its isotropic matches under the
set of sources{s(t)}. Now, a view-centered circle is also
the Gaussian-image of surface points having equal gradi-
ent magnitude:||∇z|| = constant. Thus, if we could lo-
cate surface points with normals on such circle, we would
recover a surface curve of constant gradient magnitude—a
curve we will refer to as an ‘iso-slope contour’. To get a
sense of how this would constrain the surface, consider that
when only the iso-depth contours are known, the surface can
be recovered—at best—up to a differentiable function [1].
This is because any two differentiable height fieldsz1(x, y)
andz2 = h(z1) will have the same set of iso-depth con-
tours for any differentiable functionh(·). Here we show
that if they also possess the same iso-slope contours, then
this arbitrary differentiable function is reduced to a classic
bas-relief transformation (i.e., a linear scaling of depth).

Proposition 5. In the general case, if differentiable height
fieldsz1(x, y) andz2 = h(z1) are related by a differentiable
functionh and possess equivalent sets of iso-slope contours,
the functionh is linear.

Proof. From the functional relationship betweenz1, z2:

||∇z2||
2 = (∂h/∂z1)

2||∇z1||
2.



If z1 andz2 possess the same set of iso-slope contours, ei-
ther (∂h/∂z1)

2 is constant or||∇z1||
2 = ||∇z2||

2 = 0
along each contour. Since sets of iso-depth and iso-slope
contours are generically distinct, this implies that∂h/∂z1

is constant andh is linear.�
Once the surface is known up to a scale factor, by Prop.3
this factor can be determined using the known source direc-
tion for any one input images. Also, it can be shown that
the ‘accidental’ case in which the sets of iso-depth and iso-
slope contours are equivalent corresponds to a surface-of-
revolution with the view directionv as the symmetry axis.

In light of Prop.5, it is desirable to be able to identify
the iso-slope contour passing though a given image point.
With the partial reconstruction, a normaln̄ is recovered up
to a per-pixel bas-relief transformation. This transformation
does not change the linevn̄, hence, the isotropic match̄n′

must lie on the line symmetric tovn̄ across the principal
meridian. If the surface has uniform reflectance (or has a
uniform separable component), the matchn̄′ can be located
by intersecting this line with the iso-intensity contour pass-
ing throughn̄. Such isotropic matches̄n′(t) under all light
directionss(t), t ∈ [0, 2π) define the iso-slope contour.

This simple method for identifying iso-slope con-
tours can be extended to surfaces having spatially-varying
isotropic reflectance of the form:

f(x, y, ωi, ωo)=f1(x, y)+f2(x, y)f3(θi, θo,|φi−φo|). (8)

Let I(x, y, t) be the recorded radiance, and at each image
point(x, y), shift and normalize these observations as

In(x, y, t) ,
(I(x, y, t − φn) − mint I(x, y, t))

(maxt I(x, y, t) − mint I(x, y, t))
, (9)

whereφn ∈ [0, 2π) is the azimuthal component of the sur-
face normal as recovered by [1], and t is extended period-
ically: t → t + 2kπ for integerk. Then, if the spatially-
varying BRDF is of the form in Eq. (8), a necessary con-
dition for two points (x1, y1) and (x2, y2) to have nor-
mal directions forming an isotropic pair isIn(x1, y1, t) =
In(x2, y2, t) ∀ t ∈ [0, 2π). This is because normalizing the
temporal radiance at each pixel to[0, 1] removes the effects
of the spatially-varying reflectance termsf1 andf2. This
constraint can be used in the matching procedure above by
using it in place of the iso-intensity contours.

Experimental Results. Figure6 shows some iso-slope con-
tours (in red) recovered using Eq. (9) to identify isotropic
matches̄n′(t) for the points marked in yellow. For compar-
ison, the (generally distinct) iso-depth contours (recovered
as in [1]) are shown in blue. The result of our procedure is
shown on the right, and as a form of ‘ground truth’, we show
the corresponding contours taken from the complete recon-
structions obtained by Alldrin et al. [2]2. Despite the dif-
ferences between these two reconstruction procedures and

2See additional results athttp://vision.ucsd.edu/ nalldrin/research/

Figure 6. Recovered iso-slope and iso-depth curves. Red andblue
curves are the iso-slope and iso-depth curves respectively. These
two set of curves often do not coincide. Our result is shown on
the right. For comparison, on the left is result computed from the
reconstructions of [2].

their underlying BRDF models, the results are quite consis-
tent.

6. Conclusion
We advocate the real projective plane as a tool for radio-
metric image analysis based on reflectance symmetries. We
study the geometric structure induced in this plane by reci-
procity and isotropy and show how this structure can be ex-
ploited to resolve or reduce shape ambiguities in both un-
calibrated and calibrated photometric stereo.

While we restrict our attention to reciprocity and
isotropy in this paper, the same framework can be used
to study half-vector symmetry [6, 8], and it is likely that
this symmetry provides much stronger joint constraints on
shape, lighting and viewpoint. This is especially interesting
in the context of calibrated photometric stereo, where one
might be able to derive conditions for uniqueness that sup-
plement recent empirical results [2]. Conditions for unique-
ness based on parametric BRDF models exist [9], but for
the most part, conditions that avoid the restrictions of low-
parameter BRDF models have yet to be discovered.

Finally, we have exploited these symmetries for photo-
metric stereo-based reconstruction, but one could also ex-
plore other applications, including reflectometry, illuminant
estimation, and compression of appearance data.
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A. Isotropic and reciprocal pairs

Proposition 6. For v = (0, 0, 1)′ and any other three unit
vectorss, n, n′ wheren 6= ±n′, s⊤n = s⊤n′ andv⊤n =

v⊤n′, if and only if (v×s)⊤(n+n′) = 0 and s⊤n
v⊤n = s⊤n′

v⊤n′ .

Proof. We first prove the forward direction. The result
s⊤n
v⊤n = s⊤n′

v⊤n′ is trivial since it is simply the quotient of the
two equations. Next,(v × s)⊤(n + n′) = 0 ⇔ −s2(n1 +

n′
1)+ s1(n2 + n′

2) = 0 ⇔ s1

s2

=
n1+n′

1

n2+n′

2

. On the other hand,

sincen3 = v⊤n = v⊤n′ = n′
3, we haves⊤n = s⊤n′ ⇒

n1s1 + n2s2 = n′
1s1 + n′

2s2 ⇔ s1

s2

= −
n2−n′

2

n1−n′

1

. Hence,

(v × s)⊤(n + n′) = 0 ⇔
n1+n

′

1

n2+n′

2

= −
n2−n

′

2

n1−n′

1

⇔ n2
1 + n2

2 =

n′2
1 + n′2

2 ⇔ n3 = n′
3, which is true.

Now, we prove the reverse direction.s
⊤n

v⊤n = s⊤n′

v⊤n′ ⇔
s1

s2

= −
n2n′

3
−n′

2
n3

n1n′

3
−n′

1
n3

and s⊤n
v⊤n = s⊤n′

v⊤n′ ⇔ s1

s2

=
n1+n′

1

n2+n′

2

.

Hence, from these two equations we have−
n2n′

3
−n′

2
n3

n1n′

3
−n′

1
n3

=

n1+n
′

1

n2+n′

2

⇔ (n1n
′
3 −n′

1n3)(n1 + n′
1)+ (n2n

′
3 −n′

2n3)(n2 +

n′
2) = 0 ⇔ (1−n2

3)n
′
3−(1−n′2

3 )n3+(n1n
′
1+n2n

′
2)(n

′
3−

n3) = 0 ⇔ (n′
3 − n3)(1 + n⊤n′) = 0. Sincen 6= −n′, we

havev⊤n′ = n′
3 = n3 = v⊤n. Then froms⊤n

v⊤n = s⊤n′

v⊤n′ we
immediately obtains⊤n′ = s⊤n. �

Proposition 7. Four unit vectorsv, s, n, m wheren, m non-
collinear satisfys⊤n = v⊤m andv⊤n = s⊤m, if and only
if s⊤(n + m) = v⊤(n + m) ands⊤(n × m) = v⊤(n × m).

Proof. As n, m are distinct, they define a coordinate system
in R

3 along with vectorn × m. The result follows directly
from representingv ands in this coordinate system.�

B. Identities in the projective plane

Proposition 8. Given thatv = (0, 0, 1) is the origin in the
2D projective plane, for any other three pointsa, b, son the
plane, the lineab is perpendicular to the linevs if and only
if (s⊤a)/(v⊤a) = (s⊤b)/(v⊤b).

Proof. The line ab and vs are a × b and v × s re-
spectively. Let the intersection ofab and vs with the
line at infinity l∞ = (0, 0, 1) be A , ab × l∞ and
B , vs × l∞. Thenab⊥vs if and only if A, B are har-
monic conjugate points with respect to the circular points
I = (1, i, 0)′ and J = (1,−i, 0)′, i.e., the cross ratio
cr(A, B, I , J) = −1. Now, cr(A, B, I , J) = −1 ⇐⇒
A1B1 + A2B2 = 0, and this reduces to(s1a1 + s2a2)b3 =
(s1b1 + s2b2)a3 ⇐⇒ (s⊤a)(v⊤b) = (s⊤b)(v⊤a) ⇐⇒
(s⊤a)/(v⊤a) = (s⊤b)/(v⊤b). �

Proposition 9. For any four pointsa, b, s andv, the line
ab intersectssv at the point(v + s) × (v × s) if and only if
(s⊤(a× b))/(v⊤(a× b)) = (s⊤(v + s))/(v⊤(v + s)) 3

Proof. The lineab andvs area× b andv × s respectively.
It is clear that(v+s)× (v×s) is a point on the linevs. This
point is the intersection ofab andvs if it is also a point on
ab, i.e.,(a×b)⊤ ((v + s) × s× v) = 0. On the other hand,
(v + s)× s× v = s(v⊤(v + s))− v(s⊤(v + s)). Therefore,
(a×b)⊤ ((v + s) × s× v) = 0⇐⇒ (a×b)⊤s(v⊤(v+s)) =
(a × b)⊤v(s⊤(v + s)) ⇐⇒ (s⊤(a × b))/(v⊤(a × b)) =
(s⊤(v + s))/(v⊤(v + s)). �

3 According to Prop.8, this is equivalent to the join of(v + s) and
(a× b) being perpendicular tovs.


