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ABSTRACT

Non-local means (NLM) is a popular denoising scheme. Concep
tually simple, the algorithm is computationally intensifee large
images. We propose to speed up NLM by using random sampling.
Our algorithm picks, uniformly at random, a small number of
columns of the weight matrix, and uses these “represertito
compute an approximate result. It also incorporates aa egtumn-
normalization of the sampled columns, a form of symmetiorat
that often boosts the denoising performance on real imagdsimg
statistical large deviation theory, we analyze the proga@dgorithm
and provide guarantees on its performance. We show thatrtie p
ability of having a large approximation error decays expuiadly

as the image size increases. Thus, for large images, therraes-
timates generated by the algorithm are tightly concerdrateund
their limit values, even if the sampling ratio is small. Nuel ! ¥ o
results confirm our theoretical analysis: the proposedrdlgo re- (a) Proposed: 27.58 dB (b) Classical NLM: 27.01 dB
duces the run time of NLM, and thanks to the symmetrizatiep,st Run time = 240 seconds Run time = 47170 seconds
actually provides some improvement in peak signal-toewasios.

Index Terms— Non-local means, random sampling, Sinkhorn- Fig. 1. A typical comparison of the proposed algorithm and the-clas
Knopp balancing scheme, image denoising sical NLM. The proposed algorithm computes and uses onl§60.5
columns of the weight matrix, reducing the run time by a facito
200. Also, by including a additional normalization of the saetpl
columns, it can actually improve performance.

1. INTRODUCTION

Non-local means (NLM) [1], and its extensions and geneaiins

(e.9, [2, 3, 4]), are widely used in image denoising. Concepyuall One limitation of NLM is computational complexity. For an
simple, NLM filters a noisy image by replacing each pixel with  image ofn pixels, just computing the similarity matri” alone re-
linear combinations of all other pixels. In the matrix-vacform, quiresO(gn?) arithmetic operations, whetgs the number of pixels

the algorithm can be defined as in each image patch. In addition, ab@@¢n?) operations are needed
N . to carry out the matrix-vector multiplication in (1). Thismplex-
f=D Wg, (1) ity imposes a severe bottleneck on NLM, hindering its wideag

~ . ) ) _ adoption in real-world applications, where digital imagesily con-
whereg, f € R" are the noisy and denoised images, respectivelyain tens of millions of pixels.

W € R"*" is a symmetric matrix computed frog, and D = In this paper, we propose an algorithm to accelerate NLM fil-
diag{W1}, with 1 oer [1,1,...,1]7, is a diagonal matrix repre- tering using random sampling [7], a technique widely useddn
senting a normalization factor so that the filter weights soimne. cial and political sciences. The proposed algorithm pigkéormly
The entries ofWW, denoted by{w; ;}, measure the similarity at random, a small number of columns of W, and uses these “rep-
between all pairs of pixels. A standard choice is resentatives” to compute a filtered image. It also incorgsran
extra column-normalization of the sampled columns, a fofsym-
wi; = e*HPer”Q/hQ’ 2 metrization that often boosts performance on real imagiggsir& 1*

shows a typical comparison between the proposed algoritiain a
wherep,, p, € R? denote pixel patches centered at ftieandjth  the classical NLM [as defined in (1) and (2)] on an image of size
pixel, respectively||-|| is the (Weighted)?2 norm, andh is a scale 1072 x 712. The proposed algorithm reduces the run time by more
parameter determined by the noise level. Several morestigited ~ than two orders of magnitude, and in the meanwhile, providese
constructions of w; ;} have been proposed in the literature [5, 6], improvement in peak signal-to-noise ratios (PSNRs). Usius

further improving the denoising accuracy. from statistical large deviation theory [8, 9], we analylze proposed
algorithm and provide probabilistic guarantees on itsqrenfince.
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1.1. Related Work

The high complexity of NLM is a well-known issue, and many het

Algorithm 1 Fast NLM Filtering by Random Sampling

1: Input: g € R™**, andk, wherel < k <n

ods have been proposed in the past decade to speed up NLM. Thé O!JFpl_th(k) e R™!
simplest and most widely used approach is to reduce theaspati 3: Initialize fgeq = Onx1, foum = Onx1

search regions [2], essentially limiting” to be a banded matrix.
While effective in reducing the complexity, this strateggluces the
ability of NLM to benefit from distant patches that are nomdtlss
similar. Other notable approaches inclugeg, the pre-selection
methods [10, 11, 12, 13], which skips the computation of teahts
in (2) when the algebraic means of two patches differ by nuse &
threshold; SVD methods [14, 15, 16], which project the pasotnto
lower-dimensional subspaces; Gaussian KD trees [17, 18ichw
generalizes the concepts of fast Gauss transforms [19]yanahts
of integral image methods [20, 21].

In this work, we approach the problem of accelerating NLM

by using random sampling, a strategy that, to our knowletgs,
not been considered in the image processing literature n@tinod

is inspired by the seminal work of Drineas, Kannan and Maione

[22, 23, 24], who consider the general problem of approximgat
large-scale matrix operationg.@, matrix-vector multiplications),
by random sampling. In their setting, the matrix is assuneedet

known and accessible. In contrast, the weight maixn our prob-

lem is not available to the algorithm, so the cost of compyiiis en-

tries must be taken into account. Moreover, the normatinasiep

in (1) (in the form of multiplication byD ') makes our problem
different from a standard matrix-vector multiplication.

1.2. Outline and Main Contributions

After presenting the proposed random sampling algorithrBen-
tion 2, we provide two main contributions in this paper:

1. Concentration analysisThe proposed algorithm picks, uni-
formly at random, a small number of columnsaf, and uses these
“representatives” to compute a filtered imagf&’, where the super-
scriptk indicates the number of columns chosen. Whke n, it
is legitimate to worry thaf®), a random vector, would vary widely
at different runs of the algorithm on the same image, and itigpa

ular, £*) would be very different fromf* & £ i.e, the limit
result one can get if all the columns are used. Perhaps sungl,
our analysis in Section 3 shows that these concerns are esswy.
Under mild conditions on the weight matri¥, we show in Theo-
rem 1 thatf *) stays within are-neighborhood off * with very high
probability, as long as the product

ne’ée/(1— &)

def

is large. Here£y

(k — 1)/n is thesampling ratio This result

implies that, whem, the size of image, is large, the random vectors

£ will be tightly concentrated aroungl*, even if we use a very
small sampling ratio.

2. Performance improvemeniiVe propose a column normaliza-
tion scheme, effectively re-weighting each sampled colui@nly
marginally increasing the total complexity of the algomiththis ad-
ditional step turns out to be very effective in improving tfemoising
performance. We show in Section 4 that, with column norraitin,
the limit resultf* of our algorithm is equivalent to applying ¥
two iterations of the Sinkhorn-Knopp scheme [25], an ifgeapro-
cedure that converts a matrix to a “nearby” doubly stochasttrix.
The advantage of symmetrizifd/ by using the Sinkhorn-Knopp
scheme was recently observed and studied by Milanfar [26]r O
numerical experiments confirm this improvement, wjth outper-

4. fort=1,...,kdo

5. Pickj: € {1,...,n} uniformly at randomwithout replace-
ment.
6: ComputeW . ;,, thej.th column of W.
7. Letv=W. /(W] 1) (column normalization
8  foum= Foum+ iV
9 den — .fden +v
10: end for

11: Outputf(k) = Foum-/ Fden

forming the classical NLM by more thah dB on average in our
numerical experiments.

We conclude the paper in Section 5. Due to space limitations,
we only present the main results and ideas in this paper, et |
the proofs and other technical details to a follow-up paper.

2. THE PROPOSED ALGORITHM

In the section, we present the proposed random samplingithlgo
and discuss its basic properties. First, we note that tissicial NLM
scheme defined in (1) can be rewritten as

f:( > ng:,j)-/ > W,

1<j<n 1<j<n

®)

whereW . ; denotes thgth column ofW, and we use the MATLAB
notation./ for element-wise division.

The basic idea of the proposed algorithm is simple: since it
is computationally expensive to compute the entire mai#ix we
only use a small number of representative columns to approxi
mately compute the sums in the numerator and denominatar. Le
{j1,J2,...,jr} bek indices picked uniformly at random from the
set{1,2,...,n} without replacement. Then an approximation of
(3) will be Zl<t<k W s/ Zt Wi

In our algorithm, we first carry out a normalization step byneo
puting

11, def

wEwWD™!,
where the diagonal elements bf are the column (and due to sym-

metry, row) sums ofi. Essentially,ﬁv/ is a column-normalized
version of W. By introducing two vectors,

.fnum: Z gjtwi,jt and .fden: Z Wi,jm

1<t<k 1<t<k

(4)

the output of the proposed algorithm is just

.f(k) = .fnum'/.fden'

Algorithm 1 provides the pseudocode of the above scheme.
Since {j:}5_, is a set of randomly chosen indiceg,,, and

S gen @nd thus the final outpyt® are all random vectors. To gain

insight into the proposed random sampling algorithm, we $insdy

the expected values of,,, and f,., To that end, it is helpful to

introduce the following Bernoulli random variables:

L

(k) _
- s

itje{j,....j}

otherwise.
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Fig. 2. Pr [|f,f’“) — il > s] as a function ot for a fixedg andW,
wheren = 10%, noises = 15/255, parameteh = 15/255, patch

size= 5 x 1. Crosses denote the histogram of 5000 independe
trials for eacte. The circled line denotes the upper bound predictedi

by Theorem 1.

That is,bi“ indicates whether thgth column has been picked. The
two vectors in (4) can now be rewritten as

k X7 k) xxr
ST bW and  fe= Y. bYW

1<j<n 1<j<n

num —

Due to symmetry, the expected values bélf) are all identical:
Eb] = EpSY] = ... = E[bL7). Also, sinceX", ., b =,

i
we havdE[bg.k)] = k/nforall 1 < j < n. Consequently,

Elfod =k/n > g;W.; and E[feed =k/n > W.;.

1<j<n 1<j<n
Let f* be the element-wise ratio of the two mean vectors, we get

F* CE(f o /El e = £
The second equality above indicates tlfdtis also the limit value
of the proposed algorithm whén = n, i.e., when we pick all the
columns of W. To be sureE[£*] is generally not equal t¢f*,
siNCeE [ fum-/ Faerd 7 Elf numl-/Elf ¢erd- However, as we show in
the next section, for large, this bias is negligible and that, with high
probability, #* is tightly concentrated aroungt*.

3. CONCENTRATION ANALYSIS

In what follows, we assume that the pixel values have beemaler
ized sothat < ¢g; < 1, forall 1 < i < n. Before stating the main
result, we define the quantities

1<~ —~— 1~ I e
HAi = ngij HBi = QZWUF Hoi = o Zngij7
j=1 j=1 j=1
s 1O W s o 1 W 2
TAi = Z(gj ij — Mai)®, 0Bi = n Z( i — UBi),
Jj=1 j=1
Hi = Z:’ 0F = 0hi + i + (0B + phi) i — 2pipics.

sampling ratio &, = 0.005
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Fig. 3 The mean squared error between the random estiffate
and the limit resultf* converges rapidly witm. The signal tested
is piecewise-continuous, with noigse = 15/255, parameteth =

nts /255, and patch size= 5 x 1. Crosses denote realizations of 200

ndependent trials for each. The circled line denotes the average
of these trials.

Here na; and pup; can be interpreted as the averagesfqf,, and
faen Tespectively. Similarlys%; ando%; are the corresponding
variances. Thus, Theorem 1 is characterized by the statisfithe
noisy datag and the weight matrif¥y’.

Theorem 1. Forany0 < ¢ < 1, and for anyl <i < n,

2
Pr[lf — 11 2 <] <exp {‘”52 (55) (1 Ek&c) } - ©

where¢, = (k — 1)/n is the sampling ratio.

Remark 1. We obtain this result by adapting and generalizing the
bounding techniques developed in [8], and the proof is lefait
follow-up paper. In essence, the theorem says that the pititya

of having a large approximation error decays exponentiably: in-
creases. Thus, for large images, the random estim#t&swill be
highly concentrated aroung'™, even if the sampling ratig, and
error thresholde are kept small.

The concentration of the random estimates can also be neshsur
in terms of the expected mean squared errors (MSESs), asviollo

2
i

Corollary 1. E |1 f* —f*||2} <2 (;%:?31) (1;5;@)

Example 1. To illustrate the results of Theorem 1 and Corollary 1,
we apply the denoising algorithm to a 1D piecewise-contirsugig-
nal with a fixed sampling ratig, = 0.005, andn = 10*. For
this exampleup: = 3.2314 x 107!, o7 = 2.3362 x 1072 and

2

LBy — 99349 x 10, If ¢ = 0.1, thenPr [|f,fk) —f > s] <

262
1.3261 x 10~°. Figure 2 illustrates the tightness of the bound pre-
dicted by Theorem 1. Figure 3 shows that the MSE converges at a
rate of 1 /n and becomes tightly concentrated around

Figure 4 compares the performance of the random sampling al-
gorithm and the classical NLM, when both are applied to thagen
shown in Figure 1. We use PSNE)(to denote the PSNR achieved
by an estimatez, wherex can bef*), the random estimate with
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Fig. 4. The convergence plot of denoising the image shown in Fig-

ure 1 with 1072 x 712 pixels. Noisec = 15/255, parameter
h = 15/255, and patch size= 5 x 5. Speed up factor 1/¢&y.

k columns; f£*, the limit result of the proposed algorithm; fr the
reconstruction obtained by the classical NLM as in (1).

We observe from Figure 4 that, with. = 0.3, the deviation
of PSNR £) from PSNR(f*) is less than 0.1 dB. This suggests
that £*) is already a good approximation gf . It is also interest-
ing to note that PSNR") is higher than PSNI§{) by more than
2 dB. Consequently, with a very small sampling ragio= 0.002,
PSNR 7)) is already as good as PSNR(

4. DISCUSSIONS

4.1. Performance Improvement

Itis perhaps a surprising observation from Figure 4 §fiatthe limit
result of the proposed scheme, yields much higher PSNthtire
classical NLM. In this section, we provide some initial exqétions,
and leave more detailed analysis to a follow-up work.

Let W € R"*™ be a matrix with positive entries. Define two
matrix operationsp,- : R™*"™ — R™*™ andip, : R"*™ — R™*":

or(W) =diag {W 1} W, and o.(W) = W diag"™" {WT 1} .

In words, ¢, (W) andy. (W) normalize the rows, and respectively

the columns, ofW. Using these two operators, we hafe:
or(W) g, whereas

F =9 (W)g=or(0c(W))g. (6)

So, f* differs fromfby an extra column normalization step.

Itis interesting to note that the “double-normalization‘(6) are
exactly the first two steps of an iterative matrix balancingcedure
in the literature called the Sinkhorn-Knopp algorithm [23}era-
tively applying o, (¢<(+)) to a matrix, the Sinkhorn-Knopp scheme
produces, upon convergence, a doubly stochastic mattixstobse
to the input matrix. The advantage of symmetrizig by using the
full Sinkhorn-Knopp scheme was recently studied by Milah#®].
We observe from our numerical experiments that most of tHéRPS
improvements can be obtained by only carrying out the scHeme
two steps, as in (6). Furthermore, in our sampling schemeg an
column is picked, scaling it to have unit sum only adds maaigin

Fig. 5. Denoising PSNRs ot0 images (of siz&56 x 256). Av-
erage run time: Classical NLM: 330 sec; Proposed 100%: 380 se
Proposed 20%: 75 sec.

cost to the total complexity. Thus, the proposed algoritlam lzene-
fit from the Sinkhorn-Knopp scheme almost “for free”.

We apply the classical NLM and the proposed algorithm to the
images shown in Figure 5 and show the PSNR values in the ber cha
Evidently, the proposed method at full sampling perforntsdoghan
the classical NLM, with an improvement of more th&u3 dB on
average. Even for the case of 20% columns, the proposed thetho
outperforms the classical NLM hlydB on average.

4.2. Finite Search Windows

Due to the prohibited computational cost of the full NLM, rhpsac-
tical implementations of NLM either use a limited spatiatush
window (which in some sense makes non-local means locah, or
pre-selection scheme [10]. Our random sampling algoritamme
extended to accommodate either case if we skip the colunmaler
ization step considered in Section 4.1: Without column radiza-
tion, each row of W can be processed independently and thus the
sampling can be performed within the search window. If the im
age sizen is large so that the window size also has to be large,
Theorem 1 still guarantees that for a fixed sampling rafio, the
probability of deviation drops exponentially as — co. A trade-off

of using such approaches is that we can no longer benefit fnem t
Sinkhorn normalization scheme.

5. CONCLUSION

We presented a randomized algorithm for computing nonkloca
means. The proposed scheme randomly chooses a fractioe of th
columns of the weight matrix to generate an approximatdtesor

a fixed sampling ratio, the probability of having large apgmation
errors decays exponentially with the size of the image, ynpl
that the approximate solution is tightly concentrated adits limit
point when the image is large. Additionally, with a columnmal-
izing step, the proposed algorithm is equivalent to the fiivetsteps

of the iterative Sinkhorn-Knopp scheme, which has been show
yield better estimates in many real images. Therefore, ditiad to
savings in computing time, we find through our numerical expe
ments that the proposed algorithm also improves the pegioce of
the classical NLM.
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