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Abstract

Helmholtz stereopsis has been previously introduced as a
surface reconstruction technique that does not assume a
model of surface reflectance. This technique relies on the
use of multiple cameras and light sources, and it has been
shown to be effective when the camera and source positions
are known. Here, we take a stratified look at uncalibrated
Helmholtz stereopsis. We derive a new photometric match-
ing constraint that can be used to establish correspondence
without any knowledge of the cameras and sources (except
that they are co-located), and we determine conditions un-
der which we can obtain affine and metric reconstructions.
An implementation and experimental results are presented.

1. Introduction

Numerous surface reconstruction techniques (structure
from motion, binocular or multinocular stereopsis, photo-
metric stereopsis, etc.) have been adapted to handle uncal-
ibrated or weakly calibrated image and illumination equip-
ment. What is equally important is that the community has
established an understanding of what 3D information can be
obtained under stratified levels of prior knowledge about the
acquisition system. A stratified approach is useful because
it tells us what can be obtained under a given calibration
condition (e.g., projective, affine or metric reconstruction)
and what assumptions are required in order to obtain more.
This approach has been applied to the problems of binoc-
ular and multinocular stereo [3, 4, 6], structure from mo-
tion [8, 14] and photometric stereo [7, 13]. In this paper,
we take a stratified look at a relatively new reconstruction
technique, Helmholtz stereopsis [17].

Helmholtz stereopsis has the unique property of enabling
the estimation of surface shape without requiring an as-
sumed model of reflectance. Thus, unlike most existing
methods, it enables the dense reconstruction of scenes that
contain unknown and arbitrary surface reflectance functions
(BRDFs.) In Helmholtz stereopsis, this is accomplished
through the use of images that are collected in reciprocal
pairs [17]. (A reciprocal pair is a set of two images for
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Figure 1. Reciprocal images from eight cam-
era/source positions. Columns contain fixed illumina-
tion (stereo) images and rows contain fixed viewpoint
(photometric stereo) images. One reciprocal pair is
shown highlighted.

which the positions of the camera and a point light source
are swapped — see Fig. 1.) Reciprocal pairs have the im-
portant property that the relationship between intensities at
corresponding image points depends only on surface shape,
and is independent of reflectance (a property that follows
directly from the symmetry in surface reflectance.)

The use of reciprocal image pairs means that Helmholtz
stereopsis requires images taken under multiple point-
source illuminations and from multiple viewpoints. The
changes in both viewpoint and illumination enable the
method to combine the advantages of conventional
multinocular and photometric stereopsis. Figure 1 shows



a typical Helmholtz stereo dataset. In this figure, rows cor-
respond to fixed viewpoint (photometric stereo) images, and
columns to fixed illumination (conventional stereo) images.
Whereas reconstruction based on conventional or photo-
metric stereo would use a single column or row from this
dataset, respectively, Helmholtz stereopsis makes use of all
of the images in this figure. Multiple viewpoints enable
Helmbholtz stereopsis to estimate depth (and therefore locate
depth discontinuities), and multiple illuminations provide
photometric information that enables the direct estimation
of the field of surface normals.

Helmholtz stereopsis is related to a small set of fairly
recent reconstruction techniques (others are [10, 11]) that
utilize both changing viewpoint and illumination. Lu and
Little [10] used the term photogeometric to describe their
technique, which seems like an appropriate term for the en-
tire class of methods. Although these methods are quite
different (Helmbholtz stereopsis being the only one that both
provides direct surface normal estimates and can handle a
BRDF that varies over the surface), they share the property
of requiring calibrated cameras and light sources (at least in
their original formulations.)

Generally, the calibration that is required by Helmholtz
stereopsis and these other photogeometric techniques in-
cludes intrinsic and extrinsic camera parameters, as well as
the radiometric response of the cameras, and the radiance
map of the light sources (a measure of radiance as a function
of output direction.) A question that has rarely been con-
sidered is': What surface information can be obtained by
photogeometric techniques in the uncalibrated case? This
paper moves toward answering this question for Helmholtz
stereopsis, and it does so in a stratified manner.

The next section introduces a correspondence constraint
that requires little knowledge about the cameras and sources
and shows how this constraint could be used to obtain a pro-
jective reconstruction in the uncalibrated case. In Sect. 3,
the case of distant sources and affine cameras is discussed
in detail. In Sect. 4, we see that in the uncalibrated, distant
source case, it is possible to obtain a reconstruction of the
surface and its field of surface normals up to an unknown
affine transformation. Sect. 5 discusses information that
can be used to upgrade this affine reconstruction to a metric
one; both geometric and photometric pieces of information
are considered. Finally, Sect. 6 presents an implementation
with results that lend empirical support to the discussion.

2. Helmholtz Stereopsis

This section is broken into two parts. First, we review cal-
ibrated Helmbholtz stereopsis as presented in [17]. Second,
we derive a new photometric matching constraint that can

'An exception is Rosenholtz and Koenderink [13], who took a stratified
look at combining geometric and photometric information for polygonal
surfaces

be used to establish correspondence between views in the
uncalibrated case.

Consider M isotropic point light sources co-located at
the camera centers of M pinhole cameras. (This can be ac-
complished in numerous ways, such as by swapping cam-
eras and sources, or by using half-mirrors or beam-splitters.
Co-location can also be approximated by placing each light
source near a camera.) Images are acquired in the following
fashion. Light source 7 is turned on while the other sources
are turned off, and M — 1 images are acquired from all cam-
eras but camera i. This process is repeated M times, each
with a different source turned on, until M (M — 1) images
are acquired. These images are comprised of M (M —1)/2
reciprocal image pairs. Figure 1 shows a set of these images
for M = 8. In this figure, the vertical direction corresponds
to camera position, the horizontal direction to source posi-
tion, and reciprocal pairs are in symmetric positions.

As shown in [17], given M (M — 1)/2 reciprocal pairs
taken from camera/source positions oj...o0p; we have
M (M —1)/2 constraints on the intensities of corresponding
image points. These constraints are of the form
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where e;; is the image irradiance at the projection of surface
point p (with surface normal 1) in camera o; when illumi-
nated by a point source at o;. The unit vector v; points
in the direction from p to o;. We have also included the
relative source strengths s;. (All sources were assumed to
be equal or of known strength in the original formulation—
a non-trivial assumption.) Note that when the camera and
source positions (and the source strengths) are known, ev-
erything inside the parentheses is determined by the value
of a single parameter, the depth d of the surface. If we stack
the constraints? (1) into rows of a matrix M, we obtain the
matrix constraint

M(d)yh =0 2)

where M € RM(M=1)/2x3 "and following [17], M is writ-
ten as a function of d to stress the fact that it is completely
determined by depth.

The constraint (2) can be used to establish correspon-
dence between the images and thus provide an estimate of
the surface depth d. This is because, for correct values of
d, rank M < 2 (whereas rank M = 3 in general.) In addi-
tion, the constraint provides an estimate of the surface nor-
mal, since for a correct depth d, the normal 1 spans the 1D
nullspace of M.

2.1. Uncalibrated Correspondence

The original formulation of Helmholtz stereopsis as re-
viewed in the previous section assumes knowledge of the

2For brevity, references to equations will be written in parentheses.



camera and source positions and the source strengths. It
also implicitly assumes that the radiometric camera re-
sponses are known or are linear and equal (since (1) in-
volves irradiance values and not pixel intensities) and that
the M point sources are isotropic. Next, we show that by
a simple rearrangement of the matrix constraint (2), we can
eliminate the need for most of these assumptions.
By making the definition

W, = ————— 3)
" oi—pl?
we can write (1) as e;;w; — ejw; = 0, and the matrix
constraint (2) becomes
Ew' =0 4

where E € RIM(M-1)/2)xM and v ¢ RM . For example,
if M = 4, we have
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Equation (4) is satisfied for visible points on a surface in
the scene. Therefore, similar to the use of (2) in the orig-
inal formulation [17], the constraint rank E < M can be
used to establish correspondence. When the epipolar ge-
ometry of the camera system is known (i.e., weak calibra-
tion), then E will be a function of depth, and a multinocu-
lar stereo search process can be performed using this con-
straint. When it is unknown, this constraint would have to
be used within the context of a robust structure from mo-
tion algorithm (e.g., [1].) In either case, one obtains a set
of corresponding points, and in turn, one can reconstruct
the scene up to a projective transformation [3]. Also, no-
tice that we do not require irradiance measurements from
all M (M — 1)/2 reciprocal pairs in order to use the corre-
spondence constraint based on (4). We only require mea-
surements from P pairs, where P > M.

The key advantage of this new photometric matching
constraint is that it depends only on measured irradiance
values, so we do not need to know the positions of the
cameras and sources, nor do we need to know the source
strengths. All that we require is: 1) that the radiometric re-
sponses of the cameras are linear and equal (or are known);
and 2) that the light sources are isotropic.

In the following sections, we will discuss an uncali-
brated reconstruction technique based on this constraint,
even though it is a weaker correspondence constraint than
that based on (2) (see the Appendix.) While this may seem
disconcerting, note that the original constraint is itself only

a necessary condition for correspondence, and that the ad-
vantage of allowing for an uncalibrated system is an impor-
tant one.

3. Distant Sources

In the previous section, we derived a correspondence con-
straint that does not require knowledge of the cameras and
sources. This suggests that it is possible to establish a pro-
jective reconstruction of scene points from uncalibrated re-
ciprocal pairs. This is similar to conventional uncalibrated
stereo [3], except that since we have carefully varied the
lighting between views, we are able to use a matching con-
straint that is independent of reflectance (as opposed to re-
lying on brightness constancy.)

In this section, we show that when the cameras and
sources are far from the scene, we can quite easily obtain
more: the reciprocal image pairs provide accessible infor-
mation about both the surface normals and the light sources.

When the cameras and sources are far from the scene,
we can write (1) as

(eijs;r — ejis;r) n=— O7 (5)

where s; is a product of the effective source strength s; and
direction §;, both of which are the same for all points p in
the scene. Accordingly, the vector w in (4) simplifies to

. . AT
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Now, suppose that we have established correspondence
for N points. That is, we have corresponding observa-
tions of NV unknown scene points X; ... Xy € R3 in each
of M viewpoints. (This could be achieved using the con-
straint rank EE < M, for example.) For a given point X,
we have M (M — 1) irradiance observations, one for each
source/camera pair, and we can form an irradiance matrix
E;, for that point as in (4). Since these irradiance obser-
vations correspond to a single surface point, this matrix in
general has rank (M — 1), and its 1D null space can be ex-

. R . 1T
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(It may be possible for the rank of E to drop below (M —1),
but a discussion of these cases is outside the scope of
this paper.) Letting W denote the N x M matrix (re-
call that IV is the number of points and M is the num-
ber of sources) whose rows are the transposed null vectors

c1w] ...ecyw), we have
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The matrix W is of a familiar form; it is precisely
this matrix that one considers in the bilinear calibration-
estimation problem of uncalibrated photometric stereo [2,



7, 9]. The difference here is that the ‘albedo values’ are
not due to surface reflectance properties, but are instead ar-
tifacts of the homogeneity of (4). Indeed, the reflectance
of the surface has been effectively removed through the use
of reciprocal images. Each column of W corresponds to a
Lambertian image of the N points on the surface under a
fixed source direction, and Fig. 2 shows what these images
look like for dense points on a real surface.

In order to extract the surface normal and source infor-
mation embedded in W, we must find the decomposition
W = BS, where B is the N x 3 matrix of surface nor-
mals (each scaled by a constant cg), and S is the 3 x M
matrix of source vectors (source directions scaled by source
strength.) A common strategy is to find a preliminary rank
3 factorization of W using SVD, and then to correct that
decomposition using additional constraints [7, 9]. That is,
one computes W = UXVT and defines B = UX!/2
and S = 3'/2VT, keeping only the rows and columns of
U, X, and V corresponding to the first three singular val-
ues. (Here, it is assumed that N > 3, M > 3 and that not
all normals or sources lie in a plane.) This decomposition
is not unique (since BQ_ng = BS for all Q € GL(3)),
and the true decomposition W = BS can be obtained by
finding the matrix Q that satisfies

B = BQ! )

S = QS.

Note that Q can only be defined up to scale, which is an ex-
pression of the fact that we can apply a global scaling to the
source strengths (and the inverse scaling to the c’s) with-
out affecting W. Thus, Q has eight degrees of freedom.
We examine relevant methods to determine Q in Sect. 4.

In the previous section, we derived a constraint that
can be used to establish correspondence in the uncalibrated
case. In the present section, we showed that in the case of
distant sources, we can go further; we can use the available
photometric information to estimate the surface normals at
the points of observation as well as the strength and direc-
tion of the light sources. In making this statement, we are
ignoring the problem of solving for Q in (8), but notice that
we have not yet used the available geometric information.
Since the source directions are equivalent to the viewing
directions, they can alternatively be computed using estab-
lished techniques of structure from motion. The interplay
between the geometric and photometric constraints is dis-
cussed in the next two sections, leading to a number of ways
in which we can establish a dense metric reconstruction in
the uncalibrated case of distant-source Helmholtz stereop-
sis.

4. Affine Reconstruction

In this section we demonstrate that geometric information
can be used to resolve the ambiguity in the calibration-

estimation problem. As a result, for NV > 4 observed points
and M > 4 camera/source positions we can obtain a dense
affine reconstruction of the scene (including surface nor-
mals and source strengths) without making any assumptions
beyond those of the previous section.

When the cameras are far from the scene, they can be
accurately described using the parallel projection model.
Here, we use the most general such model—that of an affine
camera [12]. To represent an affine camera, we use the tu-
ple [P, t] where P € R?*3 and t € R2. In this notation,
the image point xi, € R? that results from projecting scene
point X, € R into image i is given by

xi =P Xy + t;. 9)

The matrix P can be decomposed as

i
il I S B

where r] and r] are the first two rows of a rotation matrix

that describes the camera orientation in the world coordi-

nate system, s is the pixel skew, and o, and «,, are the hor-
izontal and vertical scale factors. (The aspect ratio is given
by ay/ay.) Also, given a matrix P, the viewing direction

(and in the present case, the source direction) in the world

coordinate system is given by the unit vector in the negative

direction of the cross product of the two row vectors p] and
ps. That is,

P xPp]
Ip] x P3|’
It is well known that by observing N > 4 non-coplanar

rigid® points over two or more unknown affine views, one

can establish an affine coordinate frame, and thereby ob-
tain the scene points and the cameras up to an unknown
affine transformation [8, 14]. In the present case, this re-
construction includes the (affine) source directions, since
they are equivalent to the viewing directions. We can show
that given a sufficient number of camera/source positions,
knowledge of these directions enables a unique solution to

the calibration-estimation problem of Sect. 3.

Each known source direction §; gives two linear con-
straints on the matrix Q in (8), since for each we have
S; = «;Qs; for some a; > 0. As noted in Sect. 3, Q
is only defined up to scale, and thus has eight degrees of
freedom. It follows that in general, Q can be uniquely re-
covered given M > 4 camera/source positions by solving
the corresponding constrained linear system of equations.

To summarize, given N > 4 observed points over M >
4 cameras/sources in general position, we can obtain the

é:

(1)

3The general affine camera model allows smooth non-rigid transforma-
tions of the scene points between views (see [8].) Here we assume fixed
source positions, however, and in order to make use of the photometric
constraints in our system, we require that the scene be rigid.



cameras (and source directions), the scene points, the source
strengths, and the surface normals at the observed points.
All of this information is in an affine coordinate frame. (See
Fig. 3 for an example.) In Sect. 5, we discuss ways in which
we can upgrade to a metric reconstruction.

Note that if we have fewer views (if M = 3) we can still
establish correspondence using (4), and we can still estab-
lish an affine reconstruction of the cameras and the observed
points. We cannot, however, determine the source strengths
or the surface normals without further information.

5. Metric Reconstruction

The reconstruction obtained in the previous section differs
from a metric reconstruction (i.e., up to scale) by an un-
known affine transformation A € GL(3). The problem of
“upgrading” the reconstruction to a metric one is thus the
problem of estimating the nine parameters of this transfor-
mation, commonly termed the autocalibration problem. In
order to solve this problem, we require more information,
either geometric or photometric, about the system.

Autocalibration is well studied, and numerous tech-
niques exist for obtaining a metric reconstruction using con-
straints on the intrinsic parameters of the cameras (see [6].)
For example, we can obtain a metric reconstruction if we
know the aspect ratio of the cameras (e.g., the pixels are
square) and there is no pixel skew (valid for CCD cameras.)
With this knowledge in hand, metric reconstruction follows
directly from the methods in Sect. 4 with no extra work,
since in this case, structure from motion yields a metric re-
construction of the points and cameras [8]. Then, the Eu-
clidean source directions can be used to resolve Q, yield-
ing the Euclidean surface normals and the relative source
strengths. This is perhaps the most practical method, and
the one we use in Sect. 6.

In addition to knowledge about that camera parameters,
we can also make use of photometric information about the
system. For example, knowledge of the relative strength of
the light sources was used by Hayakawa [7] to partially re-
solve the ambiguity in the calibration-estimation problem
for uncalibrated Lambertian photometric stereo. In that pa-
per, it was shown that knowledge of the relative strength of
six sources was enough to resolve the surface normals up
to a unitary transformation [7, 13]. Similar analysis could
be applied here. As another example, if the BRDF of the
surface is known to be highly peaked in the specular direc-
tion, we can use detected specularities to constrain A. If a
specularity is detected at the projection of the scene point
X in the reciprocal images corresponding to camera/source
directions §; and 8§, it follows that the normal at that point
must bisect these two directions, or i = (§; + §;)/2. De-
tected specularities have already been used to reduce ambi-
guities in photometric stereo and affine binocular stereo [2].

Any of these geometric or photometric constraints can

be combined to determine the unknown affine transforma-
tion and thereby upgrade to a metric reconstruction. All of
these techniques and their combinations are relevant to this
paper, but an exhaustive list of the possibilities is outside
of its scope. In the next section, we provide a demonstra-
tion of one method of resolving A and obtaining a metric
reconstruction.

6. Implementation and Results

For the results in this section, we acquired reciprocal
pairs of images using a single 12-bit Kodak DCS760 cam-
era (whose radiometric response function is linear) and
multiple Lowel Pro-light sources with 250-watt halogen
bulbs. M separate sources were placed at each of M cam-
era/source positions which were far (~ 2.5 meters) from the
scene, and the collection process was as follows. First, the
camera replaced the source at position 1, and M —1 images
were captured, each with illumination by one of the other
sources. Then, the original source was returned to position
1, and the camera replaced the source at position 2. The pro-
cess was repeated, resulting in a total of M (M —1) images,
or M (M —1)/2 reciprocal pairs. An example of a typical
dataset for M = 8 is shown in Fig. 1.

6.1. Affine

The first step of the reconstruction is the estimation of the
epipolar geometry. Currently, this is done by clicking a
small number of points, although it could be achieved using
a robust structure from motion technique (e.g., [1].) Given
N > 4 correspondences over all M views, we compute
the points X ... Xy and cameras [Py, t1],..., [P, tas]
using the Tomasi-Kanade factorization algorithm [15] gen-
eralized to affine cameras as in [14, 16]. The corresponding
source directions §; are computed using (11).

Having established the epipolar geometry, we use the
uncalibrated distant-source reciprocity constraint (4) to es-
tablish dense correspondence in the multinocular system.
This is accomplished by an exhaustive search over dispar-
ity space as follows. One camera is selected to serve as the
principle view, and the scene space is parameterized by the
disparity d € [0, d;nq.] between this and one other view.
For a given point x in the principle view, and for a given
disparity d, we sample all M (M — 1) images at the cor-
responding points in order to build Ex(d) as in (4). As a
measure of the likelihood that rank Ey (d) = M —1 we use
the ratio of its two smallest singular values,

re(d) = Z47L (12)

oM
Note that there are a number of possible measures of nu-
merical rank that could be used and that could be effective.
Since the constraint (4) is necessary for a valid disparity
value but not sufficient, we use simple windowing to make
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Figure 2. The columns of the W matrix defined in (
displayed as images. These correspond to images of
the surface with the reflectance removed.

the disparity search more robust. For a given point X, in the
principle view and a disparity value d, we compute the ratio
rx(d) at this point as well as at points in a small window
W, around x,. Then, the estimated disparity at this point is
given by

d* —argmax Z r«(d (13)

Once we have estimated the disparity d*, the correspond-
ing null vector wy_, can be obtained as the linear least-
squares estimate,

*
on

= argmin |Ex, (d)w?, |wll=1, (14
w

which is simply given by the right singular vector corre-
sponding to the smallest singular value of Ey_(d*). How-
ever, due to sampling noise, and noise in the estimation of
the epipolar geometry and the depth estimate, the irradi-
ance measurements in Ex_(d*) are in general noisy. This
affects the accuracy of the estimated null vector w} , espe-
cially when these measurements are made near discontinu-
ities in scene radiance (e.g., at albedo edges.) In order to
mitigate these effects, we use a second (weighted) window-
ing scheme. Given the disparity estimates at and near X,
we construct the E matrices at X, and in a neighborhood
WEg around it. The null vector at x, is estimated using

Wy = argmin Z e ||Exwl, W] =1, (15)
w xeWg

where ry is given by (12). Again, this calculation can be
done using SVD, since wy_ is simply the null vector of an
augmented matrix created by stacking the weighted Ey ma-
trices vertically.

To summarize, we use a two-pass technique to establish
correspondence and to estimate the null vector wy for each

>
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Figure 3. Surface normals seen from the viewpoint of
the principle camera. (a) Normal field that results from
the affine reconstruction as described in Sect. 4. (b)
That which results from enforcing known aspect ratio
and zero skew in all cameras.

point x in the principle view. In the first pass, the ratio (12)
is computed and stored for each x and for each possible dis-
parity. By maximizing (with respect to disparity) this ratio
summed over a window in the principle view, we estimate
the true disparity associated with each point. In the second
pass, we use these established disparity estimates and the
associated ratios to compute an estimate of the null vectors
over a second weighted window. Note that these two steps
need not be performed at the same resolution.

At this point, we have a null vector wy for every point
in the principle view*, and we can construct the matrix W
as in (7). The columns of this matrix for the dataset in
Fig. 1 are shown in Fig. 2. As mentioned previously, these
columns of W correspond to images of the surface with the
original reflectance removed. In order to recover the surface
normals and the source strengths as described in Sect. 4, we
compute a preliminary factorization of W and then resolve
the ambiguity in the factorization using the known affine
source directions §;. As a result of this procedure, we ob-
tain the field of surface normals as shown in Fig. 3(a). For
display purposes, we have transformed the world coordi-
nate system so that the source direction corresponding to
the principle view is [0 0 — 1]. (There is an entire family
of such transformations, each leading to a different repre-
sentation of the surface. We simply chose one.) The result
of integrating this normal field (after enforcing integrabil-
ity [5]) is shown in the top row of Fig. 4.

For this result, we used the images shown in Fig. 1. The
camera corresponding to the second row of images in that
figure was used as the principle view. Twenty correspon-

“For the results in this section, the background was manually identified
so that points x backprojecting to rays that did not intersect the surface
were ignored.



Figure 4. Three views of the two surfaces that result from integrating the normal fields in Fig. 3. The top row corresponds
to the affine reconstruction (see Fig. 3(a)), and the bottom row the metric reconstruction (see Fig. 3(b)).

dences were used to establish the epipolar geometry, the
resolution of the reconstruction was 153 x 105, and we used
square windows with W,, =9 x 9, and Wg = 3 x 3.

6.2. Metric

In order to obtain a metric reconstruction, we make the as-
sumption that the cameras have unit aspect ratio and zero
skew, and the procedure of the previous section is repeated
with only minor changes. We take the set of affine points
X, and cameras [P;, t;] and enforce known aspect ratio and
zero skew by finding G € GL(3) that satisfies the set of
quadratic constraints [14, 16]

p,,GG'p;y = pLGGTpi
piGG'px = 0,

where p]; and p), are the rows of the i'"' camera matrix
P;. By applying the transformation G to the system (the
cameras transform as PG and the points as G~'X), we
obtain the points and cameras in a metric coordinate frame,
and we can compute the true Euclidean source directions §;.

Since the correspondences remain unchanged, the matrix
W need not be recomputed. We simply resolve the ambi-
guity in the factorization using the Euclidean source direc-
tions in place of the affine directions. The resulting normal
field is shown in Fig. 3(b) and the integrated surface (after
enforcing integrability [5]) is shown in the bottom row of
Fig. 4, and in Fig. 5.

7. Conclusion

This paper takes a stratified look at uncalibrated Helmholtz
stereopsis (i.e., where we have little or no information about
the cameras and light sources.) We derive a photomet-
ric matching constraint that can be used to establish corre-
spondence without knowledge of the cameras and sources
and thus obtain a projective reconstruction of the observed
points. As in the original formulation of Helmholtz stere-
opsis, this new constraint has the important property of not
assuming a reflectance model for the surfaces in the scene
being reconstructed.

Next, we show that when the distance from the scene to
the cameras/sources is large, we can obtain an affine recon-
struction that (in addition to the observed points) includes
the surface normal at each observed point and the relative
strength of the light sources.

Finally, we discuss ways in which further information
about the cameras and sources can be used to upgrade from
this affine reconstruction to a metric reconstruction.

This paper leaves a number of open questions. First, we
do not explore the near-source (perspective) case in detail;
it is likely that more information about the scene is obtain-
able in this case, and this remains a topic for future work.
Second, although we discuss some techniques for achiev-
ing the affine to metric upgrade, an exploration of the many
possible methods is outside the scope of this paper.



Figure 5. The same surface shown in the bottom row
of Fig. 4, but interpolated and texture mapped with one
input image.

Appendix

In this appendix, we compare the two correspondence con-
straints discussed in Sect. 2. Consider a reciprocal imag-
ing system consisting of P reciprocal pairs captured from
M < P positions. If the system is calibrated, the ma-
trix equation (2) can be used to establish correspondence,
since for a valid correspondence, the matrix M will satisfy
rank M < 3. In the uncalibrated case, we cannot compute
M, and instead we factor it as

Mpy3z = EpxmUprxs, (16)

where Un = w, with w as defined in (3). Then, the
uncalibrated constraint that we use for correspondence is
rank E < M. Here we show that for M > 4 this is a
weaker constraint than that based on (2).

There are two relevant rank inequalities for a general ma-
trix product,

rank(AB)
rank AnXkkam

min(rank A, rank B)

<
> rank A +rankB — k.
Applying these to the present case (and noting that
rank U = 3 for non-coplanar sources) we get

rankE + 3 — M < rankM < min(rank E, 3),

which tells us the following. First, if M = 3, rank E <
M <= rankM < 3, and the two correspondence con-
straints are equivalent. They are not equivalent, however,
for M > 4. In this case, rankM < 3 — rank E < M,
but the converse does not hold.
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