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ABSTRACT

Non-local means (NLM) is a popular denoising scheme. Concep-
tually simple, the algorithm is computationally intensivefor large
images. We propose to speed up NLM by using random sampling.
Our algorithm picks, uniformly at random, a small number of
columns of the weight matrix, and uses these “representatives” to
compute an approximate result. It also incorporates an extra column-
normalization of the sampled columns, a form of symmetrization
that often boosts the denoising performance on real images.Using
statistical large deviation theory, we analyze the proposed algorithm
and provide guarantees on its performance. We show that the prob-
ability of having a large approximation error decays exponentially
as the image size increases. Thus, for large images, the random es-
timates generated by the algorithm are tightly concentrated around
their limit values, even if the sampling ratio is small. Numerical
results confirm our theoretical analysis: the proposed algorithm re-
duces the run time of NLM, and thanks to the symmetrization step,
actually provides some improvement in peak signal-to-noise ratios.

Index Terms— Non-local means, random sampling, Sinkhorn-
Knopp balancing scheme, image denoising

1. INTRODUCTION

Non-local means (NLM) [1], and its extensions and generalizations
(e.g., [2, 3, 4]), are widely used in image denoising. Conceptually
simple, NLM filters a noisy image by replacing each pixel witha
linear combinations of all other pixels. In the matrix-vector form,
the algorithm can be defined as

f̂ = D
−1

Wg, (1)

whereg, f̂ ∈ R
n are the noisy and denoised images, respectively,

W ∈ R
n×n is a symmetric matrix computed fromg, andD =

diag{W1}, with 1
def
= [1, 1, . . . , 1]T , is a diagonal matrix repre-

senting a normalization factor so that the filter weights sumto one.
The entries ofW , denoted by{wi,j}, measure the similarity

between all pairs of pixels. A standard choice is

wij = e−‖pi−pj‖
2/h2

, (2)

wherepi,pj ∈ R
q denote pixel patches centered at theith andjth

pixel, respectively,‖·‖ is the (weighted)ℓ2 norm, andh is a scale
parameter determined by the noise level. Several more sophisticated
constructions of{wi,j} have been proposed in the literature [5, 6],
further improving the denoising accuracy.
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Fig. 1: A typical comparison of the proposed algorithm and the clas-
sical NLM. The proposed algorithm computes and uses only 0.5%
columns of the weight matrix, reducing the run time by a factor of
200. Also, by including a additional normalization of the sampled
columns, it can actually improve performance.

One limitation of NLM is computational complexity. For an
image ofn pixels, just computing the similarity matrixW alone re-
quiresO(qn2) arithmetic operations, whereq is the number of pixels
in each image patch. In addition, aboutO(n2) operations are needed
to carry out the matrix-vector multiplication in (1). This complex-
ity imposes a severe bottleneck on NLM, hindering its widespread
adoption in real-world applications, where digital imageseasily con-
tain tens of millions of pixels.

In this paper, we propose an algorithm to accelerate NLM fil-
tering using random sampling [7], a technique widely used inso-
cial and political sciences. The proposed algorithm picks,uniformly
at random, a small number of columns of W, and uses these “rep-
resentatives” to compute a filtered image. It also incorporates an
extra column-normalization of the sampled columns, a form of sym-
metrization that often boosts performance on real images. Figure 11

shows a typical comparison between the proposed algorithm and
the classical NLM [as defined in (1) and (2)] on an image of size
1072 × 712. The proposed algorithm reduces the run time by more
than two orders of magnitude, and in the meanwhile, providessome
improvement in peak signal-to-noise ratios (PSNRs). Usingtools
from statistical large deviation theory [8, 9], we analyze the proposed
algorithm and provide probabilistic guarantees on its performance.

1Photo courtesy of wikimedia.org, Harvardmemorialchurchwinter 2009.jpg



1.1. Related Work

The high complexity of NLM is a well-known issue, and many meth-
ods have been proposed in the past decade to speed up NLM. The
simplest and most widely used approach is to reduce the spatial
search regions [2], essentially limitingW to be a banded matrix.
While effective in reducing the complexity, this strategy reduces the
ability of NLM to benefit from distant patches that are nonetheless
similar. Other notable approaches include,e.g., the pre-selection
methods [10, 11, 12, 13], which skips the computation of the weights
in (2) when the algebraic means of two patches differ by more than a
threshold; SVD methods [14, 15, 16], which project the patches onto
lower-dimensional subspaces; Gaussian KD trees [17, 18], which
generalizes the concepts of fast Gauss transforms [19]; andvariants
of integral image methods [20, 21].

In this work, we approach the problem of accelerating NLM
by using random sampling, a strategy that, to our knowledge,has
not been considered in the image processing literature. Ourmethod
is inspired by the seminal work of Drineas, Kannan and Mahoney
[22, 23, 24], who consider the general problem of approximating
large-scale matrix operations (e.g., matrix-vector multiplications),
by random sampling. In their setting, the matrix is assumed to be
known and accessible. In contrast, the weight matrixW in our prob-
lem is not available to the algorithm, so the cost of computing its en-
tries must be taken into account. Moreover, the normalization step
in (1) (in the form of multiplication byD−1) makes our problem
different from a standard matrix-vector multiplication.

1.2. Outline and Main Contributions

After presenting the proposed random sampling algorithm inSec-
tion 2, we provide two main contributions in this paper:

1. Concentration analysis: The proposed algorithm picks, uni-
formly at random, a small number of columns ofW , and uses these
“representatives” to compute a filtered imagef (k), where the super-
scriptk indicates the number of columns chosen. Whenk ≪ n, it
is legitimate to worry thatf (k), a random vector, would vary widely
at different runs of the algorithm on the same image, and in partic-

ular, f (k) would be very different fromf∗ def
= f (n), i.e., the limit

result one can get if all the columns are used. Perhaps surprisingly,
our analysis in Section 3 shows that these concerns are unnecessary.
Under mild conditions on the weight matrixW , we show in Theo-
rem 1 thatf (k) stays within anε-neighborhood off∗ with very high
probability, as long as the product

n ε2ξk/(1− ξk)

is large. Here,ξk
def
= (k − 1)/n is thesampling ratio. This result

implies that, whenn, the size of image, is large, the random vectors
f (k) will be tightly concentrated aroundf∗, even if we use a very
small sampling ratio.

2. Performance improvement: We propose a column normaliza-
tion scheme, effectively re-weighting each sampled column. Only
marginally increasing the total complexity of the algorithm, this ad-
ditional step turns out to be very effective in improving thedenoising
performance. We show in Section 4 that, with column normalization,
the limit resultf∗ of our algorithm is equivalent to applying toW
two iterations of the Sinkhorn-Knopp scheme [25], an iterative pro-
cedure that converts a matrix to a “nearby” doubly stochastic matrix.
The advantage of symmetrizingW by using the Sinkhorn-Knopp
scheme was recently observed and studied by Milanfar [26]. Our
numerical experiments confirm this improvement, withf∗ outper-

Algorithm 1 Fast NLM Filtering by Random Sampling

1: Input: g ∈ R
n×1, andk, where1 ≤ k ≤ n

2: Output:f (k) ∈ R
n×1

3: Initialize fden = 0n×1, fnum = 0n×1

4: for t = 1, . . . , k do
5: Pick jt ∈ {1, . . . , n} uniformly at randomwithout replace-

ment.
6: ComputeW :,jt , thejtth column ofW .
7: Let v = W :,jt/(W

T
:,jt1) (column normalization)

8: fnum = fnum + gjtv
9: fden = f den+ v

10: end for
11: Outputf (k) = fnum./f den

forming the classical NLM by more than1 dB on average in our
numerical experiments.

We conclude the paper in Section 5. Due to space limitations,
we only present the main results and ideas in this paper, and leave
the proofs and other technical details to a follow-up paper.

2. THE PROPOSED ALGORITHM

In the section, we present the proposed random sampling algorithm
and discuss its basic properties. First, we note that the classical NLM
scheme defined in (1) can be rewritten as

f̂ =
( ∑

1≤j≤n

gjW :,j

)
./

∑

1≤j≤n

W :,j , (3)

whereW :,j denotes thejth column ofW , and we use the MATLAB
notation./ for element-wise division.

The basic idea of the proposed algorithm is simple: since it
is computationally expensive to compute the entire matrixW , we
only use a small number of representative columns to approxi-
mately compute the sums in the numerator and denominator. Let
{j1, j2, . . . , jk} bek indices picked uniformly at random from the
set{1, 2, . . . , n} without replacement. Then an approximation of
(3) will be

∑
1≤t≤k W :,jtgjt ./

∑
t W :,jt .

In our algorithm, we first carry out a normalization step by com-
puting

W̃
def
= WD

−1,

where the diagonal elements ofD are the column (and due to sym-
metry, row) sums ofW . Essentially,W̃ is a column-normalized
version ofW . By introducing two vectors,

fnum =
∑

1≤t≤k

gjtW̃ :,jt and fden =
∑

1≤t≤k

W̃ :,jt , (4)

the output of the proposed algorithm is just

f
(k) = fnum./f den.

Algorithm 1 provides the pseudocode of the above scheme.
Since{jt}kt=1 is a set of randomly chosen indices,fnum and

fden, and thus the final outputf (k), are all random vectors. To gain
insight into the proposed random sampling algorithm, we first study
the expected values offnum andfden. To that end, it is helpful to
introduce the following Bernoulli random variables:

b
(k)
j =

{
1, if j ∈ {j1, . . . , jk},

0, otherwise.
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That is,b(k)j indicates whether thejth column has been picked. The
two vectors in (4) can now be rewritten as

fnum =
∑

1≤j≤n

b
(k)
j gjW̃ :,j and fden =

∑

1≤j≤n

b
(k)
j W̃ :,j .

Due to symmetry, the expected values ofb
(k)
j are all identical:

E[b
(k)
1 ] = E[b

(k)
2 ] = . . . = E[b

(k)
n ]. Also, since

∑
1≤j≤n b

(k)
j ≡ k,

we haveE[b(k)j ] = k/n for all 1 ≤ j ≤ n. Consequently,

E[fnum] = k/n
∑

1≤j≤n

gjW̃ :,j and E[fden] = k/n
∑

1≤j≤n

W̃ :,j .

Let f∗ be the element-wise ratio of the two mean vectors, we get

f
∗ def
= E[f num]./E[f den] = f

(n).

The second equality above indicates thatf∗ is also the limit value
of the proposed algorithm whenk = n, i.e., when we pick all the
columns ofW̃ . To be sure,E[f (k)] is generally not equal tof∗,
sinceE [fnum./f den] 6= E[fnum]./E[f den]. However, as we show in
the next section, for largen, this bias is negligible and that, with high
probability,f (k) is tightly concentrated aroundf∗.

3. CONCENTRATION ANALYSIS

In what follows, we assume that the pixel values have been normal-
ized so that0 ≤ gi ≤ 1, for all 1 ≤ i ≤ n. Before stating the main
result, we define the quantities

µAi =
1

n

n∑

j=1

gjW̃ij , µBi =
1

n

n∑

j=1

W̃ij , µCi =
1

n

n∑

j=1

gjW̃
2
ij ,

σ2
Ai =

1

n

n∑

j=1

(gjW̃ij − µAi)
2, σ2

Bi =
1

n

n∑

j=1

(W̃ij − µBi)
2,

µi =
µAi

µBi
, σ2

i = σ2
Ai + µ2

Ai + (σ2
Bi + µ2

Bi)µ
2
i − 2µiµCi.
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and the limit resultf∗ converges rapidly withn. The signal tested
is piecewise-continuous, with noiseσ = 15/255, parameterh =
15/255, and patch size= 5× 1. Crosses denote realizations of 200
independent trials for eachn. The circled line denotes the average
of these trials.

HereµAi andµBi can be interpreted as the averages off num and
fden, respectively. Similarly,σ2

Ai andσ2
Bi are the corresponding

variances. Thus, Theorem 1 is characterized by the statistics of the
noisy datag and the weight matrixW .

Theorem 1. For any0 < ε < 1, and for any1 ≤ i ≤ n,

Pr
[
|f

(k)
i − f∗

i | ≥ ε
]
≤ exp

{
−nε2

(
µ2
Bi

2σ2
i

)(
ξk

1− ξk

)}
, (5)

whereξk = (k − 1)/n is the sampling ratio.

Remark 1. We obtain this result by adapting and generalizing the
bounding techniques developed in [8], and the proof is left to a
follow-up paper. In essence, the theorem says that the probability
of having a large approximation error decays exponentiallyasn in-
creases. Thus, for large images, the random estimatesf (k) will be
highly concentrated aroundf∗, even if the sampling ratioξk and
error thresholdε are kept small.

The concentration of the random estimates can also be measured
in terms of the expected mean squared errors (MSEs), as follows:

Corollary 1. E

[
1
n
‖f (k) − f∗‖2

]
≤ 2

n

(
n∑

i=1

1
n

σ2

i

µ2

Bi

)(
1−ξk
ξk

)
.

Example 1. To illustrate the results of Theorem 1 and Corollary 1,
we apply the denoising algorithm to a 1D piecewise-continuous sig-
nal with a fixed sampling ratioξk = 0.005, and n = 104. For
this example,µBi = 3.2314 × 10−1, σ2

i = 2.3362 × 10−3 and
µ2

Bi

2σ2

i

= 2..2349 × 101. If ε = 0.1, thenPr
[
|f

(k)
i − f∗

i | ≥ ε
]
≤

1.3261 × 10−5. Figure 2 illustrates the tightness of the bound pre-
dicted by Theorem 1. Figure 3 shows that the MSE converges at a
rate of1/n and becomes tightly concentrated around0.

Figure 4 compares the performance of the random sampling al-
gorithm and the classical NLM, when both are applied to the image
shown in Figure 1. We use PSNR(x) to denote the PSNR achieved
by an estimatex, wherex can bef (k), the random estimate with
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k columns;f∗, the limit result of the proposed algorithm; or̂f , the
reconstruction obtained by the classical NLM as in (1).

We observe from Figure 4 that, withξk = 0.3, the deviation
of PSNR(f (k)) from PSNR(f∗) is less than 0.1 dB. This suggests
thatf (k) is already a good approximation off∗. It is also interest-
ing to note that PSNR(f∗) is higher than PSNR(̂f) by more than
2 dB. Consequently, with a very small sampling ratioξk = 0.002,
PSNR(f(k)) is already as good as PSNR(f̂).

4. DISCUSSIONS

4.1. Performance Improvement

It is perhaps a surprising observation from Figure 4 thatf∗, the limit
result of the proposed scheme, yields much higher PSNR thanf̂ , the
classical NLM. In this section, we provide some initial explanations,
and leave more detailed analysis to a follow-up work.

Let W ∈ R
n×n be a matrix with positive entries. Define two

matrix operationsϕr : Rn×n → R
n×n andϕc : Rn×n → R

n×n:

ϕr(W ) = diag−1 {W 1}W , and ϕc(W ) = W diag−1
{
W

T
1

}
.

In words,ϕr(W ) andϕc(W ) normalize the rows, and respectively
the columns, ofW . Using these two operators, we havêf =
ϕr(W ) g, whereas

f
∗ = ϕr(W̃ )g = ϕr(ϕc(W )) g. (6)

So,f∗ differs fromf̂ by an extra column normalization step.
It is interesting to note that the “double-normalization“ in (6) are

exactly the first two steps of an iterative matrix balancing procedure
in the literature called the Sinkhorn-Knopp algorithm [25]. Itera-
tively applyingϕr(ϕc(·)) to a matrix, the Sinkhorn-Knopp scheme
produces, upon convergence, a doubly stochastic matrix that is close
to the input matrix. The advantage of symmetrizingW by using the
full Sinkhorn-Knopp scheme was recently studied by Milanfar [26].
We observe from our numerical experiments that most of the PSNR
improvements can be obtained by only carrying out the schemefor
two steps, as in (6). Furthermore, in our sampling scheme, once a
column is picked, scaling it to have unit sum only adds marginal
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cost to the total complexity. Thus, the proposed algorithm can bene-
fit from the Sinkhorn-Knopp scheme almost “for free”.

We apply the classical NLM and the proposed algorithm to the
images shown in Figure 5 and show the PSNR values in the bar chart.
Evidently, the proposed method at full sampling performs better than
the classical NLM, with an improvement of more than1.3 dB on
average. Even for the case of 20% columns, the proposed method
outperforms the classical NLM by1 dB on average.

4.2. Finite Search Windows

Due to the prohibited computational cost of the full NLM, most prac-
tical implementations of NLM either use a limited spatial search
window (which in some sense makes non-local means local), ora
pre-selection scheme [10]. Our random sampling algorithm can be
extended to accommodate either case if we skip the column normal-
ization step considered in Section 4.1: Without column normaliza-
tion, each row ofW can be processed independently and thus the
sampling can be performed within the search window. If the im-
age sizen is large so that the window sizem also has to be large,
Theorem 1 still guarantees that for a fixed sampling ratiok/m, the
probability of deviation drops exponentially asm → ∞. A trade-off
of using such approaches is that we can no longer benefit from the
Sinkhorn normalization scheme.

5. CONCLUSION

We presented a randomized algorithm for computing non-local
means. The proposed scheme randomly chooses a fraction of the
columns of the weight matrix to generate an approximate result. For
a fixed sampling ratio, the probability of having large approximation
errors decays exponentially with the size of the image, implying
that the approximate solution is tightly concentrated around its limit
point when the image is large. Additionally, with a column normal-
izing step, the proposed algorithm is equivalent to the firsttwo steps
of the iterative Sinkhorn-Knopp scheme, which has been shown to
yield better estimates in many real images. Therefore, in addition to
savings in computing time, we find through our numerical experi-
ments that the proposed algorithm also improves the performance of
the classical NLM.
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